跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許碩夫
研究生(外文):HSU, SHUO-FU
論文名稱:智慧化方法於氧化鋅薄膜之製程參數優化設計
論文名稱(外文):Intelligent Methods for Processing Parameters Optimization of ZnO Films
指導教授:方俊雄方俊雄引用關係周至宏周至宏引用關係翁敏航翁敏航引用關係
指導教授(外文):FANG, CHUN-HSIUNGCHOU, JYH-HORNGWENG, MIN-HANG
口試委員:方俊雄林栢村蔡進聰楊茹媛翁敏航周至宏
口試委員(外文):FANG, CHUN-HSIUNGLIN, BOR-TSUENTSAI, JINN-TSONGYANG, RU-YUANWENG, MIN-HANGCHOU, JYH-HORNG
口試日期:2016-11-26
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系博碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:101
中文關鍵詞:透明導電膜氧化鋅陰極電弧電漿沉積
外文關鍵詞:TCOZnOCAPD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討陰極電弧電漿沉積(CAPD)於低溫環境中(<70℃)製備氧化鋅(ZnO)薄膜的製程參數設計技術。先利用文獻上常用的實驗設計法來定義製程參數,並研究製程參數對鈦摻雜氧化鋅(Ti:ZnO)薄膜的影響。
第一個實驗,調整電弧電流、氣體流量比率以及厚度,來研究製程參數對鈦摻雜氧化鋅(Ti:ZnO)薄膜的影響。實驗顯示,在鈦靶之電弧電流為30安培,氣體流量比率(氧:氬)為4:1,厚度為450nm,薄膜分別具有最低的電阻率。
第二個實驗,一個包含田口法(Taguchi method)、類神經網路(ANN)以及基因演算法(GA) 三種技巧的實驗設計法,被用來求得最佳製程參數。實驗結果顯示,電阻率降到3.19×10-3 Ω-cm、穿透率可達86.04%,確實比只利用田口法所求得之結果(電阻率3.69×10-3 Ω-cm、穿透率85.41%)更佳。
第三個實驗,運用灰階田口法(Grey-relational Taguchi)來評估製程參數,達到多效能目標。實驗結果顯示,所選用的參數讓氧化鋅薄膜的穿透率由88.17%增加至88.82%,電阻率由5.12×10-3 Ω-cm 降低至4.38×10-3 Ω-cm。

In this study, we deposited Zinc oxide (ZnO) films at low temperature (<70℃) by using cathode arc plasma deposition (CAPD). The experimental designs are developed to determine the processing parameters. The influence of the parameters on Ti-doped ZnO (Ti:ZnO) is also investigated.
In first experiment, the influence of processing parameters on properties of the Ti:ZnO films was investigated by regulating the arc current, the gas flow rates, and the film thickness. In the experiment, under the conditions of arc current of Ti target of 30A, a gas flow rate (O2:Ar) 4:1, and film thickness of 450nm, films has the lowest resistivity, respectively.
In second experiment, an experimental design utilizing the Taguchi method, the artificial neural networks (ANN), and the genetic algorithm (GA) is proposed to obtain optimal processing parameters. Experimental results show that the resistivity obtained is 3.19×10-3 Ω-cm and the transmittance obtained is 86.04%, both are better than those obtained by using the Taguchi method alone (3.69×10-3 Ω-cm and 85.41%).
In third experiment, the Grey-relational Taguchi method is used to evaluate the processing parameters for multiple performances. The results indicate that the transmittance of ZnO thin film increases from 88.17% to 88.82% and the resistivity decreases from 5.12×10-3 Ω-cm to 4.38×10-3 Ω-cm, respectively.

List of Tables............................................................vi
List of Figures..........................................................vii
Chapter 1 Introduction.....................................................1
1.1 Research background....................................................1
1.2 Motivation and target..................................................3
1.3 Research structure.....................................................6
Chapter 2 Optimization method..............................................8
2.1 Taguchi analysis.......................................................8
2.2 Grey-relational Taguchi method........................................10
2.3 Artificial neural network.............................................12
2.4 Genetic algorithm.....................................................14
Chapter 3 Experimental materials and procedures...........................17
3.1 Properties of ZnO.....................................................17
3.2 Material structure of ZnO.............................................18
3.3 Cathode arc plasma deposition.........................................20
3.4 Analysis equipment....................................................23
3.4.1 X-ray diffraction (XRD).............................................23
3.4.2 Ultraviolet-visible spectroscopy (UV-VIS spectroscopy)..............27
3.4.3 Four point..........................................................28
3.4.4 Hall measurement....................................................30
Chapter 4 Results and discussion..........................................34
4.1 Effect of processing parameters on properties of Ti:ZnO thin films by dual-target CAPD..........................................................34
4.1.1 Effect of the target arc current of Ti on properties of Ti:ZnO thin films.....................................................................35
4.1.2 Effect of the gas flow rates (O2:Ar) on properties of Ti:ZnO thin films.....................................................................43
4.1.3 Effect of film thickness on properties of Ti:ZnO thin films.........49
4.2 An Experimental design for processing parameter optimization for ZnO films.....................................................................56
4.2.1 Processing parameter optimizationfor resistivity....................58
4.2.2 Processing parameter optimizationfor transmittance..................62
4.3 Optimization of the processing parameters for depositing ZnO film by employing the grey-relational Taguchi method..............................65
Chapter 5 Conclusions.....................................................75
References................................................................77
Pubilcations List.........................................................90


[1] T. J. Coutts, J. D. Perkins, and D. S. Ginley, Transparent Conducting Oxides: Status and Opportunities in Basic Research. National Renewable Energy Laboratory, 1999.
[2] F. Streintz, “Ueber die elektrische Leitfahigkeit von gepressten Pulvern,” Annalen der Physik, vol. 314, pp. 854–885, 1902.
[3] K. Badeker, “Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen” Annalen der Physik, vol. 327, pp.749–766, 1907.
[4] G. Rupprecht, “Untersuchungen der elekrischen und lichtelektrischen leitfahigkeit dunner indiumoxydschichten,” Zeitschrift für Physik, vol. 139, pp. 504–517, 1954.
[5] D. M. Mattox, and V. H. Mattox, 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters. Society of Vacuum Coaters, 2007.
[6] S. Calnan, and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cell,” Thin Solid Films, vol. 518, pp. 1839–1849, Jan. 2010.
[7] Ü. Özgür, Y. I. Alivov, and C. Liu, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301, 2005.
[8] D. S. Ginley, and J. D. Perkins, Handbook of Transparent Conductors. Springer, 2010.
[9] G. Exarhos, and X. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films, vol. 515, pp. 7025–7052, Jun. 2007.
[10] K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide. Springer, 2008.
[11] P. J. Ross, Taguchi Techniques for Quality Engineering. New York: McGraw-Hill, 1989.
[12] Y. Wu, Taguchi Methods for Robust Design. New York: ASME, 2000.
[13] G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering. New York: McGraw-Hill, 2000.
[14] J. L. Deng, “Introduction to grey system,” J. Grey Syst., vol. 1, pp. 1–24, 1989.
[15] R. P. Lippmann, “Pattern classification using neural networks,” IEEE Commun. Mag., vol. 27, pp. 47–50, Nov. 1989.
[16] N. Z. Gebraeel, and M. A. Lawley, “A neural network degradation model for computing and updating residual life distributions,” IEEE Trans. Autom. Sci. Eng., vol. 5, pp. 154–163, Jan. 2008.
[17] X. Han, W. F. Xie, Z. Fu, and W. Luo, “Nonlinear systems identification using dynamicmulti-time scales neural networks,” Neurocomputing, vol. 74, pp. 3428–3439, Oct. 2011.
[18] S. N. Huang, and K. K. Tan, “Fault detection, isolation, and accommodation
control in robotic systems,” IEEE Trans. Autom. Sci. Eng., vol. 5,
pp. 480–489, Jul. 2008.
[19] S. Ferrari, and R. F. Stengel, “Smooth function approximation using neural networks,” IEEE Trans. Neural Networks, vol. 16, pp. 24–38, Jan. 2005.
[20] P. Y. Liu, and H. X. Li, “Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 15, pp. 545–558, May 2004.
[21] J. T. Tsai, J. H. Chou, and T. K. Liu, “Tuning the structure and parametrs of a neural network by using hybrid Taguchi-genetic algorithm,” IEEE Trans. Neural Networks, vol. 17–80, pp. 69, Jan. 2006.
[22] Y. S. Yang, J. H. Chou, W. Huang, T. C. Fu, and G. W. Li, “ An artificial neural network for predicting the friction coefficient of deposited Cr1-xAlxC films,” Appl. Soft. Comput., vol. 13, pp. 109–115, Jan. 2013.
[23] Y. S. Yang, W. Huang, G. P. Huang, and J. H. Chou, “Adaptive neuro-fuzzy approach for predicting hardness of deposited TiN/ZrN multilayer coatings,” J. Nanosci. Nanotechno., vol. 10, pp. 4667–4673, Jul. 2010.
[24] M. D. Jean, B. T. Lin, and J. H. Chou, “Application of an artificial neural network for simulating robust plasma-sprayed zirconia coatings,” J. Am. Ceram. Soc., vol. 91, pp. 1539–1547, May 2008.
[25] W. H. Ho, J. T. Tsai, B. T. Lin, and J. H. Chou, “Adaptive network- based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm,” Expert. Syst. Appl., vol. 36, pp. 3216–3222, Mar. 2009.
[26] J. T. Tsai, K. Y. Chiu, and J. H. Chou, “Optimal design of SAW gas sensing device by using improved adaptive neuro-fuzzy inference system,” IEEE Access, vol. 3, pp. 420–429, Apr. 2015.
[27] W. H. Ho, J. T. Tsai, G. M. Hsu, and J. H. Chou, “Process parameters optimization: A design study for tio thin film of vacuum sputtering process,” IEEE Trans. Autom. Sci. Eng., vol. 7, pp. 143–146, Jan. 2010.
[28] F. Nakhaei, M. Irannajad, and M. Yousefikhoshbakht, “Simultaneous optimization of flotation column performance using genetic evolutionary algorithm,” Physicochem. Probl. Miner. Process., vol. 52, pp. 874–893, 2016.
[29] S. Goldsmith, “Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties,” Surf. Coat. Technol., vol. 201, pp. 3993–3999, Dec. 2006.
[30] G. G. Rusu, A. P. Râmbu, V. E. Buta, M. Dobromir, D. Luca, and M. Rusu, “Structural and optical characterization of Al-doped ZnO films prepared by thermal oxidation of evaporated Zn/Al multilayered films,” Mater. Chem. Phys., vol.123, pp. 314–321, Sep. 2010.
[31] T. Terasako, M. Yagi, M. Ishizaki, Y. Senda, H. Matsuura, and S. Shirakata, “Growth of zinc oxide films and nanowires by atmospheric-pressure chemical vapor deposition using zinc powder and water as source materials,” Surf. Coat. Technol., vol. 201, pp. 8924–8930, Sep. 2007.
[32] M. Fahoume, O. Maghfoul, M. Aggour, B. Hartiti, F. Chraïbi, and A. Ennaoui, “Growth and characterization of ZnO thin films prepared by electrodeposition technique,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1437–1444, Jun. 2006.
[33] B. L. Zhu, X. Z. Zhao, F. H. Su, G. H. Li, X. G. Wu, J. Wu, and R. Wu, “Low temperature annealing effects on the structure and optical properties of ZnO films grown by pulsed laser deposition,” Vacuum, vol. 84, pp. 1280– 1286, Jan. 2010.
[34] J. H. Kim, B. D. Ahn, C. H. Kim, K. A. Jeon, H. S. Kang, and S. Y. Lee, “Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters,” Thin Solid Films., vol. 516, pp. 1330–1333, 2008.
[35] E. Bacaksiz, S. Aksu, S. Yılmaz, M. Parlak, and M. Altunbaş, “Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis,” Thin Solid Films, vol. 518, pp. 4076–4080. May 2010.
[36] D. R. Sahu, S. Y. Lin, and J. L. Huang, “Improved properties of Al-doped ZnO film by electron beam evaporation technique,” Microelectron. J., vol. 38, pp. 245–250, Feb. 2007.
[37] X. L. Xu, S. P. Lau, J. S. Chen, Z. Sun, B. K. Tay, and J. W. Chai, “Dependence of electrical and optical properties of ZnO films on substrate temperature,” Mater. Sci. Semicond. Process, vol. 4, pp. 617–620, Dec. 2001.
[38] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, K. Y. Tse, and H. H. Hng, “Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature,” J. Appl. Phys., vol. 94, pp. 1597, 2003.
[39] H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, “Structural, electrical andoptical properties of Al-doped ZnO thin films prepared by filtered cathode vacuum arc technique,” J. Cryst. Growth, vol. 268, pp. 596–601, Aug. 2004.
[40] K. Y. Tse, H. H. Hng, S. P. Lau, Y. G. Wang, and S. F. Yu, “ZnO thin films produced by filtered cathodic vacuum arc technique,” Ceram. Int., vol. 30, pp. 1669–1674, 2004.
[41] E. Çetinörgü, S. Goldsmith, and R. L. Boxman, “The effect of annealing on filtered vacuum arc deposited ZnO thin films,” Surf. Coat. Technol., vol. 201, pp. 7266–7272, May 2007.
[42] Y. F. Mei, R. K. Y. Fu, G. G. Siu, P. K. Chu, Z. M. Li, C. L. Yang, W. K. Ge, Z. K. Tang, W. Y. Cheung, and S. P. Wong, “Fabrication of highly (1000) oriented textured zinc oxide films by metal cathodic arc and oxygen dual plasma deposition and their optical properties,” Surf. Coat. Technol., vol. 201, pp. 8348–8351, Aug. 2007.
[43] Z. Y. Zhang, C. G. Bao, W. J. Yao, S. Q. Ma, L. L. Zhang, and S. Z. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering,” Superlattice. Microst., vol. 49, pp. 644–653, Jun. 2011.
[44] W. C. Song, S. I. Kwon, G. S. Kang, J. H. Park, K. J. Yang, and D. G. Lim, “Characteristics of GZO films prepared by usinga rf magnetron plasma at low temperature,” J. Korean Phys. SOC., vol. 53, pp. 2522–2526, Nov. 2008.
[45] J. Liu, S. Y. Ma, X. L. Huang, L. G. Ma, F. M. Li, F. C. Yang, Q. Zhao, and X. L. Zhang, “Effects of Ti-doped concentration on the microstructures and optical properties of ZnO thin films,” Superlattice. Microst., vol. 52, pp. 765–773, Oct. 2012.
[46] H. Chen, W. Guo, J. Ding, and S. Mac, “Ti-incorporated ZnO films synthesized via magnetron sputtering and its optical properties,” Superlattice. Microst., vol. 51, pp. 544–551, Apr. 2012.
[47] H. P. Chang, F. H. Wang, J. C. Chao, C. C. Huang, and H. W. Liu, “Effects of thickness and annealing on the properties of Ti-doped ZnO films by radio frequency magnetron sputtering,” Curr. Appl. Phys., vol. 11, pp. S185–S190. Jan. 2011.
[48] F. H. Wang, H. P. Chang, and J. C. Chao, “Improved properties of Ti-doped ZnO thin films by hydrogen plasma treatment,” Thin Solid Films, vol. 519, pp. 5178–5182, May 2011.
[49] L. Ma, X. Ai, X. Huang, and S. Ma, “Effects of the substrate and oxygen partial pressure on the microstructures and optical properties of Ti-doped ZnO thin films,” Superlattice. Microst., vol. 50, pp. 703–712, Dec. 2011.
[50] C. S. Wu, B. T. Lin, and R. Y. Yang, “Structural and optical properties of Ti-doped ZnO thin films prepared by the cathodic vacuum arc technique with different annealing processes,” Thin Solid Films, vol. 519, pp. 5106–5109, May 2011.
[51] C. S. Wu, B. T. Lin, and M. D. Jean, “Improving the conductance of ZnO thin film doping with Ti by using a cathodic vacuum arc deposition process,” Thin Solid Films,vol. 519, pp. 5103–5105, May 2011.
[52] S. F. Hsu, J. H. Chou, C. H. Fang, and M. H. Weng, “Optimization of the cathode arc plasma deposition processing parameters of ZnO film using the Grey-relational Taguchi method,” Adv. Mater. Sci. Eng., vol. 2014, ID. 187416, May 2014.
[53] C. Y. Hsu, Y. C. Lin, L. M. Kao, and Y. C. Lin, “Effect of deposition parameters and annealing temperature on the structure and properties of Al-doped ZnO thin films,” Mater. Chem. Phys., vol. 124, pp. 330–335, Nov. 2010.
[54] C. C. Chen, C. C. Tsao, Y. C. Lin, and C. Y. Hsu, “Optimization of the sputtering process parameters of GZO films using the Grey-Taguchi method,” Ceram. Int., vol. 36, pp. 979–988, Apr. 2010.
[55] C. Y. Chu, C. H. Huang, L. M. Kao, C. P. Chou C. Y. Hsu, C. W. Chen, and D. Y. Chen, “Structure and properties of GZO thin films grown on ZnO buffer layers,” Superlattice. Microst., vol. 49, pp. 158–168, Feb. 2011.
[56] W. Y. Fowlkes, and C. M. Creveling, Engineering methods for robust product design: Use Taguchi methods in technology and product development. Prntice-Hall Press, 1995.
[57] J. L. Lin, and C. L. Lin, “The use of grey-fuzzy logic for the optimization of the manufacturing process,” J. Mater. Process. Technol., vol. 160, pp. 9–14, Mar. 2005.
[58] C. Y. Hsu, and C. H. Tsang, “Effects of ZnO buffer layer on the optoelectronic performances of GZO films,” Sol. Energ. Mat. Sol. C., vol. 92, pp. 530–536, May 2008.
[59] Y. S. Tarng, S. C. Juang, and C. H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing,” J. Mater. Process. Technol., vol.128, pp. 1–6, Oct. 2002.
[60] R. Silipo, and C. Marchesi, “Artificial neural networks for automatic ECG analysis,” IEEE Transactions on Signal Processing, vol. 46, pp. 1417–1425, May 1998.
[61] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films. Institute of Physics Publishing, 1995.
[62] K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide. Springer, 2015.
[63] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269–72, May 2003.
[64] U. Özgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices” J. Appl. Phys., vol. 98, pp. 041301, 2005.
[65] N. H. Nickel, and E. Terukov (eds.), Zinc oxide-A material for micro and optoelectronic applications. Springer, 2005.
[66] D. C. Look, “Electrical and optical properties of p-type ZnO semicond,” Sci. Technol., vol. 20, pp. S55, Mar. 2005.
[67] H. Morkoc, and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley, 2009.
[68] R. L. Boxman, D. M. Sanders, and P. J. Martin, Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications, Elsevier, 1995.
[69] E. Oks, and I. Brown, Emerging Applications of Vacuum-Arc-Produced Plasma, Ion and Electron Beams. Springer, 2002.
[70] A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation. Springer, 2008.
[71] J. R. Roth, Industrial Plasma Engineering. Institute of Physics Publishing, 1995.
[72] C. E. Sittner, Physik und Technologie Dünner Schichten. Thin Film Group TU-Wien, 2006.
[73] B. K. Tay, Z. W. Zhao, and D. H. C. Chua, “Review of metal oxide films deposited by filtered cathodic vacuum arc technique,” Mat. Sci. Eng. R.,
vol. 52, pp. 1–48, May. 2006.
[74] H. P. Klug, and L. E. Alexander, X-ray Diffraction Procedures. John Wiley & Sons, 1954.
[75] B. D. Cullity, Elements of X-ray Diffraction. Addson-Wesley, 1978.
[76] L. Sagalowicz, and G. R. Fox, “Planar defects in ZnO thin films deposited on optical fibers and flat substrates,” J. Mater. Res., vol. 14, pp. 1876–1885, Jan. 1999.
[77] H. C. Ong, A. X. E. Zhu, and G. T. Du, “Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films,” Appl. Phys. Lett., vol. 80, pp. 941, 2002.
[78] C. Wang, P. Zhang, J. Yue, Y. Zhang, and L. Zheng, “Effects of annealing and supersonic treatment on the structure and photoluminescence of ZnO films,” Physica B, vol. 403, pp. 2235–2240, Jul. 2008.
[79] P. Misra, and M. A. Dubinskii, Ultraviolet Spectroscopy and UV Lasers. Marcel Dekker, 2002.
[80] F. M. Smits, “Measurement of sheet resistivities with the four-point probe,” Bell. Syst. Tech. J., vol. 34, pp. 711–718, May 1958.
[81] D. Schroder, Semiconductor material and device characterization. Wiley, 2006.
[82] B. G. Streetman, and S Banerjee, Solid State Electronic Device. Prentice Hall, 2005.
[83] N. T. Zou, X. J. Liao, and S. H. Liang, Secondary display revolution- flexible display development and application opportunities. Industrial Technology Intelligence Services, 2005.
[84] Z. Y. Zhong, and T. Zhang, “Microstructure and optoelectronic properties of
titanium-doped ZnO thin films prepared by magnetron sputtering,” Mater. Lett., vol. 96, pp. 237–239, Apr. 2011.
[85] R. Sridhar, C. Manoharan, S. Ramalingam, S. Dhanapandian, and
M. Bououdina, “Spectroscopic study and optical and electrical properties of Ti-doped ZnO thin films by spray pyrolysis,” Spectrochim. Acta A Mol. and Biomil. Spectrosc., vol. 120, pp. 297–303, Feb. 2014.
[86] X. L. Xu, S. P. Lau, J. S. Chen, Z. Sun, B. K. Tay, and J. W. Chai, “Dependence of electrical and optical properties of ZnO films on substrate temperature,” Mater. Sci. Semicond. Process, vol. 4, pp. 617–620, Dec. 2001.
[87] R. Y. Yang, C. M. Hsiung, T. L. Yang, and C. C. Huang, “Properties of low temperature deposited ZnO thin films on the glass substrate by cathodic arc plasma technology with different film thickness,” Adv. Sci. Lett., vol. 19,
pp. 2818–2822, Sep. 2013.
[88] S. S. Lin, J. L. Huang, and D. F. Lii, “The effect of thickness on the properties of Ti-doped ZnO films by simultaneous r.f. and d.c. magnetron sputtering,” Surf. Coat. Technol., vol. 190, pp. 372–377, Jan. 2005.
[89] S. F. Hsu, M. H. Weng, R. Y. Yang, J. H. Chou, and C. H. Fang, “Effects of arc currentof Ti Target onTi doped ZnO thin films by dual-target cathodic arc plasma deposition,” Ceram. Int., vol. 42, pp. 14438–14442, Oct. 2016.
[90] M. H. Weng, C. T. Pan, R. Y. Yang, and C. C. Huang, “Structure, optical and electrical properties of ZnO thin films on the flexible substrate by cathodic vacuum arc technology with different arc currents,” Ceram. Int., vol. 37, pp. 3077–3082, Dec. 2011.
[91] C. T. Pan, R. Y. Yang, M. H. Weng, and C. W. Huang, “Properties of low-temperature deposited ZnO thin films prepared by cathodic vacuumarc technology on different flexible substrates,” Thin Solid Films, vol. 539,
pp. 290–293, Jul. 2013.
[92] S. Ferrari, M. Maggioni, and N. A. Borghese, “Multiscale approximation with hierarchical radial basis functions networks,” IEEE Trans. Neural Netw., vol. 15, pp. 178–188, Feb. 2004.
[93] R. G. Hills, and T. G. Trucano, Statistical Validation of Engineering and Scientific Models: Background. New Mexico: SAND, 1999.
[94] H. W. Lee, S. P. Lau, Y. G. Wang, B. K. Tay, and H. H. Hng, “Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique,” Thin Solid Films, vol. 458, pp. 15–19, Jun. 2004.
[95] J. I. Pankove, Optical Processes in Semiconductors. Prentice Hall, 1971.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊