跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王維廉
研究生(外文):WANG, WEI-LIAN
論文名稱:利用金屬-絕緣體-金屬表面電漿波導奈米環型共振腔結構設計全光式元件
論文名稱(外文):All-optical Devices based on Metal-Insulator-Metal Plasmonic Waveguide Structures with Nano-ring Resonators
指導教授:吳曜東吳曜東引用關係
指導教授(外文):WU, YAW-DONG
口試委員:陳茂雄鄭木海蘇炎坤林武文吳曜東
口試委員(外文):CHEN, MAO-HSIUNGCHENG, WOOD-HISU, YAN-KUNLIN, WUU-WENWU, YAW-DONG
口試日期:2017-06-24
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:98
中文關鍵詞:表面電漿極化環型共振腔光波導全光式邏輯閘
外文關鍵詞:Surface plasmon polaritonNano-ring resonatorOptical waveguideOptical logic gate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文討論表面電漿波導元件之特性,吾人將對金屬-絕緣體-金屬表面電漿波導結構與加入環型共振腔來做探討,並分析環型共振腔各項參數特性來設計全光式元件。首先,吾人先以表面電漿波導結構為基礎,分析各項參數特性和折射率對傳輸頻譜的影響,設計全光式溫度感測器。其靈敏度達到3670(nm/RIU),優質達到917(RIU-1),最高傳輸效率達到99.8%。接著吾人利用環型波導共振的特性,並分析環型共振腔波導結構的各項參數對於傳輸頻譜共振波長與帶寬的影響。以此為基礎,並填入非線性材料,改變輸入電場強度,設計全光式濾波器及邏輯閘。及閘(AND GATE) 在高態傳輸效率達到97.5%而在低態時僅為0.2%。或閘(OR GATE) 在高態傳輸效率達到97.5%而在低態時僅為0.2%。反或閘(NOR GATE) 在高態時的傳輸效率達到95.4%而在低態時僅為0.01%。互斥反或閘(XNOR GATE) 在高態傳輸效率達到98.2%而在低態時僅為0.01%。反及閘(NAND GATE) 在高態傳輸效率達到94.3%而在低態時僅為0.015%。互斥或閘(XOR GATE) 在高態傳輸效率達到97.6%而在低態時僅為0.1%。基於具有奈米環型共振腔的金屬-絕緣體-金屬表面波導結構所提出的全光式元件,在未來將會是全光式信號處理和通信系統應用中具有潛力的關鍵組件。
In this thesis, we discussed the characteristics of the surface plasma waveguide elements and investigated the proposed metal-insulator-metal (MIM) plasmonic waveguide structures with the nano- ring resonators to design all-optical devices. First of all, we first proposed a MIM plasmonic refractive index sensor which composed of a ring resonator and two bus waveguide and analyze of the parameters of the proposed all-optical temperature sensor. Its sensitivity reached 3670 (nm/RIU), the figure of merit reached 917(RIU-1), and the highest transmission efficiency reached 99.8%. Then we use the characteristics of ring waveguide resonance, and analyze the parameters of the ring resonant waveguide for the transmission spectrum resonance wavelength and bandwidth. Based on this, and fill in the nonlinear material, change the input electric field strength, design all-optical filter and logic gates. For the proposed AND logic gate, the normalized transmission of the high logic state is about 97.5% and the low logic state is 0.2%. For the proposed OR logic gate, the normalized transmission of the high logic state is about 97.5% and the low logic state is 0.2%. For the proposed NOR logic gate, the normalized transmission of the high logic state is about 95.4% and the low logic state is 0.01%. For the proposed XNOR logic gate, the normalized transmission of the high logic state is about 98.2% and the low logic state is 0.01%. For the proposed NAND logic gate, the normalized transmission of the high logic state is about 94.3% and the low logic state is 0.015%. For the proposed XOR logic gate, the normalized transmission of the high logic state is about 97.6% and the low logic state is 0.1%. In the future, the proposed all-optical devices based on MIM plasmonic waveguide structures with the nano-ring resonators could be applied to optical signal processing and communication systems.
CONTENTS
List of Figures..............................i
List of Tables .............................v
List of Symbols ............................vi
Chapter 1: Introduction
1.1 Background .............................1
1.2 Thesis Outline...........................2
Chapter 2: The Basic Theory and Method
2.1 Introduction.............................4
2.2 Finite-Difference Time-Domain Method.....5
2.3 Drude Model ............................10
Chapter 3: Plasmonic Sensor Based on Metal-Insulator-Metal Waveguides
3.1. Introduction...........................12
3.2. Analysis and Numerical Results.........13
3.3. Simulation and Results.................15
3.4. Summary................................16
Chapter 4: All-optical Filters based on MIM Plasmonic Nano-ring Resonators
4.1. Introduction...........................23
4.2. Analysis and Numerical Results.........24
4.3. Summary................................27
Chapter 5: Multi-funtional All-Optical Logic Gates Based on MIM Plasmonic Waveguide Structures with Nonlinear Nano-ring Resonators
5.1 Introduction............................39
5.2 Analysis and Numerical Results..........40
5.3 Summary.................................45
Chapter 6: Conclusions
6.1 Summary.................................77
6.2 Suggestions for Future Researches.......78
References..................................80

References
[1]H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin, Germany: Springer-Verlag, (1988).
[2]W. L. Barnes, A. Dereux, and T. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[3]J. Takahara, Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
[4]H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910-2915 (2011).
[5]C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90(1), 97–99 (2008).
[6]T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
[7]S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004).
[8]D. van Oosten, M. Spasenović, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10(1), 286–290 (2010).
[9]Zhang Hui-Yun, Shen Duan-Long, Zhang Yu-Ping, Yang Wei-Jie, Yuan Cai, Liu Meng, Yin Yi-Heng, and Wu Zhi-Xin, “Band-stop optical nanofilters with split-ring resonators based on metal–insulator–metal structure,” Chin. Phys. B Vol. 23, No. 9 (2014) 097301.
[10]G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302–308 (2009).
[11]T. Wang, X. Wen, C. Yin, and H. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
[12]J. Tao, X. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
[13] J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-side teeth-shaped nano-plasmonic waveguide filters,” J. Opt. Soc. Am. B 27(2), 323–327 (2010).
[14] X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26(7), 1263–1268 (2009).
[15]X. Lin and X. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
[16]H. Lu, X. Liu, D. Mao, G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett., 37, pp. 3780-3782, (2012).
[17]G.G. Zheng, L.H. Xu, Y.Z. Liu, W. Su, “Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators,” Optik. vol.126(23), 4056-4060, (2015).
[18]A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344–3346 (2005).
[19]S.-B. Yan, L. Luo, C.-Y. Xue, Z.-D. Zhang, “A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator,” Sensors 15 (2015) 29183–29191.
[20]S. Golmohammadi, A. A. Sooreh, K. Abedi, "Optical delay lines using coupled slab waveguides and ring resonator with a negative refractive index core," Optik, vol.125(19), 5723-5726(2014).
[21]X. Li, Z. Zhang, S. Qin, T. Wang, F. Liu, M. Qiu, and Y. Su, "Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators." Appl. Opt. 51(25), F90-F94 (2009).
[22]K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing” Opt. Exp. 15, 7610-7615 (2007).
[23]W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonator” Opt. Lett. 41, 532-535 (2016).
[24]B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator”, Opt. Express, vol. 22, no. 4, pp. 4547-4558, (2014).
[25]D. Sullivan, D. Borup, and O. Gandhi, “Use of the finite-difference time-domain method in calculating EM absorption in human tissues,” IEEE Trans. Biomed. Eng., Vol. 34, 148-157(1987).
[26]J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” J. Geophysics Int., Vol. 98, 233-242(1989).
[27]M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Opt. Let., Vol. 18, 568-570(1993).
[28]S. Caorsi, A. Massa, and M. Pastorino, “Computation of electromagnetic scattering by nonlinear bounded dielectric objects: A FDTD approach,” Microwave Opt. Technol. Lett., Vol. 7, no. 17, 788-790(1994).
[29]K. Shlager and J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas and Propagation Magazine, Vol. 37, 39-57(1995).
[30]Z. Simsa, “Optical properties of charge carriers in magnetite and Mn ferrites,” Phys, Status Solidi B., Vol.96, 581-587(1979).
[31]P. Drude, Annalen der Physik 3, 369 (1900).
[32]A. V. Sokolov, “Optical Properties of Metals,” J. Am. Phys, vol.36, 281-282(1961).
[33]A. J. McAlister and E. A. Stern, “Plasma Resonance Absorption in Thin Metal Films,” Phys. Rev., Vol. 132, 1599-1602(1963).
[34]R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt., Vol. 34, 1589-1617(1987).
[35]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. Vol. 14, 302-307(1966).
[36]J. Petzelt, S. Kamba, S. Pacesova, J. Sramek, O. Smrckova, and D. Sikorova, “Infrared Reflectivity of High-Tc YBa2Cu3O7-x and Related Ceramics,” Phys. Status Solidi B, Vol.146, 743-755(1988).
[37]B. Coch, H. P. Geserich, and T. Wolf, “Anisotropy of the reflectance spectrum and of the dielectric function of YBa2Cu3O7 within the (001) plane,” Solid State Communications, vol.71, 495-499(1989).
[38]P. Wachter, B. Bucher, and R. Pittini, “Low-energy and low-temperature properties of untwinned YBa2Cu4O8: Gaps or condensation,” Phys. Rev. B, vol. 49, 13164-13171(1994).
[39]J. Orenstein, G. A. Thomas, C. G. Rapkine, C. G. Bethea, B. F. Levine, R. J. Cava, E. A. Rietman, and D. W. Johnson, Jr. , “Normal-state gap transition in Cu-O superconductors,” Phys. Rev. B, vol. 36, 729-732(1987).
[40]H. Nakano, and M. Imada, “Optical Conductivity of the Two-Dimensional Hubbard Model,” Technical Report of ISSP, Ser. A, 3467-3473(1999).
[41]G. A. Thomas, H. K. Ng, A. J. Millis, R. N. Bhatt, R. J. Cava, E. A. Rietman, D. W. Johnson Jr., G. P. Espinosa, and J. M. Vandenberg, “Far-infrared spectra of polycrystalline Ba2YCu3O9-δ,”Phys. Rev. B. ,vol. 36, 846-849(1987).
[42]D. C. Mattis and J. Bardeen, “Theory of the Anomalous Skin Effect in Normal and Superconducting Metals,” Phys. Rev., vol. 111, 412-417(1958).
[43]Z. Schlesinger, R. T. Collins, D. L. Kaiser, and F. Holtzberg, “Superconducting energy gap and normal-state reflectivity of single crystal Y-Ba-Cu-O,” Phys. Rev. Lett., vol.59, 1958-1961(1987).
[44]Rakhshani MR, Mansouri-Birjandi MA “High sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity,” Sensors Journal, IEEE 16(9):3041–3046, (2016)
[45]Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulatormetal waveguides," IEEE Photon.Technol., vol.19, 91-93(2007).
[46]X. Lin, and X. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt., vol.33, 2874–2876(2008).
[47]Q. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, and Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys., vol.82, 958–960 (2003).
[48]S.-H. Kwon, “Deep subwavelength-scale metal–insulator–metal plasmonic disk cavities for refractive index sensors,” IEEE Photon. J., vol. 5, no. 1, Art. ID 4800107, Feb. (2013).
[49]R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett., vol. 97, no. 25, pp. 253116-1–253116-3, (2010).
[50]R. Wang, J. Yao, Y. Miao, Y. Lu, D. Xu, N. Luan, M. Musideke, L. Duan, C. Hao, “A reflective photonic crystal fiber temperature sensor probe based on infiltration with liquid mixtures,” Sensors 2013, 13, 7916–7925.
[51]Y.-Y. Xie, Y.-X. Huang, W.-L. Zhao, W.-H. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with sidecoupled hexagonal cavity,” IEEE Photon. J., vol. 7, no. 2, Apr. (2015), Art. ID 4800612.
[52]S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: A review,” IEEE Sensors J., vol. 15, no. 2, pp. 646–650, Feb. (2015).
[53]Chen L, Liu Y, Yu Z, Wu D, Ma R, Zhang Y, Ye H “Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity,” Opt Express 24(9):9975–9983. (2016).
[54]Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237.
[55]M. Di Vece, Y. Kuang, S. N. van Duren, J. M. Charry, L. van Dijk, and R. E. I. Schropp, “Plasmonic nanoantenna a-Si:H solar cell,” Opt. Express 20(25), 27327–27336 (2012).
[56]Y. Guo, et al., “A plasmonic splitter based on slot cavity,” Opt. Express, vol. 19, no. 15, pp. 13831–13838, (2011).
[57]Lu, X., Lee, J. Y., Rogers, S. & Lin, Q.,“Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
[58]R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. F ¨orst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
[59]X. Han, T. Wang, B. Liu, Y. He, Y. Zhu, “Tunable Triple Plasmon-Induced Transparencies in Dual T-Shaped Cavities Side-Coupled Waveguide,” IEEE Photonics Technol. Lett., 28, p. 347, (2016).
[60]Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep., vol. 4, no. 3752, pp. 1–7, Jan. (2014).
[61]H. Zhang et al., “Z-scan measurement of the nonlinear refractive index
of graphene,” Opt. Lett., vol. 37, no. 11, pp. 1856–1858, Jun. (2012).



電子全文 電子全文(網際網路公開日期:20220708)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文