(3.230.154.160) 您好!臺灣時間:2021/05/08 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯國民
研究生(外文):KO,KUO-MIN
論文名稱:OTO商業模式下以理性行為理論和科技接受模型來探討女性使用意圖與購買行為─以關係行銷為干擾變數
論文名稱(外文):OTO Business Model : A Study of Female Using Intention and Puchasing Behavior in Technology Acceptance Model and Theory of Reason Action-Relationship Marketing as a Moderator
指導教授:陳榮方陳榮方引用關係蘇明鴻蘇明鴻引用關係
指導教授(外文):CHEN, JUNG-FANGSHU,MING-HUNG
口試委員:吳文雄廖世義盧瑞琴陳榮方蘇明鴻
口試委員(外文):Wu,Wen-HsiungLIAW,SHU-YILU,LAI-CHINCHEN, JUNG-FANGSHU,MING-HUNG
口試日期:2017-06-22
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:107
中文關鍵詞:科技接受模式理性行為理論關係行銷OTO商業模式線性結構
外文關鍵詞:Technology Acceptance ModelTheory of Reasoned ActionRelationship MarketingOTO Business ModelLinear Structure Relation Model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:292
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究主要探討對於FB社群軟體女性使用者在實體與虛擬商店認知有用性、認知易用性、主觀規範、使用態度、持續使用意圖與購買行為之關係以關係行銷為干擾變數,並發放問卷,問卷共計回收425份問卷,進行篩檢以刪除無效問卷,無效問卷共68份,總計有效問卷357份,回收率達84%。本研究利用各種統計方法加以驗證本研究所提出之假設及研究架構,並分析比較模式優劣性,最後研究結果發現:
1. 科技接受模式與理性行為理論兩者模式配適度佳,若兩模式比較科技接受模式適合度優於理性行文理論模式。
2. 理性行為理論中主規範對持續使用行為意圖有正向影響,這項因果關係不存在,起因於台灣女性意識抬頭,教育水準提高所以女性消費者對於自身有很大的決定權與自主權,而且Facebook的使用歷來也有很長的時間,滲透性也很高,認為使用Facebook消費是稀鬆平常的事。
3. 科技接受模式中認知有用性在認知易用性對使用態度上存在部分中介效果,且認知有用性的間接效果佔認知易用性的直接效果的比例為1.25倍
4. 使用意圖對購買行為之關係以關係行銷為干擾變數,只有在財務性與社交性上存在干擾效果,結構性與信任性上並不存在。所以使用FB社群軟體,會因為FB社群軟體粉絲專頁的價格吸引(突然的價格折扣)或因為FB社群軟體粉絲專頁的長期經營互動溝通,而有所增加或減少。

關鍵字: 科技接受模式、理性行為理論、關係行銷、OTO商業模式、線性結構

Abstract
The purpose of this paper is to explore the relationship between purchasing behavior and other factors like perceived usefulness, perceived ease of use, subjective norm, attitude toward using and behavioral intention to use, taking relationship marketing as an interference variable. This study adopts the questionnaire survey method, with questionnaires distributed to Taiwanese women users of the social networking site Facebook; 425 copies were returned, including 357 valid ones with a response rate of 84%. Statistical methods were utilized to verify the assumption and to compare the advantages and disadvantages of different models. The research offers the following findings First, both the Technology Acceptance Model (TAM) and Theory of Reasoned Action (TRA) are applicable for this study, but by comparison, TAM is more suitable than TRA. Second, in TRA, subjective norm has a positive impact on behavioral intention to use, but this relationship does not apply to FB women users in Taiwan, because they exhibit independent consciousness and have improved education levels, such that they have full autonomy to make their owns decision. Moreover, Facebook has already been popular for a long time with a great influence on people’s conception of using it as a consumer platform. Third, in TAM, perceived usefulness and perceived ease of use have some intervening effects on the attitude toward using and the indirect effect from perceived usefulness is 1.25 times the direct effect from perceived ease of use. Last, among the four types of relationship marketing, only financial bonds and social bonds have an interference effect on the relationship between behavioral intention to use and purchasing behavior, while structural bonds and trust do not show an interference effect. Therefore, the frequent Facebook is used as a consumer platform is affected by the attractive of price discount and continuous management and interaction in the fan page.

Key Words: Technology Acceptance Model, Theory of Reasoned Action, Relationship Marketing, OTO Business Model, Linear Structure Relation Model
TABLE OF CONTE
TABLE OF CONTEN

Abstract i
TABLE OF CONTENT ii
LIST OF FIGURES iii
LIST OF TABLES iv
Chapter1 Introduction 1
1.1 Research Background 1
1.2 Research Motivation and Purpose 4
1.3 Research Scope and Limitations 6
1.4 Research Process 7
Chapter 2 Literature Review 9
2.1 Online to Offline and Facebook Fan Page 9
2.2 Theory of Reasoned Action, TRA 17
2.3 Technology Acceptance Model, TAM 21
2.4 Relationship Marketing 26
Chapter 3 Research Method 34
3.1Research Framework 34
3.2 The Operational Definition of Variables and Research Hypothesis 36
3.3 Questionnaire Design 42
3.4 Research Object and Questionnaire Distribution 47
3.5 Data Analysis Method 48
Chapter 4 Data Analysis 52
4.1Questionnaire Collection and Structural Analysis of Samples 52
4.2 Reliability and Validity Analysis 56
4.3 Model Analysis 60
4.4 Demographic Variables and Difference Analysis of Dimensions 66
4.5 Mediating Effect of Perceived Usefulness 75
4.6 Interference Effect of Relationship Marketing 75
4.7 Empirical Result of Hypotheses 75
Chapter 5 Conclusion and Suggestions 75
5.1 Research Conclusion 75
5.2 Research Suggestions 75
5.3 Research Limitations and Suggestions for Future Studies 75
References 75

LIST OF FIGUR

Figure 1-1 Research Process Flow Chart 8
Figure 2-1 OTO Business Model 9
Figure 2-2 Theory of Reasoned Action, TRA 18
Figure 2-3 Technology Acceptance Model 21
Figure 2-4 Antecedents and Components of Relationship Selling 29
Figure 3-1 Research Framework 35
Figure 4-1 Path Analysis of Structural Model and Test Result 61
Figure 4-2 Path Analysis of Structural Model and Test Result 64
Figure 4-3 Path Analysis of Perceived Ease of Use, Perceived Usefulness and Attitude Toward Using 75

LIST OF TABLES

Table 2-1TheNumber of U.S. Social Networking Site Usage Statistics 13
Table 2-2 Technology Acceptance Model Constructs Explained 22
Table 2-3 Basic Assumption and Application of TAM 23
Table 2-4 Related TAM Constructs 25
Table 2-5 Three levels of relationship marketing 30
Table 2-6 Three Dimensions of Relationship Marketing 30
Table2-7 Consolidation of the Definitions of Trust from Different scholars 31
Table 2-8 Consolidation of Research on Relationship Marketing in Taiwan 33
Table 4-1 Frequency analysis of Sample Structure 54
Table 4-2 Frequency Analysis of Sample Structure 55
Table 4-3 Reliability Analysis and Convergent Validity of Dimensions 57
Table 4-4 Correlation Coefficient Matrix of Latent Dimensions 59
Table 4-5 Goodness of Fit of Technology Acceptance Model 61
Table 4-6 Path Analysis of Structural Model and Test Result of Hypotheses 62
Table 4-7 Goodness of Fit of Theory of Reasoned Action Model 63
Table 4-8 Path Analysis of Structural Model and Test Result of Hypotheses 64
Table 4-9 Comparison of evaluation indicators between Technology Acceptance Model and Theory of Reasoned Action Model 65
Table 4-10 Difference Analysis of Different Ages on Dimensions 67
Table 4-11 Difference Analysis of Different Educational Levels on Dimensions 69
Table 4-12 Difference Analysis of Profession on Different Dimensions 71
Table 4-13 Difference Analysis of Marital Statuses on Dimensions 72
Table 4-14 Difference Analysis of Different Locations on Dimensions 73
Table 4-15 Difference Analysis of Different Using Time of Facebook on Dimensions 75
Table 4-16 The t-test of Log-in Frequency of Facebook on Different Dimensions 75
Table 4-17 Difference Analysis of Each Log-in Time of Facebook on Dimensions 75
Table 4-18 Difference Analysis of Facebook Membership on Dimensions 75
Table 4-19 Difference Analysis of Disposable Monthly Income on Dimensions 75
Table 4-20 Regression Analysis of Perceived Ease of Use, Perceived Usefulness and Attitude Toward Using 75
Table 4-21 Regression Analysis of Interference Effect of Relationship Marketing-Financial Bonds 75
Table 4-22 Regression Analysis of Interference Effect of Relationship Marketing-Social Bonds 75
Table 4-23 Regression Analysis of Interference Effect of Relationship Marketing-Structural Bonds 75
References

1. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use and usage of information technology: a replication. MIS Quarterly, 16, 227-247.
2. Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision science, 30, 361-391.
3. Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. Action-Control: From Cognition to Behavior, Heidelberg: Springer, 11-39.
4. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
5. Ajzen, I., & Madden, T. J. (1986). Prediction of goal directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of Experimental Social Psychology, 22, 453-474.
6. Ajzen, I., & Fishbein, M. (1975). Belief, attitude, intention, and behavior. Reading, MA:Addison-Wesley.
7. Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior, Englewood Cliffs, NJ:Prentice-Hall.
8. Al-Debei, M. M., Al-Lozi, E., & Papazafeiropoulou, A. (2012). Why people keep coming back to Facebook: Explaining and predicting continuance participation from an extended theory of planned behavior perspective. Decision Support Systems, 55(1), 43-54.
9. Armstrong, G., & Kotler, P. (2000).Marketing: An Introduction, 5th ed., PrenticeHall, New-Jersey.
10. Ba, S., & Pavlou, P. (2002). Evidence of the effect of trust building technology in electronic markets: Price premiums and buyer behavior. MIS Quarterly, 26(3), 243-268.
11. Bagozzi, R. P. (1995). Reflections on Relationship Marketing in Consumer Markets, Journal of the Academy of Marketing Science, Fall, 272-277.
12. Bagozzi, R. P., & Yi, Y. (1988). On the Evaluation for Structural Equation Models. Journal of the Academy of Marketing Science, 1, 74-94.
13. Berry, L. L. (1983). Relationship Marketing, in Berry, L. L., Shostack, G. L. and Upah,G. D. (Eds), Emerging Perspectives of Services Marketing 25-28. Chicago:American Marketing Association.
14. Berry, L. L., & Parasuraman, A. (1991). Marketing Service-Competing Through Quality, New York: The Free Press.
15. Bhattacherjee, A. (2000). Acceptance of E-Commerce Services: The Case of Electronic Brokerages, IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 30(4), 411-420.
16. Casalo’, L., Flavia’n, C., & Guinalı’u, M. (2007). The impact of participation invirtual brand communities on consumer trust and loyalty. Online Information Review, 31(6), 775-792.
17. Chang, H.L., & Shen, Y.C. (2005). The Study of Behavior Intention to Walk - A Case for Taipei Citizens. Journal of the Chinese Institute of Transportation, 17 (3), 233-260.
18. Chen, C. Y., Leu B. Y., & Su, P. H.(2016). The Effects of Social Media Marketing on Consumer’s Community Cognition and Behavior Intentions in O2O Business Model. Marketing Review.13 (1), 1-35.
19. Chen, C.C., & Cheng, P.L. (1994). Application of Statistical Package of SPSS, SAS and BMDP in Multivariate Statistics, Taipei: Wunan Publishing.
20. Chou, C. C. (2005). A Study of Factors Motivating the Online Knowledge Sharing: The Case of Yahoo! Kimo Knowledge+. Unpublished master’s dissertation, Department of Information Science, Soochow University.
21. Christopher M., Payne, A., & Ballantyne, D. (1991). Relationship Marketing. Butterworth-Heinemann, Oxford. p. 264. ISBN 0-7506-4839-2.
22. Cuieford, J. P. (1965). Fundamental statistics in psychology and education. New York: McGraw Hill.
23. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology:a comparison of two theoretical models. Management Science, 35(8), 982-1003
24. Davis, F.D. (1986). A Technology Acceptance Model for Empirically Testing New End-User Information System:Theory and Results, Doctoral Dissertation, MIT Sloan School of Management, Cambridge, MA.
25. Dinner, I.M., VanHeerde, H.J., & Neslin, S.A. (2014). Driving Online and Offline Sales: The Cross-Channel Effects of Traditional, Online Display, and Paid Search Advertising. Journal of Marketing Research. 51, 527-545.
26. Dodds, W. B., & Kent B. M. (1985). The Effect of Brand and Price Information on Subjective Product Evaluation, Advances on Consumer Research, 12, 85-90
27. Egan, J., (2008). Relationship Marketing (S. R. Fang, trans.)Taipei City: Wunan. (Original work published 2004).
28. Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook "friends:" Social capital and college students' use of online social network sites. Journal of Computer Mediated Communication-Electronic Edition, 12(4), 1143-1168.
29. Fornell, C. R., & Larcker, D.F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18, 39-51.
30. Garbarino, E., & Johnson, M. S. (1999). The different roles of satisfaction, trust, and commitment in customer relationships. Journal of Marketing, 63(2), 70-87.
31. Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega: The International Journal Management Science, 28(6), 725-737.
32. Gefen, D. (2002). Reactions on the dimensions of trust and trustworthiness among online consumers. ACM SIGMIS Database, 33(3), 38-53.
33. Gefen, K., & Straub, D. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 1(3), 51-90.
34. Geyskens, I., Steenkamp, J. B. E. M., Scheer, L., & Kumar, N. (1996). The effects of trust and interdependence on relationship commitment: A trans-Atlantic study. International Journal of Research in Marketing, 13(4), 303-317.
35. Guo, M. H., Liao, H. T., & Hsiao, L. L. (2014). The Influence of Information Privacy Concern on Users' Intentional Behavior in Social Networking Websites-An Example on Facebook. Journal of Information Management. 21(4), 341-363.
36. Harrison, D. A., Mykytyn Jr., Peter, P., & Riemenschneider, C. K. (1997). Executive Decisions about Adoption of Information Technology in Small Business: Theory and Empirical Tests. Information Systems Research, 8, 171-195.
37. Hayduk, L. A. (1987). “Structural equation modeling with LISREL: Essentials and advances”, Baltimore, MD: Johns Hopkins University Press.
38. He, C.T. (2006). Investigating Factors Affecting the Adoption of Electronic Toll Collection system. Unpublished master’s dissertation, Department of Information Management, National Central University.
39. He, W.Y.(2014). A Study of the Moderating Effect of Recovery speed and Relationship Marketing on Customer Satisfaction with Service Recovery Strategies. Unpublished master’s dissertation, Department of Business Administration, Asia University.
40. Hsu, C. L., & Lin, J. C. C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74.
41. Huang, S. F., Tzou, M. R., & Lin, C. C.(2014).Usage Behavior of Social Network Sites: An Empirical Study of Facebook. Electronic Commerce Studies.12(2), 201-234
42. Huang, Y.P. (2013). The Impacts Relationship Marketing and Quality of e-Commerce Platform on Customer Asset Specificity Investment. Unpublished master’s dissertation, Department of Business Administration, Shih Hsin University.
43. Hwang, Y., & Yi, M. (2002). Predicting The Use of Web-Base Information Systems: Intrinsic Motivation and Self-Efficacy. Proceedings of 8th Americas Conference on Information Systems, New York: AMCIS, 1076-1081.
44. Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of Management Information Systems, 11, 87-114.
45. Igbaria, M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of microcomputer usage. Journal of Management Information Systems, 13, 127-143.
46. Isabel, A.Q., & Kamila, B. (2010). Marketing and Facebook: How Fashion Companies promote themselves on Facebook. Unpublished master’s dissertation, Department of Business, Uppsala University.
47. Jackson, R., & Wang, P. (1994). Strategic Data base Marketing, Illinois: NTC Business Book.
48. Joreskog, K. G. (1969). A General Approach to Confirmatory Maximum Likelihood Factor Analysis. Psychometrical, 34(21), 183-200.
49. Karahanna, E., Straub, D. W., & Chervany N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23, 183.
50. Kuemmerle, W. (2002). Home base and knowledge management in international ventures. Journal of Business Venturing, 17(2), 99-122.
51. Landry, L. (1998). “Relationship Marketing: Hype or here to stay,” Journal of Marketing Views, July 6, 4.
52. Lee, B., Yoon, J., & Lee. I. (2009). Learners' acceptance of e-learning in South Korea: Theories and result. Computer & Education, 53(4), 1320-1329.
53. Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support System, 29, 269-282.
54. Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioral intention to use a web site. International Journal of Information Management, 20(3), 197-208.
55. Lin, P. C., & Wang, S. Y. (2012). Understanding Consumers' Attitudes and Behavioral Intention toward Shanzhai Mobile Phones. International Journal of Commerce and Strategy. 4(1). 27-39.
56. Lin, S.C., Chang, Y. Y., & Chang, H. Y.(2016). Investigating the Usage Intention of Off line to Online Commerce: The Perspective of Consumption Value Theory. International Journal of Commerce and Strategy. 8(3), 177-194.
57. Lopez, D. A., & Manson D. P. (1997). A Study of Individual Computer Self-efficacy and Perceived Usefulness of the Empowered Desktop Information System. Business Administration Computer Information Systems, 83-92.
58. Malhotra, Y., & Galletta, D. F. (1999). Extending the Technology Acceptance Model to Account for Social Influence: Theoretical Base and Empirical Validation. Proceedings of the 32nd Hawaii International Conference on System Sciences, Hawaii: IEEE.
59. Mathwick, C. (2006). Building loyalty by sponsoring virtual peer-to-peer problem solving communities. American Marketing Association, Summer, 211-212.
60. McAllister, D. J. (1995). Affect and cognition based trust as foundations for interpersonal cooperation in organizations. Academy of Management Journal, 38(1), 24–59.
61. McKnight, D. H., & Chervany, N. L. (2002). What Trust Means in e-Commerce Customer Relationships An Interdisciplinary Conceptual Typology, International Journal of Electronic Commerce, 6(2), 35-59.
62. Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38, 217-230.
63. Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of Marketing, 58(3), 20-38.
64. Mulaik, S. A. (Eds.). (1972). The Foundations for Factor Analysis, New York: McGraw-Hill.
65. Nayak, B.S., Marshall, J. R., & Isitor, G. (2010). Wound healing potential of ethanolic extract of Kalanchoe pinnata Lam. Leaf -A preliminary Study, Indian J. Exp. Biol, 48(6), 572-576.
66. Nunnally, J. C., & Bernstein, I. H. (Eds.). (1994). Psychometric theory. (3rd edn.). McGraw-Hill, New York. 1995.
67. Nunnally, J.C. (Eds.). (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.
68. Rauniar, R., Rawski, G., Yang, J., & Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6-30.
69. Ross, C., Orr, E. S., Sisic, M., Arseneault, J. M., Simmering, M. G., & Orr, R. R. (2009).Personality and motivations associated with Facebook use. Computers in Human Behavior, 25(2), 578-586.
70. Rousseau, D. M., Sitkin, S. B., Butt, R. S., & Camerer, C. (1998). Not so different after all: A cross-discipline view of trust. Academy of Management Review, 23(3), 393-404.
71. Scott (1991). The Evidence of Experience. The University of Chicago Press Critical Inquiry,17( 4), 773-797
72. Sicilia, M., & Palazo’n, M. (2008). Brand communities on the internet: A case study of Coca-Cola’s Spanish virtual community. Corporate Communication, 13(3), 255-270
73. Smith, B. (1998). Buyer-seller relationships: bonds, relationship management and sex-type. Canadian Journal of Administrative Sciences, 15(1), 76-92.
74. Stone, M., Woodcock, N., & Wilson, M. (1996).Managing the change from marking planning to customer relationship management, Long Range, 29(5), 675-83.
75. Su, T.T. (2009). Analysis of the Key to Facebook’s Successful Marketing. Retrieved August 14, 2015, from http://www.aams.com.tw
76. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42, 85-92.
77. Tan, G. W., Ooi, k., & Lin, B. (2014). Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-neural networks approach. Computers in Human Behavior, 36, 198-213.
78. Taylor, S., & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19, 561.
79. Tong, S. T., Van Der Heide, B., Langwell, L., & Walther, J. B. (2008). Too much of a good thing? The relationship between number of friends and interpersonal impressions on Facebook. Journal of Computer-Mediated Communication, 13(3), 531-549.
80. Tseng, K.H. (1995). Customer Database and Relationship Marketing, Collected Papers (Volume II) for the 2nd Seminar on Middle and Small-sized Enterprise Administration, Taipei: Small and Medium Enterprise Administration of the Ministry of Economic Affairs, 129-137.
81. Tung, Y.H. (2010). A Study of Factors Influencing Users’ Intention of Adopting the Fan Page and Effects It Makes on Brand Images and Purchase Intention: The Case of KKBOX. Unpublished master’s dissertation, Institute of Telecommunications National Chung Cheng University, Tainan.
82. Venkatesh, V., & Speier, C. (1999). Computer technology training in the workplace: A longitudinal investigation of the effect of mood. Organizational Behavior and Human Decision Processes, 79, 1.
83. Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: development and test. Decision Sciences, 27, 451-481.
84. Wu, W. P., & Yang, H. L. (2011). Discussion on the Correlation between Customer Value and Relationship Quality after the Import of E-commerce Function into B&B Management. Journal of Quality, 18, 3.
85. Wu, C.H., & Tsai, Y. C. (2014). Using Technology Acceptance Model for Investigating the Social Network Websit (Facebook) Usage Intention, National Taiwan University of Science and Technology Journal of Liberal Arts and Social Sciences, 10(1), 29-44
86. Yang, S.H. (2008). The Study of TPB on Internet Using - Take a Vocational High School in Taichung for Example. Unpublished master’s dissertation, Department of Business Administration Asia University.
87. Zaheer, A., McEvily, B., & Perrone, V. (1998). Does trust matter? Exploring the effects of inter organizational and interpersonal trust on performance. Organization Science, 9(2), 141-159.
88. Zhang, Y. X. (2007). Development and validation of an Internet attitude toward using scale. Computers and Education, 49(2), 243-253.

電子全文 電子全文(網際網路公開日期:20221231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔