跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳兆偉
研究生(外文):WU,CHAO-WEI
論文名稱:長週期光纖光柵Lab on fiber感測元件研製
論文名稱(外文):The study of long period fiber grating sensors based on lab on fiber technology
指導教授:江家慶江家慶引用關係
指導教授(外文):CHIANG, CHIA-CHIN
口試委員:江家慶傅明宇陳元宗蔡立仁陳道星
口試委員(外文):CHIANG, CHIA-CHINFU, MING-YUECHEN, YUAN-TSUNGTSAI, LIRENCHEN, TAO-HSING
口試日期:2017-01-18
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:143
中文關鍵詞:長週期光纖光柵感測器二氧化碳氣體感測磁場感測葡萄糖感測黃光微影製程電鑄製程
外文關鍵詞:Long period fiber grating (LPFG)Carbon dioxide gas sensingMagnetic field sensingGlucose sensingPhotolithography processElectroforming process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出可應用於整合成Lab on fiber感測平台的感測元件,並以長週期光纖光柵原理為基礎,搭配胺基修飾的二氧化矽粉末(amine modified nanoporous silica foams)、四乙烯五胺修飾的吸附劑(TEPA(Tetraethylenepentamine)-modified adsorbent)、鎳金屬及葡萄糖氧化酶,分別開發出適合用於感測二氧化碳氣體、磁場以及葡萄糖濃度的長週期光纖光柵Lab on fiber感測元件。二氧化碳氣體感測實驗中,基於感測層塗佈的效果,選用3種不同型別的感測器進行二氧化碳氣體感測,實驗結果得知四乙烯五胺修飾的吸附劑可在載入氣體後即和CO2產生反應,且傳輸損耗變化量會隨著二氧化碳氣體的充入而產生變化,在量測範圍0%- 15%二氧化碳氣體感測器所獲得的最佳靈敏度為-0.089 dB/%。
磁場感測實驗中,利用S型金屬流道結構之長週期光纖光柵感測器作為磁場感測元件,運用釹鐵硼磁鐵(NdFeB Magnet)與感測器之徑向垂直距離控制磁場大小,磁通量強度利用高斯計即時監測,分析感測器在不同磁場下的頻譜變化。由實驗結果得知,在外部磁場負載下,對鎳金屬結構產生磁吸力,引發週期性金屬結構應變發生改變,導致光柵週期結構折射率發生擾動,進而引起耦合係數發生變異,導致傳輸損耗因磁通量變化而增強或減弱。磁場對損耗之靈敏度為-0.0098 dB/Gauss,R2值為0.9797。因此本文所開發之S型金屬流道結構之長週期光纖光柵感測器能夠應用於磁場感測。
葡萄糖感測實驗中,利用未塗佈感測層的NLPFG作為感測元件,滴入葡萄糖濃度範圍0%-40%的葡萄糖進行濃度感測實驗,由實驗結果得知,NLPFG感測器頻譜波長對葡萄糖的靈敏度為-0.147 nm/%,線性度為0.938。另外利用S-shaped LPFG感測器搭配烷化技術固定葡萄糖氧化酶作為低濃度葡萄糖感測元件,滴入葡萄糖濃度範圍0%-1%的葡萄糖進行濃度感測實驗,實驗結果得到S-shaped LPFG感測器頻譜傳輸損耗對葡萄糖的最佳靈敏度為6.229 dB/%,線性度為0.949。由實驗結果發現,在隨著葡萄糖濃度的增加,長週期光纖光柵感測器的環境折射率也跟著改變,進而引起耦合係數發生變異,導致波長或傳輸損耗因葡萄糖濃度變化而產生線性的變化。上述實驗證明所開發的長週期光纖光柵感測器皆可作為多功能Lab on fiber感測平台的感測元件。
This study proposes a lab on fiber sensor and used the principles of long period fiber grating (LPFG) along with amine-modified nanoporous silica foam, tetraethylenepentamine (TEPA)-modified adsorbent, nickel metal, and glucose oxidase to develop a LPFG lab on fiber sensor for detecting carbon dioxide (CO2) gas, magnetic fields, and glucose concentrations. Three different sensors were used in the CO2 gas experiment due to the effects of the sensor coating. The results showed that the TEPA-modified adsorbent reacts with the CO2 gas after the introduction of the gas and that the transmission loss changes as the CO2 gas is added; when detecting 0%-15% CO2 gas, the highest sensitivity of the sensor was -0.089 dB/%.
An S-shaped metallic LPFG sensor was used in the magnetic field experiment. A NdFeB magnet was used to control the size of the magnetic field and a gaussmeter was used to measure the magnetic flux in order to analyze the spectral changes in the sensor in different magnetic fields. The results showed that an external magnetic load attracted the nickel structure, which changed the periodic metal structure, interrupting the refractive index of the LPFG structure and altering the coupling coefficient, which increased or decreased the transmission loss as the magnetic flux varied. The sensitivity of the magnetic field to the loss was -0.0098 dB/Gauss and R2 was 0.9797. Therefore, the S-shaped metallic LPFG sensor developed in this study can be used to detect magnetic fields.
Uncoated NLPFG was used at the sensing element in the glucose experiment. Glucose at concentrations of 0%-40% was added to test the sensor. The results showed that the glucose sensitivity of the NLPFG sensor spectral wavelength was -0.147 nm/% and linearity was 0.938. An S-shaped LPFG sensor that used alkylation technology to immobilize glucose oxidase was also used to detect low concentrations of glucose. Glucose at concentrations 0%-1% was added to test the sensor. The results showed that the highest glucose sensitivity of the S-shaped LPFG sensor spectral transmission loss was 6.229 nm/% and linearity was 0.949. The results of the experiments indicated that the LPFG sensor refractive index changed as glucose concentrations increased, altering the coupling coefficient and causing linear changes in wavelength or transmission loss. These experiments verified that the LPFG sensors developed in this study can be used as multi-functional lab on fiber sensing elements.

CHAPTERⅠ: INTRODUCTION 1
1-1 Motivation 1
1-2 Background Information 2
1-2.1 Literature Review of Long Period Fiber Grating Manufacturing Method 3
1-2.2 Literature Review of Optical Fiber and Long Period Fiber Grating Carbon Dioxide Gas Sensor 6
1-2.3 Literature Review of Long Period Fiber Grating Magnetic Field Sensor 14
1-2.4 Literature Review of Optical Fiber Glucose Sensor 22
1-3 Thesis layout 36

CHAPTERⅡ: FUNDAMENTAL THEORY OF LONG PERIOD FIBER GRATING 38
2-1 Fundamental principle behind LPFG 38
2-2 Coupled-mode theory for LPFG with external forces 40
2-2.1 Coupled-mode theory 40
2-2.2 Coupling of photoresist LPFG 47

CHAPTERⅢ: RESEARCH METHOD AND PROCEDURES 56
3-1 Optical fiber etching method and procedure 56
3-2 Long period fiber grating sensor process and procedure 57
3-2.1 Fabrication Process of Notched Long Period Fiber Grating (NLPFG) 57
3-2.2 Fabrication Process of the Notched Long Period Fiber Grating with the surface needle nanostructure 58
3-2.3 Fabrication Process of the Sandwiched long-period fiber grating (SLPFG) and S-shaped metallic long-period fiber grating 59
3-3 Electroforming process of S-shaped metallic LPFG 63
3-4 Preparation of amine-modified nanoporous silica foams 66
3-5 Coating sensing layer amine-modified nanoporous silica foams on LPFG sensor 67
3-6 Coating sensing layer glucose oxidase (GOD) on S-shaped LPFG sensor 67
3-7 Experimental methods and procedures 69
3-7.1 Preparation LPFG CO2 gas and glucose sensor chip 69
3-7.2 Long period fiber grating gas sensing experiment 70
3-7.3 S-shaped metallic long-period fiber grating (SMLPFG) magnetic field sensing experiment 71
3-7.4 Long period fiber grating glucose concentration sensing 72
3-7.4.1 NLPFG glucose concentration sensing 73
3-7.4.2 S-shaped LPFG glucose concentration sensing 74

CHAPTER Ⅳ: RESULTS AND DISCUSSION 75
4-1 Long-period fiber grating CO2 gas sensing experiment 75
4-1.1 Notched long-period fiber grating (NLPFG) coated amine modified nanoporous silica foams for CO2 gas sensing 75
4-1.2 Notched long-period fiber grating (NLPFG) with an amine-modified surface needle nanostructure for carbon dioxide gas sensing 77
4-1.2.1 CO2 Gas-Sensing Cyclic Adsorption/Desorption Test 79
4-1.2.2 CO2 Gas Concentrations Sensing Test 82
4-1.3 Sandwiched long-period fiber grating (SLPFG) coated amine modified nanoporous silica foams for CO2 gas sensing 83
4-1.3.1 CO2 Gas-Sensing Cyclic Adsorption/Desorption Test 87
4-1.4 Comprehensive analysis of LPFG CO2 gas sensing experiment 88
4-2 Long-period fiber grating magnetic field sensing experiment 89
4-2.1 S-shaped metallic long-period fiber grating (SMLPFG) magnetic field sensing experiment 89
4-2.2 Magnetic field Sensing Cyclic Test 89
4-2.3 Comprehensive analysis of the magnetic field sensing results 95
4-3 Long period fiber grating glucose concentration sensing experiments 95
4-3.1 Notched long-period fiber grating (NLPFG) glucose concentration sensing experiment 95
4-3.2 S- shaped Long Period Fiber Grating Glucose Sensor 102
4-3.2.1 S- shaped Long Period Fiber Grating Glucose Sensing Experimental 102
4-3.2.2 Repeatability testing for S-shaped LPFG glucose sensing 103

CHAPTER V: CONCLUSIONS 108
5-1 Long period fiber grating carbon dioxide gas sensing experiment 108
5-1.1 Notched Long Period Fiber Grating Carbon Dioxide Gas Sensor 108
5-1.2 Nanostructures Long Period Fiber Grating Carbon Dioxide Gas Sensor 108
5-1.3 Sandwiched long - period fiber grating carbon dioxide gas sensor 109
5-2 S-shaped metallic long-period fiber grating magnetic field sensing experiment 109
5-3 Long Period Fiber Grating glucose sensing experiment 110
5-3.1 Notched Long Period Fiber Grating glucose Sensor 110
5-3.2 S-shaped Long-Period Fiber Grating Glucose Sensing Experiment 110

CHAPTER Ⅵ: FUTURE WORK 111
6.1 Multifunction Lab on fiber sensing platform 111
6.2 Lab on cell phone 111

REFERENCE 112
Reference
[1] Y. Y. Sun, Q. H. Zhang, L. Gao, J. L. Duan, Y. Wang, Z. L. Zhang and Z. W. You, "Research on SHM of concrete based on FBGs without coating under explosion load." In Mechanics of Structures and Materials: Advancements and Challenges, CRC Press, pp. 555-560, 2016.
[2] C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang and D. J. Webb, "Fuel level sensor based on polymer optical Fiber Bragg gratings for aircraft applications." In SPIE Photonics Europe, International Society for Optics and Photonics, pp.98860W-98860W, 2016.
[3] M. Kumar, "Processing of Thick Film in Bio-Sensors and Application of Optical Fibre." Indian Journal of Applied Research, vol.5, 2016.
[4] G. C. Lee, T. Allsop, C. Wang, R. Neal, P. Culverhouse, and D. J. Webb, "Fiber optic sensing of magnetic fields utilizing femtosecond laser sculpted microslots and long period gratings coated with Terfenol-D." In International Conference on Optical Fibre Sensors (OFS24). International Society for Optics and Photonics, pp. 96340K-96340K, 2015.
[5] L.Coelho, D. Viegas, J. L. Santos and J. M. M. M. de Almeida,”Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties.” Sensors and Actuators B: Chemical, vol.223, pp.45-51, 2016.
[6] A. Baliyan, and E. K. Sharma, “Experimental study of concatenated long period fiber grating separated by a single mode fiber as refractive index sensor.” In Photonics (ICP), 2016 IEEE 6th International Conference, pp.1-3, 2016.
[7] C. Luo, P. Lu, X. Fu, J. Chen, S. Wang, C. Zhang and J. Zhang, "All-fiber sensor based on few-mode fiber offset splicing structure cascaded with long-period fiber grating for curvature and acoustic measurement." Photonic Network Communications, pp.1-6, 2016.
[8] Tang, J., Zhang, Z., Yin, G., Li, Z., Liu, S., Liao, C. and Wang, Y. “A Gas Pressure Sensor Based on Long Period Fiber Grating Inscribed in Air-core Photonic Bandgap Fiber.” In Asia-Pacific Optical Sensors Conference, Optical Society of America, pp. Tu4A-4, 2016.
[9] A. Urrutia, J. Goicoechea, , Ricchiuti, A. L., D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating.” Sensors and Actuators B: Chemical, vol.227, pp.135-141, 2016.
[10] T. Yoshino, Y. Sano, D. Ota, K. Fujita and T. Ikui, “Fiber-Bragg-Grating Based Single Axial Mode Fabry-Perot Interferometer and Its Strain and Acceleration Sensing Applications.” Journal of Lightwave Technology, vol.34, pp.2241-2250, 2016.
[11] H. C. Lefevre,”The fiber-optic gyroscope.” Artech house, 2014.
[12] Wang, X. M., Zhao, C. L., Wang, Y. R., Shen, C. Y. and Dong, X. Y. A “Highly Sensitive Fibre-Optic Nano-Displacement Sensor Based on Surface Plasmon Resonance.” Journal of Lightwave Technology, vol.34, pp.2324-2330, 2016.
[13]Ren, K., Ren, L., Liang, J., Kong, X., Ju, H., Xu, Y. and Wu, Z. “Online fabrication scheme of helical long-period fiber grating for liquid-level sensing.” Applied Optics, vol.55, pp.9675-9679, 2016.
[14] Duan, J. A., Xie, Z., Wang, C., Zhou, J., Li, H., Luo, Z.,and Sun, X. "Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber.” Optics & Laser Technology, vol.83, pp.94-98, 2016.
[15] Broadway, C., Gallego, D., Pospori, A., Zubel, M., Webb, D. J., Sugden, K and Lamela, H., ”Microstructured polymer optical fibre sensors for opto-acoustic endoscopy.“ In SPIE Photonics Europe, International Society for Optics and Photonics, pp. 98860S-98860S, 2016.
[16] A. H. E. Morshed and I. M. El-Sayed, “Monitoring of vibrations using multimode optical fiber sensors.” In: 2016 33rd National Radio Science Conference (NRSC). IEEE, pp.384-389, 2016.
[17] Delgado, F. S., Carvalho, J. P., Coelho, T. V., & Dos Santos, A. B., “An Optical Fiber Sensor and Its Application in UAVs for Current Measurements. Sensors”, vol.16, pp.1800, 2016.
[18] Wang, Y., Shen, C., Lou, W., & Shentu, F. ”Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG.”, Optics Communications, vol.364, pp.72-75, 2016.
[19] J. Ma, A. Kos, W. J. Bock, , X. Li, H. Nguyen, Z. Y. Wang and A. Cusano, "Lab-on-a-fiber device for trace vapor TNT explosive detection: comprehensive performance evaluation." Journal of Lightwave Technology, 30(8), pp. 1127-1133, 2012.
[20] M. Pisco, F. Galeotti, G. Quero, A. Iadicicco, M. Giordano and A. Cusano, "Miniaturized Sensing Probes Based on Metallic Dielectric Crystals Self-Assembled on Optical Fiber Tips," Acs Photonics, vol. 1(10), pp. 917-927, 2014.
[21] W. J. Bock, S. M. Tripathi, M. SMIETANA, "Sensitive and Selective Lab-on-a-Fiber Sensor for Bacteria Detection in Water. In: Lab-on-Fiber Technology." Springer International Publishing, pp.301-313, 2015.
[22] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," Journal of lightwave technology, vol. 14, pp. 58-65, 1996.
[23] A. M. Vengsarkar, N. S. Bergano, C. R. Davidson, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, "Long-period fiber-grating-based gain equalizers," Optics Letters, vol. 21, pp. 336-338, 1996.
[24] V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Optics Letters, vol. 21, pp. 692-694, 1996.
[25] C. Y. Lin and L. A. Wang, "Loss-tunable long period fibre grating made from etched corrugation structure," Electronics Letters, vol. 35, pp. 1872-1873, 1999.
[26] C. Y. Lin, G.W. Chern, and L. A. Wang, "Periodical Corrugated Structure for Forming Sampled Fiber Bragg Grating and Long-Period Fiber Grating with Tunable Coupling Strength," Journal of Lightwave Technology, vol. 19, pp. 1212, 2001.
[27] C.Y. Huang, W.L. Chan, S.M. Chuo, J.H. Chang, L.L. Chen, and L. A. Wang, "Packaged symmetric/asymmetric corrugated long period fiber gratings for refractive index sensing applications," pp. 75031C-75031C-4, 2009..
[28] Chiang, C. C. and Tseng, C. C.,”Characterization of notched long-period fiber gratings: effects of periods, cladding thicknesses, and etching depths.” Applied optics, vol.53, pp.4398-4404, 2014.
[29]I. K. Hwang, S. H. Yun, and B. Y. Kim, "Long-period fiber gratings based on periodic microbends," Opt. Lett., vol. 24, pp. 1263-1265, 1999.
[30] A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, "Investigation of the Writing Mechanism of Electric-Arc-Induced Long-Period Fiber Gratings," Applied Optics, vol. 42, pp. 3776-3779, 2003.
[31] S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings," Opt. Lett., vol. 25, pp. 710-712, 2000.
[32] M. Yokota, H. Oka, and T. Yoshino, "Mechanically induced long period fiber grating and its application for distributed sensing," in Optical Fiber Sensors Conference Technical Digest, 2002. Ofs 2002, 15th, vol.1, pp.135-138, 2002.
[33] G. Cárdenas-Sevilla, D. Monzón-Hernández, I. Torres-Gomez, and A. Martinez-Rios, "Mechanically induced long-period fiber gratings on tapered fibers," Optics Communications, vol. 282, pp. 2823-2826, 2009.
[34] B. Rout, C. Cher, K. J. Grant, A. Roberts, and D. N. Jamieson, "Ion beam implantation for fabrication of periodic structures in optical fibres," pp. 172-177, 2002.
[35] J. Yoonchan, Y. Byungchoon, L. Byoungho, S. Hong-Seok, C. Sangsoo, and O. Kyunghwan, "Electrically controllable long-period liquid crystal fiber gratings," Photonics Technology Letters, IEEE, vol. 12, pp. 519-521, 2000.
[36] O. V. Ivanov, "Fabrication of long-period fiber gratings by twisting a standard single-mode fiber," Optics letters, vol. 30, pp. 3290-3292, 2005.
[37]R. YunJiang, W. YiPing, R. ZengLing, and Z. Tao, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," Lightwave Technology, Journal of, vol. 21, pp. 1320-1327, 2003.
[38] Y. P. Wang, J. Wei, and D. N. Wang, "Strain Characteristics of CO2-Laser-Carved Long Period Fiber Gratings," Quantum Electronics, IEEE Journal of, vol. 43, pp. 101-108, 2007.
[39] H. Jung, Y. G. Seo, W. Ha, D. K. Kim, S. H. Park, and K. Oh, "Mask-free hybrid long-period fiber grating fabrication by self-assembled periodic polymerization in silica hollow optical fiber," Opt. Lett., vol. 34, pp. 2745-2747, 2009.
[40] T. Mizunami, Y. Sho, K. Yamamoto, and Y. Ishida, "Long-period fiber-gratings produced by exposure with a low-pressure mercury lamp and their sensing characteristics," Optics Communications, vol. 282, pp. 4699-4705, 2009.
[41] C. C. Chiang, T. C. Cheng, H. J. Chang, and L. Tsai, "Sandwiched long-period fiber grating filter based on periodic SU8-thick photoresist technique," Opt Lett, vol. 34, pp. 3677-9, 2009.
[42] H.J. Kim, O.J. Kwon, S. Chu, M.S. Yoon, G. Kim, S. B. Lee, et al., "Fabrication of a surface long-period fiber grating based on a D-shaped photonic crystal fiber," in 2009 14th OptoElectronics and Communications Conference, 2009, pp. 1-2.
[43] C.C. Chiang, "Fabrication and characterization of sandwiched optical fibers with periodic gratings," Applied Optics, vol. 49, pp. 4175-4181, 2010.
[44] C.C. Chiang and Z. J. Chen, "A Novel Optical Fiber Magnetic Sensor Based on Electroforming Long-Period Fiber Grating," Journal of Lightwave Technology, vol. 32, pp. 3331-3336, 2014.
[45] B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, "Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing," Optics & Laser Technology, vol. 43, pp. 1420-1423, 2011.
[46] X.Y. Zhang, Y.S. Yu, C. Chen, C.C. Zhu, R. Yang, Z.J. Liu, et al., "Point-by-Point Dip Coated Long-Period Gratings in Microfibers," Photonics Technology Letters, IEEE, vol. 26, pp. 2503-2506, 2014.
[47] Z. Bai, W. Zhang, S. Gao, H. Zhang, L. Wang, and F. Liu, "Bend-insensitive long period fiber grating-based high temperature sensor," Optical Fiber Technology, vol. 21, pp. 110-114, 2015.
[48]D. Risk, L. Kellman, and H. Beltrami, "A new method for in situ soil gas diffusivity measurement and applications in the monitoring of subsurface CO2 production," Journal of Geophysical Research: Biogeosciences (2005–2012), vol. 113, 2008.
[49]S. Ryabtsev, A. Shaposhnick, A. Lukin, and E. Domashevskaya, "Application of semiconductor gas sensors for medical diagnostics," Sensors and Actuators B: Chemical, vol. 59, pp. 26-29, 1999.
[50]J. C. Hower, K. Henke, J. M. O'Keefe, M. A. Engle, D. R. Blake, and G. B. Stracher, "The Tiptop coal-mine fire, Kentucky: preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents," International Journal of Coal Geology, vol. 80, pp. 63-67, 2009.
[51]Á. Börzsönyi, Z. Heiner, A. Kovács, M. Kalashnikov, and K. Osvay, "Measurement of pressure dependent nonlinear refractive index of inert gases," Optics express, vol. 18, pp. 25847-25854, 2010.
[52]J. Liu, Y. Sun, and X. Fan, "Highly versatile fiber-based optical Fabry-PÚrot gas sensor," Optics express, vol. 17, pp. 2731-2738, 2009.
[53]D. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, "Comb filter-based fiber-optic methane sensor system with mitigation of cross gas sensitivity," Lightwave Technology, Journal of, vol. 30, pp. 3103-3109, 2012.
[54]P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, et al., "Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures," Nanoscale, vol. 5, pp. 9030-9039, 2013.
[55]P. L. Ong and I. A. Levitsky, "Fluorescent gas sensors based on nanoporous optical resonators (microcavities) infiltrated with sensory emissive polymers," Sensors Journal, IEEE, vol. 11, pp. 2947-2951, 2011.
[56]J. Kanka, "Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases," Sensors and Actuators B: Chemical, vol. 182, pp. 16-24, 2013.
[57]H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, "Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye," Sensors and Actuators B: Chemical, vol. 94, pp. 276-281, 2003.
[58]P. Samarasekara, N. Yapa, N. Kumara, and M. Perera, "CO2 gas sensitivity of sputtered zinc oxide thin films," Bulletin of Materials Science, vol. 30, pp. 113-116, 2007.
[59]C. S. Chu and Y. L. Lo, "Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS," Sensors and Actuators B: Chemical, vol. 129, pp. 120-125, 2008.
[60] C. S. Chu and Y. L. Lo, "Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS," Sensors and Actuators B: Chemical, vol. 143, pp. 205-210, 2009.
[61] X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Lin, Y., "Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection," Sensors and Actuators B : Chemical, vol.144, pp.260–266, 2010.
[62] B. Shivananju, S. Yamdagni, R. Fazuldeen, A.S. Kumar, G. Hegde, M. Varma, "CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating", Review of Scientific Instruments, vol.84, pp.065002. 2013.
[63] L. Melo, G. Burton, B. Davies, D. Risk, P. Wild, "Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure", Sensors and Actuators B : Chemical, vol.202, pp.294–300, 2014.
[64] K. Wysokiński, M. Szymański, T. Stańczyk, M. Murawski, T. Tenderenda, Napierała, M. and T. Nasiłowski, "Fiber optic gas sensor for on-line CO2 monitoring." In International Conference on Optical Fibre Sensors (OFS24), pp.96344P-96344P, 2015.
[65] T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, "Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids," Applied Physics Letters, vol. 91, pp. 121116, 2007.
[66] S. Thomas, J. Mathew, P. Radhakrishnan, V. Nampoori, A. George, S. Al-Harthi, "Metglas thin film based magnetostrictive transducers for use in long period fibre grating sensors," Sensors and Actuators A: Physical, vol. 161, pp. 83-90, 2010.
[67] L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, et al., "Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection," Photonics Journal, IEEE, vol. 4, pp. 2095-2104, 2012.
[68] Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, et al., "Ferrofluid-infiltrated microstructured optical fiber long-period grating," IEEE Photonics Technology Letters, vol. 25, pp. 306-309, 2013.
[69] N. M. Y. Zhang, X. Dong, P. P. Shum, D. J. J. Hu, H. Su, W. S. Lew, et al., "Magnetic field sensor based on magnetic-fluid-coated long-period fiber grating," Journal of Optics, vol. 17, pp. 065402, 2015.
[70] Y. Miao, X. Ma, J. Lin, B. Song, W. Lin, H. Zhang, et al., "Intensity-based magnetic field measurement employing tilted long-period fiber gratings," Journal of Optics, vol. 17, pp. 105609, 2015.
[71]S. Binu, V. M. Pillai, V. Pradeepkumar, B. Padhy, C. Joseph, and N. Chandrasekaran, "Fibre optic glucose sensor," Materials Science and Engineering: C, vol. 29, pp. 183-186, 2009.
[72]M. Yasin, S. Harun, H. Yang, and H. Ahmad, "Fiber optic displacement sensor for measurement of glucose concentration in distilled water," Optoelectronics and advanced materials–rapid communications, vol. 4, pp. 1063-1065, 2010.
[73]V. Bhardwaj and V. K. Singh, "Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing," Sensors and Actuators A: Physical, vol. 244, pp. 30-34, 2016.
[74]M. Portaccio, M. Lepore, B. Della Ventura, O. Stoilova, N. Manolova, I. Rashkov, et al., "Fiber-optic glucose biosensor based on glucose oxidase immobilised in a silica gel matrix," Journal of sol-gel science and technology, vol. 50, pp. 437-448, 2009.
[75]C. C. Hsu, S. H. Liang, J. Y. Lee, C. C. Wu, and M. C. Liu, "The reusable glucose fiber sensor for the glucose absolute concentration measurement with heterodyne interferometry," in SICE Annual Conference (SICE), 2011 Proceedings of, 2011, pp. 2307-2312.
[76]S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, "Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose," Plasmonics, vol. 7, pp. 261-268, 2012.
[77] A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur and L. M. Bharadwaj, "Immobilization of enzyme on long period grating fibers for sensitive glucose detection," Biosensors and Bioelectronics, vol. 33(1), pp. 190-195, 2012.
[78]R. Dutt Ballerstadt, C. Evans, A. P. Pillai, and A. Gowda, "A label-free fiber-optic turbidity affinity sensor (TAS) for continuous glucose monitoring," Biosensors and Bioelectronics, vol. 61, pp. 280-284, 2014.
[79]H. Qiu, S. Xu, S. Jiang, Z. Li, P. Chen, S. Gao, et al., "A novel graphene-based tapered optical fiber sensor for glucose detection," Applied Surface Science, vol. 329, pp. 390-395, 2015.
[80]D. Li, S. Yu, C. Sun, C. Zou, H. Yu, and K. Xu, "U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring," Biosensors and Bioelectronics, vol. 72, pp. 370-375, 2015.
[81] M. J. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, "Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection.", Biomedical optics express, vol.7, pp.2067-2077, 2016.
[82] T. Erdogan, "Fiber grating spectra," Lightwave Technology, Journal of, vol. 15, pp. 1277-1294, 1997.
[83] 王聖丰, "梳狀結構長週期光纖光柵於應變及磁場感測之應用, 國立高雄應用科技大學機械系博士論文," 2016.
[84] S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Measurement science and technology, vol.14, pp.R49, 2003.
[85] M. Dietrich, "Theory of dielectric optical waveguides," 1974.
[86] H. Kogelnik, "Theory of optical waveguides," in Guided-wave optoelectronics, ed: Springer, 1988, pp. 7-88.
[87] T. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," JOSA A, vol. 14, pp. 1760-1773, 1997.
[88] J. Seligson, "The orthogonality relation for TE-and TM-modes in guided-wave optics," Journal of lightwave technology, vol. 6, pp. 1260-1264, 1988.
[89] C.Y. Lin, L. A. Wang, and G.W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," Journal of Lightwave Technology, vol. 19, pp. 1159, 2001.
[90] J. F. Nye, Physical properties of crystals: their representation by tensors and matrices: Oxford university press, 1985.
[91]G. Berruti, M. Consales, A. Borriello, M. Giordano, S. Buontempo, G. Breglio, et al., "High-sensitivity metal oxides-coated long-period fiber grating sensors for humidity monitoring in high-energy physics applications," in SPIE Photonics Europe, 2014, pp. 914114-914114-9.
[92] M. Perry, P. Niewczas, M. Johnston, and J. Mackersie, "Nickel plating of FBG strain sensors for nuclear applications," in 21st International Conference on Optical Fibre Sensors (OFS21), 2011, pp. 77538G-77538G-4.
[93] K. Mohanchandra, S. Karnani, M. Emmons, W. Richards, and G. Carman, "Thin film NiTi coatings on optical fiber Bragg sensors," Applied Physics Letters, vol. 93, pp. 031914, 2008.
[94] Y. Feng, H. Zhang, Y. L. Li, and C. F. Rao, "Temperature sensing of metal-coated fiber Bragg grating," Mechatronics, IEEE/ASME Transactions on, vol. 15, pp. 511-519, 2010.
[95] R. Chunfanga, Z. Huaa, F. Yana, X. Lilia, and Y. Zhiqingb, "Thick Metal Coating Long-Period Fiber Grating," in Proc. of SPIE Vol, pp. 84181Q-1.
[96] B. Q. Jiang and Z. Q. Xiao, "Preparation and Thermodynamics of Nickel-Phosphor Deposition on Surface of Quartz Optical Fiber by Electroless Plating," in Advanced Materials Research, 2011, pp. 432-435.
[97] Y. Li, Z. Hua, F. Yan, and P. Gang, "Metal coating of fiber Bragg grating and the temperature sensing character after metallization," Optical Fiber Technology, vol. 15, pp. 391-397, 2009.
[98] M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, "An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating," Optics express, vol. 20, pp. 8472-8484, 2012.
[99] Y. Sawa, K. Yamashita, T. Kitadani, D. Noda, and T. Hattori, "Fabrication of High Hardness Micro Mold Using Double Layer Nickel Electroforming," in Micro-NanoMechatronics and Human Science, 2008.MHS 2008. International Symposium on, 2008, pp. 402-407.
[100] H. Yang and S.W. Kang, "Improvement of thickness uniformity in nickel electroforming for the LIGA process," International Journal of Machine Tools and Manufacture, vol. 40, pp. 1065-1072, 2000.
[101] Z.J. Wei, Y.Y. Wang, C.C. Wan, and C.H. Huang, "Study of wetters in nickel electroforming of 3D microstructures," Materials Chemistry and Physics, vol. 63, pp. 235-239, 2000.
[102] 林楷翔, "具金屬結構之長週期光纖光柵製作與應用, 國立高雄應用科技大學機械系碩士論文," 2015.
[103] M. Y. Fu, G. R. Lin, W. F. Liu, H. J Sheng, P. C Su, C. L Tien,"Optical Fiber Sensor Based on Air-Gap Long-Period Fiber Gratings," Japanese Journal of Applied Physics, vol. 48, pp. 120211, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top