[1]M. F. Ashby, P. J. Ferreira, and D. L. Schodek, “Nanomaterials, Nanotechnologies and Design : An Introduction for Engineers and Architects,” Burlington, MA [etc.]: Elsevier Butterworth-Heinemann, 2009.
[2]A. I. Hochbaum, and P. Yang, “Semiconductor Nanowires for Energy Conversion,” Chemical Reviews, vol. 110, pp. 527-546, 2009.
[3]J. H. Bang, and K. S. Suslick, “Applications of Ultrasound to the Synthesis of Nanostructured Materials,” Adv Mater, vol. 22, pp. 1039-59, Mar 12, 2010.
[4]S. Barth, F. Hernandez-Ramirez, J. D. Holmes, and A. Romano-Rodriguez, “Synthesis and Applications of One-Dimensional Semiconductors,” Progress in Materials Science, vol. 55, pp. 563-627, 2010.
[5]S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 Nm Imprint Lithography and Applications,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 15, pp. 2897-2904, 1997.
[6]Y. Lu, J. Y. Huang, C. Wang, S. Sun, and J. Lou, “Cold Welding of Ultrathin Gold Nanowires,” Nat Nanotechnol, vol. 5, pp. 218-24, Mar, 2010.
[7]K. Schwerdtfeger, “F. Pawlek: Metallhüttenkunde, Walter De Gruyter, Berlin, New York 1983. 865 Seiten, Preis: Dm 280,—,” Berichte der Bunsengesellschaft für physikalische Chemie, vol. 87, pp. 1230-1230, 1983.
[8]朱張, “工程材料,” 清華大学出版社有限公司, 2001.
[9]D.-D. Kupferinstitut, "Legierungen Des Kupfers Mit Zinn, Nickel, Blei Und Anderen Metallen," Berlin–Düsseldorf, 1965.
[10]T.-H. Fang, C.-D. Wu, and W.-J. Chang, “Molecular Dynamics Analysis of Nanoimprinted Cu–Ni Alloys,” Applied Surface Science, vol. 253, pp. 6963-6968, 2007.
[11]T.-H. Fang, W.-J. Chang, D.-J. Yu, and C.-C. Huang, “Microscopic Properties of a Nanocrystal Aluminum Thin Film During Nanoimprint Using Quasi-Continuous Method,” Thin Solid Films, vol. 612, pp. 237-242, 2016.
[12]J. Mei, and Y. Ni, “The Study of Anisotropic Behavior of Nano-Adhesive Contact by Multiscale Simulation,” Thin Solid Films, vol. 566, pp. 45-53, 2014.
[13]C. S. Tan, L. Peng, J. Fan, H. Li, and S. Gao, “Three-Dimensional Wafer Stacking Using Cu-Cu Bonding for Simultaneous Formation of Electrical, Mechanical, and Hermetic Bonds,” IEEE Transactions on Device and Materials Reliability, vol. 12, pp. 194-200, 2012.
[14]劉健民, 林漢文, 黃以撒, 朱奕丞, 陳智, 陳冠能, and 杜經寧, “(111) 奈米雙晶銅的低溫低壓銅-銅直接接合技術,” 國家奈米元件實驗室奈米通訊, vol. 22, pp. 16-23, 2015.[15]U. Landman, W. Luedtke, N. Burnham, and R. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture,” Science, vol. 248, pp. 454-461, 1990.
[16]K. Komvopoulos, and W. Yan, “Molecular Dynamics Simulation of Single and Repeated Indentation,” Journal of Applied Physics, vol. 82, pp. 4823-4830, 1997.
[17]D. Christopher, R. Smith, and A. Richter, “Atomistic Modelling of Nanoindentation in Iron and Silver,” Nanotechnology, vol. 12, pp. 372, 2001.
[18]J.-H. Kang, K.-S. Kim, and K.-W. Kim, “Molecular Dynamics Study of Pattern Transfer in Nanoimprint Lithography,” Tribology Letters, vol. 25, pp. 93-102, 2007.
[19]C. Qiu, P. Zhu, F. Fang, D. Yuan, and X. Shen, “Study of Nanoindentation Behavior of Amorphous Alloy Using Molecular Dynamics,” Applied Surface Science, vol. 305, pp. 101-110, 2014.
[20]W. C. D. Cheong, and L. C. Zhang, “Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-Indentation,” Nanotechnology, vol. 11, pp. 173, 2000.
[21]W. C. D. Cheong, and L. Zhang, “Effect of Repeated Nano-Indentations on the Deformation in Monocrystalline Silicon,” Journal of Materials Science Letters, vol. 19, pp. 439-442, 2000.
[22]B. Lin, S. Y. Yu, and S. X. Wang, “An Experimental Study on Molecular Dynamics Simulation in Nanometer Grinding,” Journal of Materials Processing Technology, vol. 138, pp. 484-488, 2003.
[23]W. C. Oliver, and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, vol. 7, pp. 1564-1583, 2011/01/01, 2011.
[24]M.-C. Cheng, C.-K. Sung, and W. H. Wang, “The Effects of Thin-Film Thickness on the Formaton of Metallic Patterns by Direct Nanoimprint,” Journal of Materials Processing Technology, vol. 191, pp. 326-330, 2007.
[25]D. Saraev, and R. Miller, “Atomic-Scale Simulations of Nanoindentation-Induced Plasticity in Copper Crystals with Nanometer-Sized Nickel Coatings,” Acta Materialia, vol. 54, pp. 33-45, 2006.
[26]F. Hashimoto, H. Yamaguchi, P. Krajnik, K. Wegener, R. Chaudhari, H.-W. Hoffmeister, and F. Kuster, “Abrasive Fine-Finishing Technology,” CIRP Annals - Manufacturing Technology, vol. 65, pp. 597-620, 2016.
[27]Y. Gao, C. Lu, N. N. Huynh, G. Michal, H. T. Zhu, and A. K. Tieu, “Molecular Dynamics Simulation of Effect of Indenter Shape on Nanoscratch of Ni,” Wear, vol. 267, pp. 1998-2002, 2009.
[28]P.-z. Zhu, Y.-z. Hu, T.-b. Ma, and H. Wang, “Study of Afm-Based Nanometric Cutting Process Using Molecular Dynamics,” Applied Surface Science, vol. 256, pp. 7160-7165, 2010.
[29]P.-z. Zhu, Y.-z. Hu, T.-b. Ma, and H. Wang, “Molecular Dynamics Study on Friction Due to Ploughing and Adhesion in Nanometric Scratching Process,” Tribology Letters, vol. 41, pp. 41-46, 2010.
[30]J. Li, Q. Fang, Y. Liu, and L. Zhang, “A Molecular Dynamics Investigation into the Mechanisms of Subsurface Damage and Material Removal of Monocrystalline Copper Subjected to Nanoscale High Speed Grinding,” Applied Surface Science, vol. 303, pp. 331-343, 2014.
[31]胡浩頤, “探討表面層效應對側向界面成長與奈米刮痕之結構變化影響:由微觀力學詮釋巨觀界面現象,”國立中正大學, 機械工程所, 2007.
[32]J. H. Irving, and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. Iv. The Equations of Hydrodynamics,” The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[33]吳政達, “多重粒子法與分子動力學應用於奈米轉印製程研究,” 機械工程學系碩博士班, 國立成功大學, 2008.[34]J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, “Molecular Dynamics Simulation: Elementary Methods,” Computers in Physics, vol. 7, pp. 625, 1993.
[35]J. E. Jones, "On the Determination of Molecular Fields. Ii. From the Equation of State of a Gas," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. pp. 463-477.
[36]P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. Ii. Vibrational Levels,” Physical Review, vol. 34, pp. 57, 1929.
[37]V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and Structural Properties of Fcc Transition Metals Using a Simple Tight-Binding Model,” Philosophical Magazine A, vol. 59, pp. 321-336, 1989.
[38]M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Physical Review B, vol. 29, pp. 6443-6453, 06/15/, 1984.
[39]L. Verlet, “Computer" Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Physical review, vol. 159, pp. 98, 1967.
[40]B. Quentrec, and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” Journal of Computational Physics, vol. 13, pp. 430-432, 1973.
[41]T. N. Heinz, and P. H. Hünenberger, "A Fast Pairlist‐Construction Algorithm for Molecular Simulations under Periodic Boundary Conditions,” Journal of Computational Chemistry, vol. 25, pp. 1474-1486, 2004.
[42]J. Haile, “Molecular Dynamics Simulation: Elementary Methods,” Computers in Physics, vol. 7, pp. 625-625, 1993.
[43]D. Frenkel, and B. Smit, “Understanding Molecular Simulation: From Algorithms to Applications,” Computational Sciences Series, vol. 1, pp. 1-638, 2002.
[44]Rapaport, D. C., Blumberg, R. L., McKay, S. R., & Christian, W. The art of molecular dynamics simulation. Computers in Physics, 10(5), 456-456, 1996.
[45]C. H. Wang, T. H. Fang, P. C. Cheng, C. C. Chiang, and K. C. Chao, “Simulation and Experimental Analysis of Nanoindentation and Mechanical Properties of Amorphous Nial Alloys,” J Mol Model, vol. 21, pp. 161, Jun, 2015.
[46]W. K. Liu, E. G. Karpov, S. Zhang, and H. S. Park, “An Introduction to Computational Nanomechanics and Materials,” Computer Methods in Applied Mechanics and Engineering, vol. 193, pp. 1529-1578, 2004.
[47]R. E. Miller, and E. B. Tadmor, “The Quasicontinuum Method: Overview, Applications and Current Directions,” Journal of Computer-Aided Materials Design, vol. 9, pp. 203-239, 2002.
[48]E. B. Tadmor, and R. Phillips, “Mixed Atomistic and Continuum Models of Deformation in Solids,” 1995.
[49]E. B. Tadmor, M. Ortiz, and R. Phillips, “Quasicontinuum Analysis of Defects in Solids,” Philosophical magazine A, vol. 73, pp. 1529-1563, 1996.
[50]W. A. Curtin, and E. M. Ronald, “Atomistic/Continuum Coupling in Computational Materials Science,” Modelling and Simulation in Materials Science and Engineering, vol. 11, pp. R33, 2003.
[51]O. C. Zienkiewicz, R. L. Taylor, O. C. Zienkiewicz, and R. L. Taylor, “The Finite Element Method,” McGraw-Hill London, 1977.
[52]E. Weinan, and P. Ming, “Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems,” Archive for Rational Mechanics and Analysis, vol. 183, pp. 241-297, 2007.
[53]M. Gurtin, “Phase Transformations and Material Instabilities in Solids,” Elsevier, 2012.
[54]王露萌, “雙晶材料納米壓痕初始塑性變形行為的跨尺度模擬與實驗研究,” 機械工程學系碩博士班, 哈爾濱工業大學, 2013.
[55]R. E. Miller, “On the Generalization of Continuum Models to Include Atomistic Features,” 1998.
[56]O. C. Zienkiewicz, and J. Z. Zhu, “A Simple Error Estimator and Adaptive Procedure for Practical Engineerng Analysis,” International Journal for Numerical Methods in Engineering, vol. 24, pp. 337-357, 1987.
[57]A. F. Voter, and S. P. Chen, "Accurate Interatomic Potentials for Ni, Al and Ni3Al," MRS Proceedings. p. 175.
[58]B. Onat, and S. Durukanoglu, “An Optimized Interatomic Potential for Cu-Ni Alloys with the Embedded-Atom Method,” J Phys Condens Matter, vol. 26, pp. 035404, Jan 22, 2014.
[59]H. Lu, Y. Ni, J. Mei, J. Li, and H. Wang, “Anisotropic Plastic Deformation beneath Surface Step During Nanoindentation of Fcc Al by Multiscale Analysis,” Computational Materials Science, vol. 58, pp. 192-200, 2012.