跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉文安
研究生(外文):Wen-An Yeh
論文名稱:模糊演算法結合加速度感測器應用於布朗斯壯動作評估系統
論文名稱(外文):A Brunnstrom Stage Evaluation System with Fuzzy-Accelerometer
指導教授:蘇德仁蘇德仁引用關係
指導教授(外文):Te-Jen Su
口試委員:蔡聖鴻陳瓊興余國正盧建余蘇德仁
口試委員(外文):Sheng-Hong TsaiChiung-Hsing ChenGwo-Jeng YuJian-Yu LuTe-Jen Su
口試日期:2017-07-01
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:59
中文關鍵詞:模糊演算法加速度感測器布朗斯壯特徵值
外文關鍵詞:Fuzzy AlgorithmAccelerometerBrunnstromEigenvalue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
隨著醫療的發展,腦中風的死亡率緩慢下降,但腦中風的發生率並沒有下降,而且發生小中風的機率更是有上升的趨勢,大部分腦中風患者需要長期照護,成為家庭和社會的沉重金錢和精神負擔,所以腦中風是國人在醫療保健上須注意的重要課題。此研究提出一套判斷布朗斯壯動作的系統,首先觀察復健的動作,觀察出幾個明顯的特徵後,以VBA(Visual Basic for Applications)程式建構系統,在實作的系統將加速度感測器的運作特性與布朗斯壯復健動作的特徵整合,開發出一套可應用於布朗斯壯動作的評估系統。系統會將加速度感測器所收集的數值計算出特徵值,並結合模糊演算法,將特徵值當作輸入參數得出布朗斯壯動作等級。根據實驗結果,本論文所提出的布朗斯壯動作評估系統,使用者的動作透過此套系統可有效判斷布朗斯壯等級,在未來可輔助復健師評估受測者狀況,進而減少復健師在評估時所花費的時間,讓評估變得更有效率。

With the rapid development of the medicine, the death rate of stroke decreases slowly, but the occurrence rate of stroke does not decrease. Moreover, the occurrence rate of Transient Ischemic Attack (TIA) increases. Most patients who suffered from stroke require a long term medical attention which turns into a heavy burden on the family and society due to financial issues or manpower needed. Stroke becomes a serious issue in the medical field.This research presents a system based on rehabilitative motion. The system is a combination of accelerometer sensor's data and Brunnstrom rehabilitative motion's characteristics. First, we observe the rehabilitative motions of the user, and after detecting few obvious eigenvalue we use the VBA (Visual Basic for Applications) program to develop the Brunnstrom Stage Evaluation System (BSES). The BSES will calculate the eigenvalue from the accelerometer sensor’s data and combine the data by using the fuzzy algorithm with the eigenvalue as the input and Brunnstrom level as output.According to the experimental results, the Brunnstrom Stage Evaluation System (BSES) can effectively classify the Brunnstrom level of the patient. In the future, the BSES can be used to assist the physiotherapist to evaluate the status of the patient efficiently.

摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖 目 錄 vi
表 目 錄 viii
一、緒論 1
1.1前言 1
1.2研究目的 3
1.3論文架構 3
二、理論基礎與文獻探討 4
2.1模糊理論介紹 4
2.1.1模糊化與歸屬函數 5
2.1.2模糊規則庫 7
2.1.3模糊推論引擎 8
2.1.4解模糊化 9
2.2布朗斯壯方法介紹 10
2.2.1布朗斯壯動作 10
2.2.2布朗斯壯評估 10
2.2.3布朗斯壯動作分期 11
2.2.4布朗斯壯動作分期評估 12
2.2.5布朗斯壯治療方式 16
2.3 低通濾波演算法 17
2.4 動作分析與評估技術 18
2.4.1加速度感測器的應用 19
三、布朗斯壯動作評估系統架構與設計 20
3.1系統架構 20
3.1.1硬體流程 21
3.1.2 Arduino Nano開發板 21
3.1.3 MPU-6050感測器 22
3.1.4無線通訊模組 24
3.2系統軟體設計構成 27
3.2.1 Arduino Software IDE 29
3.3研究方法 30
3.3.1訊號處理 31
3.3.2等級評估 32
四、實驗結果與分析 43
4.1實驗說明 44
4.2實驗結果與分析 47
五、結論與未來展望 55
5.1結論 55
5.2未來展望 55
參考文獻 56

[1]內政部統計處,最新統計指標-扶養比-人口三段年齡組人數,http://www.moi.gov.tw/stat/index.aspx,檢索於May. 2017。
[2]J. Mackay, G. A. Mensah, S. Mendis, and K. Greenlund, “The atlas of heart disease and stroke,” World Health Organization, 2004.
[3]衛生福利部統計處,老人長照、養護及安養機構實際進住人數,http://www.mohw.gov.tw/cht/DOS/,檢索於May. 2017。
[4]J. Sanford, J. Moreland, L. R. Swanson, P. W. Stratford, and C. Gowland, “Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke,” Physical therapy, 7(37), pp. 447-454, Jul. 1993.
[5]上田敏, 福屋靖子, 片麻痺機能テストの標準化―12段階「片麻痺回復グレード」法―, 総合リハビリテーション, 5(10), pp. 749-766, 1977.
[6]L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353, 1965.
[7]L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, no. 1, pp. 28-44, Jan. 1973.
[8]W. Li-Xin, “A course in fuzzy systems and control,” Prentice Hall, 1997.
[9]T. Munakata, Y. Jani, “Fuzzy systems: An overview,” Communications of the ACM, vol. 37, pp. 69-96, Mar. 1994.
[10]J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Springer Science & Business Media, Mar. 2013.
[11]A. Pourabdollah, C. Wagner, J. H. Aladi and J. M. Garibaldi, “Improved Uncertainty Capture for Nonsingleton Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 6, pp. 1513-1524, Dec. 2016.
[12]Y. P. Kondratenko, O. V. Kozlov, O. S. Gerasin and Y. M. Zaporozhets, “Synthesis and research of neuro-fuzzy observer of clamping force for mobile robot automatic control system,” 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, pp. 90-95, Aug. 2016.
[13]S. Brunnstrom, “Motor testing procedures in hemiplegia: based on sequential recovery stages,” Phys Ther 46, pp. 357-375, 1966.
[14]S. Brunnstrom, “Movement Therapy in Hemiplegia: A neurophysiological approach,” Medical Dept., Harper & Row, 1970.
[15]J. M. LaVigne, “Sensorimotor assessment form,” Phys Ther 54, pp. 128–134, 1974.
[16]K. A. Sawner, J. M. LaVigne, and S. Brunnstrom, “Brunnstrom's movement therapy in hemiplegia: A neurophysiological approach,” Philadelphia, Lippincott, 1992.
[17]詹美華,中風病人的評估,物理治療學會雜誌,pp.32-40,Oct. 1976。
[18]王瑞瑤;林光華;林桑伊;胡名霞;張雅如;游祥明;湯佩芳;蕭世芬;戴英子,神經物理治療學<上冊>,禾豐書局,2010。
[19]M. P. Paskaš, A. M. Gavrovska, D. M. Dujković and B. D. Reljin, “Adaptive fractal filtering of echocardiograms,” 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), Belgrade, pp. 25-28, Jan. 2014.
[20]M. Paskaš, B. Reljin, I. Reljin and D. Dujković, “Edge preserved low-pass filtering controlled by local dimension,” 2013 20th International Conference on Systems, Signals and Image Processing (IWSSIP), Bucharest, pp. 87-90, Oct. 2013.
[21]G. X. Lee, K. S. Low, “A factorized quaternion approach to determine the arm motions using triaxial accelerometers with anatomical and sensor constraints,” IEEE Transactions on instrumentation and measurement, vol. 61, pp. 1793-1802, Jan. 2012.
[22]M. S. Salim, H. N. Lim, M. S. M. Salim and M. Y. Baharuddin, “Motion analysis of arm movement during badminton smash,” 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, pp. 111-114, Apr. 2010.
[23]Z. Zhang, Y. Liu, A. Li and M. Wang, “A novel method for user-defined human posture recognition using Kinect,” 2014 7th International Congress on Image and Signal Processing, Dalian, pp. 736-740, Jan. 2014.
[24]W. j. Wang, J. W. Chang, S. F. Haung and R. J. Wang, “Human Posture recognition based on images captured by the Kinect sensor,” Int J Adv Robot Sys, vol. 13, pp. 54-69, Jan. 2016.
[25]陳建榮,基於智慧型手機之跌倒偵測與三維計步器之設計與實現,淡江大學資訊工程學系,碩士論文,2014。
[26]P. Kostopoulos, T. Nunes, K. Salvi, M. Deriaz, and J. Torrent, “Increased Fall Detection Accuracy in an Accelerometer-based Algorithm Considering Residual Movement,” In ICPRAM (2) pp. 30-36, Jan. 2015.
[27]J. Howcroft; J. Kofman; E. Lemaire, “Prospective Fall-Risk Prediction Models for Older Adults based on Wearable Sensors,” in IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol.PP, no.99, pp. 1-14, Mar. 2017.
[28]翁武湘,基於角度與加速度變化之跌倒偵測,國立東華大學資訊工程學系,碩士論文,2015。
[29]Z. Wang, D. Wu, R. Gravina, G. Fortino, Y. Jiang, K. Tang, “Kernel fusion based extreme learning machine for cross-location activity recognition”, Information Fusion, vol. 37, pp. 1-9. Sept. 2017.
[30]鄭宇倫,基於穿戴式三軸加速度感測器的步態週期分割與特徵分析,國立雲林科技大學資訊工程系,碩士論文,2016。
[31]T. Marasović and V. Papić, “Accelerometer-based gesture classification using principal component analysis,” SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks, Split, pp. 1-5, Sept. 2011.
[32]R. Xu, S. Zhou and W. J. Li, “MEMS Accelerometer Based Nonspecific-User Hand Gesture Recognition,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1166-1173, May 2012.
[33]K. Murao, T. Terada, A. Yano and R. Matsukura, “Evaluating Gesture Recognition by Multiple-Sensor-Containing Mobile Devices,” 2011 15th Annual International Symposium on Wearable Computers, San Francisco, CA, pp. 55-58, Jun. 2010.
[34]A. Yardimci, “Fuzzy Logic Based Gait Classification for Hemiplegic Patients,” Advances in Intelligent Data Analysis VII. IDA 2007. Lecture Notes in Computer Science, vol. 4723. Springer, Berlin, Heidelberg, pp. 344-354, 2007.
[35]Arduino, “Arduino Nano”, https://www.arduino.cc/en/Main/ArduinoBoardNano, 檢索於Apr. 2017.
[36]InvenSense, “MPU-6050 Six-Axis MEMS MotionTracking™ Devices”, https://goo.gl/WKtbDq, 檢索於May. 2017.
[37]Digi, “Digi XBee® 802.15.4”, https://goo.gl/1AwyTC, 檢索於Jun. 2017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top