跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林英志
研究生(外文):LIN, YING-JHIN
論文名稱:多尺度法模擬金屬奈米線接合與機械效應
論文名稱(外文):Mechanical Properties and Nano-contact of Metallic Nanowires Using Multi-scale Simulation
指導教授:方得華方得華引用關係
指導教授(外文):FANG,TE-HUA
口試委員:吳政達江家慶方得華
口試委員(外文):WU, JHENG-DAJIANG, JIA-CINGFANG,TE-HUA
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:多尺度方法分子動力學方向性接合效應搭接效應
外文關鍵詞:Multi-scale methodMolecular dynamicsDirectionalityContact effectLap effect
相關次數:
  • 被引用被引用:4
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用多尺度方法模擬鎳與銅兩種材料間的接觸效應。研究結果表明接合深度對於接合應力並無明顯的影響,同時在[-110][111]方向性具有最高的接合應力。而搭接效應的結果發現,在搭接長度2.5 nm時,有較高的搭接應力值,然而與接合效應的結果不同是,方向性對於搭接應力的影響不大。最後在小尺寸的接合中,接觸深度對於接合應力有顯著的影響,然而方向性的效應卻與大尺寸不同,這是因為尺度上的影響使方向性效應並不顯著。最後分子動力學模擬的結果發現奈米線拉伸在最佳方向性[-110][111]與多尺度方法的數值相當接近,能驗證接合的結果相當接近材料本身的性質。然而在[110][001]與[111][-110]方向性多尺度方法與分子動力學的結果相差相當的大,這是因為多尺度的接合過程中,基板底部有非常嚴重的應變影響區域,此一現象造成了接合過程中的降伏延遲與應力上升。因此最終結果表明,奈米線接合中材料方向性影響劇烈,且接合的最佳深度需要進行測試得知。同時一般奈米線中的基板的接觸效果也有相當明顯的影響,這在實驗中必須進行考慮。
In this study, the multi-scale method was used to simulate the contact effect between nickel and copper. The results show that the contact depth has a significant effect on the contact stress, and the [-110][111] direction has the highest contact stress. The results of the lap effect show that there is a high contact stress when the lap length is 2.5 nm. However, unlike the result of the jointing effect, the directionality has little effect on the lap stress. Finally, in small-size joints, the contact depth has a significant effect on the contact stress, whereas the directional effect is different from the large size because the effect on the scale makes the directivity effect not significant.The results of the final molecular dynamics simulation show that the nanowires are stretched in the best direction [-110][111] is quite close to the multiscale method, and the results of the bonding are quite close to the properties of the material itself. However, the results of the [110][001] and [111][-110] directional multi-scale methods differ greatly from those of the molecular dynamics, because of the very serious strain at the bottom of the substrate during the multi-scale bonding process Region, this phenomenon caused by the bonding process in the fall delay and stress rise. Therefore, the final results show that the direction of the material in the nanowire bonding is critical, and the optimum depth of the joint needs to be tested. At the same time the general nanowires in the substrate contact effect also has a very significant impact, which must be considered in the experiment.
摘要 ............................................................................................................. i
Abstract ...................................................................................................... ii
誌謝 ........................................................................................................... iii
符號表 ....................................................................................................... iv
目錄 ........................................................................................................... vi
表目錄 ..................................................................................................... viii
圖目錄 ....................................................................................................... ix
第1章 緒論............................................................................................... 1
1.1 前言 ................................................................................................. 1
1.2 研究動機與目的 ............................................................................. 2
1.3 本文架構 ......................................................................................... 4
第2章 文獻回顧 ...................................................................................... 5
2.1 銅鎳金屬相關文獻回顧 ................................................................. 5
2.2 奈米接合技術及相關文獻回顧 ..................................................... 6
2.3 奈米壓印技術相關文獻回顧 ......................................................... 7
2.4 奈米表面技術相關文獻回顧 ......................................................... 9
第3章 分子動力學及多尺度理論方法 ................................................ 12
3.1 分子動力學之基本理論 ............................................................... 12
3.1.1 原子間作用力 .......................................................................... 13
3.1.2 勢能函數 .................................................................................. 15
3.1.3 截斷半徑及表列法 .................................................................. 19
3.1.4 週期性邊界條件(Periodic boundary condition, PBCs) .......... 23
3.1.5 最小映像法則(Minimun image criterion, MIC) ..................... 24
3.1.6 參數無因次化 .......................................................................... 25
3.2 多尺度方法介紹 ........................................................................... 26
3.2.1 多尺度方法基本理論 .............................................................. 26
3.2.2 局部區建立及計算:移除自由度 ............................................. 30
3.2.3 非局部區:有效的能量/力量計算 ............................................ 32
3.2.4 局部與非局部區的耦合 .......................................................... 33
3.2.5 局部與非局部區的判斷機制 .................................................. 33
3.2.6 網格自適應方法 ...................................................................... 34
第4章 鎳銅金屬奈米接合特性 ............................................................ 36
4.1 奈米接合效應 ............................................................................... 36
4.2 模擬之物理模型 ........................................................................... 36
4.3 不同接合深度對結合性的影響 ................................................... 43
4.4 不同方向性下對結合性的影響 ................................................... 46
4.5 不同材料間之結合性 ................................................................... 49
4.6 鎳銅金屬奈米對接特性結論 ....................................................... 50
第5章 鎳銅金屬奈米搭接特性 ............................................................ 51
5.1 搭接接合 ....................................................................................... 51
5.2 模擬之物理模型 ........................................................................... 51
5.3 不同長度的搭接效應 ................................................................... 55
5.4 不同方向性的搭接性質 ............................................................... 59
5.5 不同材料間的搭接性質 ............................................................... 64
5.6 鎳銅金屬奈米搭接特性結論 ....................................................... 66
第6章 接合效應之比較 ........................................................................ 67
6.1 接合效應之小尺寸效應 ............................................................... 67
6.2 鎳鋁合金成分之晶格距離分析 ................................................... 75
6.3 分子動力學模擬鎳銅之拉伸狀態 ............................................... 76
第7章 結論與未來展望 ........................................................................ 80
7.1 結論 ............................................................................................... 80
7.2 未來展望 ....................................................................................... 82
參考文獻 ................................................................................................... 83
個人簡歷 ................................................................................................... 88
[1]M. F. Ashby, P. J. Ferreira, and D. L. Schodek, “Nanomaterials, Nanotechnologies and Design : An Introduction for Engineers and Architects,” Burlington, MA [etc.]: Elsevier Butterworth-Heinemann, 2009.
[2]A. I. Hochbaum, and P. Yang, “Semiconductor Nanowires for Energy Conversion,” Chemical Reviews, vol. 110, pp. 527-546, 2009.
[3]J. H. Bang, and K. S. Suslick, “Applications of Ultrasound to the Synthesis of Nanostructured Materials,” Adv Mater, vol. 22, pp. 1039-59, Mar 12, 2010.
[4]S. Barth, F. Hernandez-Ramirez, J. D. Holmes, and A. Romano-Rodriguez, “Synthesis and Applications of One-Dimensional Semiconductors,” Progress in Materials Science, vol. 55, pp. 563-627, 2010.
[5]S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 Nm Imprint Lithography and Applications,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 15, pp. 2897-2904, 1997.
[6]Y. Lu, J. Y. Huang, C. Wang, S. Sun, and J. Lou, “Cold Welding of Ultrathin Gold Nanowires,” Nat Nanotechnol, vol. 5, pp. 218-24, Mar, 2010.
[7]K. Schwerdtfeger, “F. Pawlek: Metallhüttenkunde, Walter De Gruyter, Berlin, New York 1983. 865 Seiten, Preis: Dm 280,—,” Berichte der Bunsengesellschaft für physikalische Chemie, vol. 87, pp. 1230-1230, 1983.
[8]朱張, “工程材料,” 清華大学出版社有限公司, 2001.
[9]D.-D. Kupferinstitut, "Legierungen Des Kupfers Mit Zinn, Nickel, Blei Und Anderen Metallen," Berlin–Düsseldorf, 1965.
[10]T.-H. Fang, C.-D. Wu, and W.-J. Chang, “Molecular Dynamics Analysis of Nanoimprinted Cu–Ni Alloys,” Applied Surface Science, vol. 253, pp. 6963-6968, 2007.
[11]T.-H. Fang, W.-J. Chang, D.-J. Yu, and C.-C. Huang, “Microscopic Properties of a Nanocrystal Aluminum Thin Film During Nanoimprint Using Quasi-Continuous Method,” Thin Solid Films, vol. 612, pp. 237-242, 2016.
[12]J. Mei, and Y. Ni, “The Study of Anisotropic Behavior of Nano-Adhesive Contact by Multiscale Simulation,” Thin Solid Films, vol. 566, pp. 45-53, 2014.
[13]C. S. Tan, L. Peng, J. Fan, H. Li, and S. Gao, “Three-Dimensional Wafer Stacking Using Cu-Cu Bonding for Simultaneous Formation of Electrical, Mechanical, and Hermetic Bonds,” IEEE Transactions on Device and Materials Reliability, vol. 12, pp. 194-200, 2012.
[14]劉健民, 林漢文, 黃以撒, 朱奕丞, 陳智, 陳冠能, and 杜經寧, “(111) 奈米雙晶銅的低溫低壓銅-銅直接接合技術,” 國家奈米元件實驗室奈米通訊, vol. 22, pp. 16-23, 2015.
[15]U. Landman, W. Luedtke, N. Burnham, and R. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture,” Science, vol. 248, pp. 454-461, 1990.
[16]K. Komvopoulos, and W. Yan, “Molecular Dynamics Simulation of Single and Repeated Indentation,” Journal of Applied Physics, vol. 82, pp. 4823-4830, 1997.
[17]D. Christopher, R. Smith, and A. Richter, “Atomistic Modelling of Nanoindentation in Iron and Silver,” Nanotechnology, vol. 12, pp. 372, 2001.
[18]J.-H. Kang, K.-S. Kim, and K.-W. Kim, “Molecular Dynamics Study of Pattern Transfer in Nanoimprint Lithography,” Tribology Letters, vol. 25, pp. 93-102, 2007.
[19]C. Qiu, P. Zhu, F. Fang, D. Yuan, and X. Shen, “Study of Nanoindentation Behavior of Amorphous Alloy Using Molecular Dynamics,” Applied Surface Science, vol. 305, pp. 101-110, 2014.
[20]W. C. D. Cheong, and L. C. Zhang, “Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-Indentation,” Nanotechnology, vol. 11, pp. 173, 2000.
[21]W. C. D. Cheong, and L. Zhang, “Effect of Repeated Nano-Indentations on the Deformation in Monocrystalline Silicon,” Journal of Materials Science Letters, vol. 19, pp. 439-442, 2000.
[22]B. Lin, S. Y. Yu, and S. X. Wang, “An Experimental Study on Molecular Dynamics Simulation in Nanometer Grinding,” Journal of Materials Processing Technology, vol. 138, pp. 484-488, 2003.
[23]W. C. Oliver, and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, vol. 7, pp. 1564-1583, 2011/01/01, 2011.
[24]M.-C. Cheng, C.-K. Sung, and W. H. Wang, “The Effects of Thin-Film Thickness on the Formaton of Metallic Patterns by Direct Nanoimprint,” Journal of Materials Processing Technology, vol. 191, pp. 326-330, 2007.
[25]D. Saraev, and R. Miller, “Atomic-Scale Simulations of Nanoindentation-Induced Plasticity in Copper Crystals with Nanometer-Sized Nickel Coatings,” Acta Materialia, vol. 54, pp. 33-45, 2006.
[26]F. Hashimoto, H. Yamaguchi, P. Krajnik, K. Wegener, R. Chaudhari, H.-W. Hoffmeister, and F. Kuster, “Abrasive Fine-Finishing Technology,” CIRP Annals - Manufacturing Technology, vol. 65, pp. 597-620, 2016.
[27]Y. Gao, C. Lu, N. N. Huynh, G. Michal, H. T. Zhu, and A. K. Tieu, “Molecular Dynamics Simulation of Effect of Indenter Shape on Nanoscratch of Ni,” Wear, vol. 267, pp. 1998-2002, 2009.
[28]P.-z. Zhu, Y.-z. Hu, T.-b. Ma, and H. Wang, “Study of Afm-Based Nanometric Cutting Process Using Molecular Dynamics,” Applied Surface Science, vol. 256, pp. 7160-7165, 2010.
[29]P.-z. Zhu, Y.-z. Hu, T.-b. Ma, and H. Wang, “Molecular Dynamics Study on Friction Due to Ploughing and Adhesion in Nanometric Scratching Process,” Tribology Letters, vol. 41, pp. 41-46, 2010.
[30]J. Li, Q. Fang, Y. Liu, and L. Zhang, “A Molecular Dynamics Investigation into the Mechanisms of Subsurface Damage and Material Removal of Monocrystalline Copper Subjected to Nanoscale High Speed Grinding,” Applied Surface Science, vol. 303, pp. 331-343, 2014.
[31]胡浩頤, “探討表面層效應對側向界面成長與奈米刮痕之結構變化影響:由微觀力學詮釋巨觀界面現象,”國立中正大學, 機械工程所, 2007.
[32]J. H. Irving, and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. Iv. The Equations of Hydrodynamics,” The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[33]吳政達, “多重粒子法與分子動力學應用於奈米轉印製程研究,” 機械工程學系碩博士班, 國立成功大學, 2008.
[34]J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, “Molecular Dynamics Simulation: Elementary Methods,” Computers in Physics, vol. 7, pp. 625, 1993.
[35]J. E. Jones, "On the Determination of Molecular Fields. Ii. From the Equation of State of a Gas," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. pp. 463-477.
[36]P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. Ii. Vibrational Levels,” Physical Review, vol. 34, pp. 57, 1929.
[37]V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and Structural Properties of Fcc Transition Metals Using a Simple Tight-Binding Model,” Philosophical Magazine A, vol. 59, pp. 321-336, 1989.
[38]M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Physical Review B, vol. 29, pp. 6443-6453, 06/15/, 1984.
[39]L. Verlet, “Computer" Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Physical review, vol. 159, pp. 98, 1967.
[40]B. Quentrec, and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” Journal of Computational Physics, vol. 13, pp. 430-432, 1973.
[41]T. N. Heinz, and P. H. Hünenberger, "A Fast Pairlist‐Construction Algorithm for Molecular Simulations under Periodic Boundary Conditions,” Journal of Computational Chemistry, vol. 25, pp. 1474-1486, 2004.
[42]J. Haile, “Molecular Dynamics Simulation: Elementary Methods,” Computers in Physics, vol. 7, pp. 625-625, 1993.
[43]D. Frenkel, and B. Smit, “Understanding Molecular Simulation: From Algorithms to Applications,” Computational Sciences Series, vol. 1, pp. 1-638, 2002.
[44]Rapaport, D. C., Blumberg, R. L., McKay, S. R., & Christian, W. The art of molecular dynamics simulation. Computers in Physics, 10(5), 456-456, 1996.
[45]C. H. Wang, T. H. Fang, P. C. Cheng, C. C. Chiang, and K. C. Chao, “Simulation and Experimental Analysis of Nanoindentation and Mechanical Properties of Amorphous Nial Alloys,” J Mol Model, vol. 21, pp. 161, Jun, 2015.
[46]W. K. Liu, E. G. Karpov, S. Zhang, and H. S. Park, “An Introduction to Computational Nanomechanics and Materials,” Computer Methods in Applied Mechanics and Engineering, vol. 193, pp. 1529-1578, 2004.
[47]R. E. Miller, and E. B. Tadmor, “The Quasicontinuum Method: Overview, Applications and Current Directions,” Journal of Computer-Aided Materials Design, vol. 9, pp. 203-239, 2002.
[48]E. B. Tadmor, and R. Phillips, “Mixed Atomistic and Continuum Models of Deformation in Solids,” 1995.
[49]E. B. Tadmor, M. Ortiz, and R. Phillips, “Quasicontinuum Analysis of Defects in Solids,” Philosophical magazine A, vol. 73, pp. 1529-1563, 1996.
[50]W. A. Curtin, and E. M. Ronald, “Atomistic/Continuum Coupling in Computational Materials Science,” Modelling and Simulation in Materials Science and Engineering, vol. 11, pp. R33, 2003.
[51]O. C. Zienkiewicz, R. L. Taylor, O. C. Zienkiewicz, and R. L. Taylor, “The Finite Element Method,” McGraw-Hill London, 1977.
[52]E. Weinan, and P. Ming, “Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems,” Archive for Rational Mechanics and Analysis, vol. 183, pp. 241-297, 2007.
[53]M. Gurtin, “Phase Transformations and Material Instabilities in Solids,” Elsevier, 2012.
[54]王露萌, “雙晶材料納米壓痕初始塑性變形行為的跨尺度模擬與實驗研究,” 機械工程學系碩博士班, 哈爾濱工業大學, 2013.
[55]R. E. Miller, “On the Generalization of Continuum Models to Include Atomistic Features,” 1998.
[56]O. C. Zienkiewicz, and J. Z. Zhu, “A Simple Error Estimator and Adaptive Procedure for Practical Engineerng Analysis,” International Journal for Numerical Methods in Engineering, vol. 24, pp. 337-357, 1987.
[57]A. F. Voter, and S. P. Chen, "Accurate Interatomic Potentials for Ni, Al and Ni3Al," MRS Proceedings. p. 175.
[58]B. Onat, and S. Durukanoglu, “An Optimized Interatomic Potential for Cu-Ni Alloys with the Embedded-Atom Method,” J Phys Condens Matter, vol. 26, pp. 035404, Jan 22, 2014.
[59]H. Lu, Y. Ni, J. Mei, J. Li, and H. Wang, “Anisotropic Plastic Deformation beneath Surface Step During Nanoindentation of Fcc Al by Multiscale Analysis,” Computational Materials Science, vol. 58, pp. 192-200, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top