跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 11:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林煜勛
研究生(外文):LIN, YU-SHIUN
論文名稱:基於粒子群演算法結合禁忌搜尋應用於蛋白質摺疊預測
論文名稱(外文):A particle swarm optimization-based approach with Tabu search for predicting protein folding
指導教授:楊正宏楊正宏引用關係
指導教授(外文):YANG, CHENG-HONG
口試委員:張學偉莊麗月楊孟翰
口試委員(外文):CHANG, HSUEH-WEICHUANG, LI-YEHYANG, MENG-HAN
口試日期:2017-01-25
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:80
中文關鍵詞:混合式演算法粒子族群最佳化禁忌搜尋演算法蛋白質摺疊疏水性極性模型
外文關鍵詞:hybrid algorithmparticle swarm optimizationtabu searchprotein foldinghydrophobic-polar (HP) model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
疏水性和極性模型(HP model)是常用的蛋白質摺疊結構預測的方式。本研究設計了混和粒子群優化算法,是結合粒子群最佳化算法 (Particle swarm optimization)與禁忌搜索算法 (Tabu search),並針對此研究改良Tabu搜尋的方式。其中PSO擁有良好的全域搜尋能力,而tabu search加強區域搜尋。通過預測28個已知的蛋白質結構,我們在HP model的蛋白質折疊結構預測下,評估算法的性能。PSO-Tabu與其他算法相比在短的氨基酸序列或長的氨基酸序列預測中都表現出高性能,高穩定性。PSO-Tabu在近乎所有的胺基酸序列預測中都能找到最佳結構。證明PSO-Tabu能在使用HP model預測蛋白質結構時可以有效摺疊出近似於真實蛋白質結構。
The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the PSO algorithm (which can execute global search processes) was combined Tabu search algorithms, yielding the proposed PSO-Tabu algorithm. By using 28 known protein structures, we evaluated the performance of the PSO-Tabu algorithm in predicting protein folding in the HP model. The proposed PSO-Tabu algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with many reported algorithms. The PSO-Tabu algorithm yielded optimal solutions for all the predicted protein folding structures. All PSO-Tabu-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.
摘要 iii
ABSTRACT iv
ACKNOWLEDGEMENT v
I. INTRODUCTION 1
1.1 Background 1
1.2 Motivation 2
1.3 Purpose 2
II. RELATED WORKS 4
2.1 Proteins 4
2.2 HP model 4
III. IMPROVED OPTIMAL PREDICTION ALGORITHM 6
3.1 PSO algorithm 6
3.1.1 Encoding 7
3.1.2 Particle Initialization 8
3.1.3 Fitness calculation 10
3.1.4 The population topology 12
3.1.5 Updating pbest and lbest 12
3.1.6 Updating particles 13
3.2 Tabu search 14
3.2.1 Part 1 of search 14
3.2.2 Part 2 of search 15
3.2.3 Tabu list 16
3.3 Parameter settings 18
III. RESULT 19
4.1 Data set 19
4.2 Comparison PSO based on difference topology 21
4.3 Comparison between the prediction accuracies of PSO-Tabu and other algorithms under the square lattice model of the sequence 1 22
4.4 Comparison between the prediction accuracies of PSO-Tabu and other algorithms under the triangular lattice model of the sequence 1 28
4.5 Comparison between the prediction stability of PSO-Tabu and other algorithms under the triangular lattice model of the sequence 1 30
4.6 Comparison of the best prediction results among several algorithms of the sequence 2 35
4.7 The success rate of the best structure prediction of the sequence 2 37
4.8 Mean of the best fitness 39
4.9 Visualization of the best prediction results 41
IV. DISCUSSION 53
5.1 The difference of local search addition 53
5.2 Exploring the design of tabu search 56
5.3 Discuss the data results 61
V. CONCLUSION 63
VI. FUTURE WORKS 64
REFERENCES 65
PUBLICATION LIST 68


[1]C. Anfinsen, "The formation and stabilization of protein structure," Biochemical Journal, vol. 128, pp. 737, 1972.
[2]K. A. Dill, "Theory for the folding and stability of globular proteins," Biochemistry, vol. 24, pp. 1501-1509, 1985.
[3]P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis, "On the complexity of protein folding," Journal of computational biology, vol. 5, pp. 423-465, 1998.
[4]N. D. Jana and J. Sil, "Protein structure prediction in 2D HP lattice model using differential evolutionary algorithm," in Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January 2012, 2012, pp. 281-290.
[5]A. Bechini, "On the characterization and software implementation of general protein lattice models," PLoS One, vol. 8, p. e59504, 2013.
[6]F. Glover, "Tabu search-part I," ORSA Journal on computing, vol. 1, pp. 190-206, 1989.
[7]R. Mendes, J. Kennedy, and J. Neves, "The fully informed particle swarm: simpler, maybe better," IEEE transactions on evolutionary computation, vol. 8, pp. 204-210, 2004.
[8]J. Kennedy, "Particle swarm optimization," in Encyclopedia of Machine Learning, ed: Springer, 2010, pp. 760-766.
[9]N. D. Jana and J. Sil, "Protein structure prediction in 2D HP lattice model using differential evolutionary algorithm," Proceedings of the International Conference on Information Systems Design and Intelligent Applications (India 2012), vol. 132, pp. 281-290, 2012.
[10]E. García-Gonzalo and J. Fernández-Martínez, "A brief historical review of particle swarm optimization (PSO)," J Bioinf Intell Control, vol. 1, pp. 3-16, 2012.
[11]E. García-Gonzalo and J. Fernández-Martínez, "A brief historical review of particle swarm optimization (PSO)," Journal of Bioinformatics and Intelligent Control, vol. 1, pp. 3-16, 2012.
[12]M. Clerc and J. Kennedy, "The particle swarm-explosion, stability, and convergence in a multidimensional complex space," IEEE transactions on Evolutionary Computation, vol. 6, pp. 58-73, 2002.
[13]J. Kennedy, "Particle swarm optimization," in Encyclopedia of machine learning, ed: Springer, 2011, pp. 760-766.
[14]T. Jiang, Q. Cui, G. Shi, and S. Ma, "Protein folding simulations of the hydrophobic–hydrophilic model by combining tabu search with genetic algorithms," The Journal of chemical physics, vol. 119, pp. 4592-4596, 2003.
[15]M. K. Islam, M. Chetty, and M. Murshed, "Novel local improvement techniques in clustered memetic algorithm for protein structure prediction," in IEEE Congress on Evolutionary Computation (CEC), 2011, pp. 1003-1011.
[16]N. Krasnogor and J. Smith, "A memetic algorithm with self-adaptive local search: TSP as a case study," in GECCO, 2000, pp. 987-994.
[17]J. Santos and M. Diéguez, "Differential evolution for protein structure prediction using the HP model," in Foundations on Natural and Artificial Computation. vol. 6686, J. M. Ferrández, J. R. Á. Sánchez, F. d. l. Paz, and F. J. Toledo, Eds., ed Berlin: Springer, 2011, pp. 323-333.
[18]J. Santos and M. Diéguez, "Differential evolution for protein structure prediction using the HP model," in International Work-Conference on the Interplay Between Natural and Artificial Computation, 2011, pp. 323-333.
[19]K. A. Dill, "Theory for the folding and stability of globular proteins," Biochemistry, vol. 24, pp. 1501-9, 1985.
[20]R. Unger and J. Moult, "Genetic algorithms for protein folding simulations," Journal of molecular biology, vol. 231, pp. 75-81, 1993.
[21]N. Krasnogor, B. Blackburne, E. K. Burke, and J. D. Hirst, "Multimeme algorithms for protein structure prediction," in International Conference on Parallel Problem Solving from Nature, 2002, pp. 769-778.
[22]M. T. Hoque, M. Chetty, and L. S. Dooley, "A hybrid genetic algorithm for 2D FCC hydrophobic-hydrophilic lattice model to predict protein folding," in AI 2006: Advances in Artificial Intelligence, ed: Springer, 2006, pp. 867-876.
[23]H.-J. Böckenhauer, A. Z. M. D. Ullah, L. Kapsokalivas, and K. Steinhöfel, "A local move set for protein folding in triangular lattice models," in Algorithms in Bioinformatics, ed: Springer, 2008, pp. 369-381.
[24]S.-C. Su, C.-J. Lin, and C.-K. Ting, "An effective hybrid of hill climbing and genetic algorithm for 2D triangular protein structure prediction," Proteome science, vol. 9, pp. S19, October 14 2011.
[25]J. Smith, "The co-evolution of memetic algorithms for protein structure prediction," in Recent advances in memetic algorithms, ed: Springer, 2005, pp. 105-128.
[26]M. Michael Gromiha and L.-T. Huang, "Machine learning algorithms for predicting protein folding rates and stability of mutant proteins: Comparison with statistical methods," Current Protein and Peptide Science, vol. 12, pp. 490-502, 2011.
[27]Y. W. Li, T. Wüst, and D. P. Landau, "Monte Carlo simulations of the HP model (the “Ising model” of protein folding)," Computer physics communications, vol. 182, pp. 1896-1899, 2011.
[28]L. Mirny and E. Shakhnovich, "Protein folding theory: from lattice to all-atom models," Annual review of biophysics and biomolecular structure, vol. 30, pp. 361-396, 2001.
[29]A. Shmygelska, R. Aguirre-Hernandez, and H. H. Hoos, "An ant colony optimization algorithm for the 2D HP protein folding problem," in International Workshop on Ant Algorithms, 2002, pp. 40-52.
[30]M. K. Islam and M. Chetty, "Novel memetic algorithm for protein structure prediction," in Australasian Joint Conference on Artificial Intelligence, 2009, pp. 412-421.
[31]M. Chen and W.-Q. Huang, "A branch and bound algorithm for the protein folding problem in the HP lattice model," Genomics Proteomics Bioinformatics, vol. 3, pp. 225-30, 2005.
[32]C. Rego, H. Li, and F. Glover, "A filter-and-fan approach to the 2D HP model of the protein folding problem," Annals of Operations Research, vol. 188, pp. 389-414, 2011.
[33]K. W. DeRonne and G. Karypis, "Effective optimization algorithms for fragment-assembly based protein structure prediction," Journal of bioinformatics and computational biology, vol. 5, pp. 335-352, 2007.
[34]X. Lin and X. Zhang, "Protein structure prediction with local adjust tabu search algorithm," BMC bioinformatics, vol. 15, pp. S1, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊