[1]W. Yan, H. Li, Y. Kuang, L. Du, and J. Guo, “Nickel membrane temperature sensor in micro-flow measurement,” J. Alloys Compd., vol. 449, no. 1–2, pp. 210–213, Jan. 2008.
[2]R. Buchner, K. Froehner, C. Sosna, W. Benecke, and W. Lang, “Toward Flexible Thermoelectric Flow Sensors: A New Technological Approach,” J. Microelectromechanical Syst., vol. 17, no. 5, pp. 1114–1119, Oct. 2008.
[3]D. Lee, H. Choi, K. Chung, B. Lee, and H. Yoon, “Fabrication of an integrated microfluidic device based on a heat-sensitive poly(N-isopropylacrylamide) polymer and micromachining protocols for programmed bio-molecular patterning,” Sens. Actuators B Chem., vol. 130, no. 1, pp. 150–157, Mar. 2008.
[4]P. Deng, Y.-K. Lee, and P. Cheng, “Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors,” Biosens. Bioelectron., vol. 21, no. 8, pp. 1443–1450, Feb. 2006.
[5]C. S. Liao, G. B. Lee, J. J. Wu, C. C. Chang, T. M. Hsieh, F. C. Huang, C. H. Luo, “Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases,” Biosens. Bioelectron., vol. 20, no. 7, pp. 1341–1348, Jan. 2005.
[6]C.L. Dai, M.C. Liu, F.S. Chen, C.C. Wu, and M.-W. Chang, “A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique,” Sens. Actuators B Chem., vol. 123, no. 2, pp. 896–901, May 2007.
[7]D. Goustouridis, G. Kaltsas, and A. G. Nassiopoulou, “A CMOS compatible thermal accelerometer without solid proof mass, based on porous silicon thermal isolation,” in Sensors, 2004. Proceedings of IEEE, 2004, pp. 848–851.
[8]K. Zhang, C. Rossi, M. Petrantoni, and N. Mauran, “A Nano Initiator Realized by Integrating Al/CuO-Based Nanoenergetic Materials With a Au/Pt/Cr Microheater,” J. Microelectromechanical Syst., vol. 17, no. 4, pp. 832–836, Aug. 2008.
[9]D. Briand, P. Q. Pham, and N. F. de Rooij, “Reliability of freestanding polysilicon microheaters to be used as igniters in solid propellant microthrusters,” Sens. Actuators Phys., vol. 135, no. 2, pp. 329–336, Apr. 2007.
[10]S. Z. Ali, A. De Luca, R. Hopper, S. Boual, J. Gardner, and F. Udrea, “A Low-Power, Low-Cost Infra-Red Emitter in CMOS Technology,” IEEE Sens. J., vol. 15, no. 12, pp. 6775–6782, Dec. 2015.
[11]S. Z. Ali, A. De Luca, Z. Racz, “Low power NDIR CO 2 sensor based on CMOS IR emitter for boiler applications,” in IEEE SENSORS 2014 Proceedings, 2014, pp. 934–937.
[12]M. Parameswaran, A. M. Robinson, D. L. Blackburn, M. Gaitan, and J. Geist, “Micromachined thermal radiation emitter from a commercial CMOS process,” IEEE Electron Device Lett., vol. 12, no. 2, pp. 57–59, 1991.
[13]L. Xu, T. Li, X. Gao, and Y. Wang, “A High-Performance Three-Dimensional Microheater-Based Catalytic Gas Sensor,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 284–286, Feb. 2012.
[14]M. Y. Afridi, J.S. Suehle, and M.E. Zaghloul,“A monolithic CMOS microhotplate-based gas sensor system,” IEEE Sens. J., vol. 2, no. 6, pp. 644–655, Dec. 2002.
[15]Q. Zhou, A. Sussman, J. Chang, J. Dong, A. Zettl, and W. Mickelson, “Fast response integrated MEMS microheaters for ultra low power gas detection,” Sens. Actuators Phys., vol. 223, pp. 67–75, Mar. 2015.
[16]H.-Y. Lee, S. Moon, S. J. Park, J. Lee, K.-H. Park, and J. Kim, “Micro-machined resistive micro-heaters for high temperature gas sensing applications,” Electron. Lett., vol. 44, no. 25, pp. 1460–1461, 2008.
[17]P.K. Guha , S.Z. Alia, C.C.C. Lee, F. Udrea, W.I. Milnea, T. Iwaki, J.A. Covington, and J.W. Gardner, “Novel design and characterisation of SOI CMOS micro-hotplates for high temperature gas sensors,” Sens. Actuators B Chem., vol. 127, no. 1, pp. 260–266, Oct. 2007.
[18]J. S. Suehle, R. E. Cavicchi, M. Gaitan, and S. Semancik, “Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing,” IEEE Electron Device Lett., vol. 14, no. 3, pp. 118–120, 1993.
[19]J. Lee and T. Kim, “MEMS solid propellant thruster array with micro membrane igniter,” Sens. Actuators Phys., vol. 190, pp. 52–60, Feb. 2013.
[20]王信智, “CMOS製程相容之量測熱導率微元件模擬、設計與製作,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2012.[21]P. Barritault, M. Brun, O. Lartigue, J. Willemin, J.L. Ouvrier -Buffet,S. P, S.Nicoletti, “Low power CO2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source,” Sens. Actuators B Chem., vol. 182, pp. 565–570, Jun. 2013.
[22]M. U. Pralle , “Photonic crystals for narrow-band infrared emission,” 2002, vol. 4574, pp. 193–200.
[23]S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus,” J. Microelectromechanical Syst., vol. 7, no. 1, pp. 128–135, 1998.
[24]L. Xu, T. Li, X. Gao, and Y. Wang, “Development of a Reliable Micro-Hotplate With Low Power Consumption,” IEEE Sens. J., vol. 11, no. 4, pp. 913–919, Apr. 2011.
[25]M. Mihailović, J. F. Creemer, and P. M. Sarro, “Monocrystalline Si-based microhotplate heater,” Proc. SAFESTW, pp. 608–611, 2007.
[26]O. Madelung, H. Landolt, R. Börnstein, and W. Martienssen, Eds., Numerical data and functional relationships in science and technology:: new series. Group 3 Vol. 17 Subvol. a: Condensed matter Semiconductors Physics of group IV elements and III - V compounds. Berlin: Springer, 1982.
[27]P. Bhattacharyya, “Technological Journey Towards Reliable Microheater Development for MEMS Gas Sensors: A Review,” IEEE Trans. Device Mater. Reliab., vol. 14, no. 2, pp. 589–599, Jun. 2014.
[28]F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, and H. Möller, “A modular system of SiC-based microhotplates for the application in metal oxide gas sensors,” Sens. Actuators B Chem., vol. 64, no. 1–3, pp. 95–101, Jun. 2000.
[29]J. Spannhake et al., “SnO2:Sb – A new material for high-temperature MEMS heater applications: Performance and limitations,” Sens. Actuators B Chem., vol. 124, no. 2, pp. 421–428, Jun. 2007.
[30]L. Mele , “A molybdenum MEMS microhotplate for high-temperature operation,” Sens. Actuators Phys., vol. 188, pp. 173–180, Dec. 2012.
[31]M. Ehmann, P. Ruther, M. von Arx, and O. Paul, “Operation and short-term drift of polysilicon-heated CMOS microstructures at temperatures up to 1200 K,” J. Micromechanics Microengineering, vol. 11, no. 4, pp. 397–401, 2001.
[32]陳政嘉, “單晶矽紅外線微發射器的設計與製作之研究,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2009.[33]P. Guha , “Novel design and characterisation of SOI CMOS micro-hotplates for high temperature gas sensors,” Sens. Actuators B Chem., vol. 127, no. 1, pp. 260–266, Oct. 2007.
[34]M. Mihailović, J. F. Creemer, and P. M. Sarro, “Monocrystalline Si-based microhotplate heater,” Proc. SAFESTW, pp. 608–611, 2007.
[35]J. F. Creemer et al., “Microhotplates with TiN heaters,” Sens. Actuators Phys., vol. 148, no. 2, pp. 416–421, 2008.
[36]G.-P. Ru, Y.-L. Jiang, X.-P. Qu, and B.-Z. Li, “Annealing process influence and dopant-silicide interaction in self-aligned NiSi technology,” in Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004., 2004, vol. 1, pp. 451–455 vol.1.
[37]M. Li, S.-K. Oh, H.-S. Shin, and H.-D. Lee, “Improvement of Thermal Stability of Nickel Silicide Using Co-sputtering of Ni and Ti for Nano-Scale CMOS Technology,” JSTSJournal Semicond. Technol. Sci., vol. 13, no. 3, pp. 252–258, Jun. 2013.
[38]H. Iwai, T. Ohguro, and S. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectron. Eng., vol. 60, no. 1, pp. 157–169, 2002.
[39]L. C. Kalutarage, P. D. Martin, M. J. Heeg, and C. H. Winter, “Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films,” J. Am. Chem. Soc., vol. 135, no. 34, pp. 12588–12591, 2013.
[40]林崇正, “金屬矽化物微型加熱器的設計與製作,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2013.[41]T. Morimoto, H.S. Momose, and T. Iinuma., “A NiSi salicide technology for advanced logic devices,” in Electron Devices Meeting, 1991. IEDM’91. Technical Digest., International, 1991, pp. 653–656.
[42]K. Tsutsui, Ruifei Xiang, K. Nagahiro, T. Shiozawa, P. Ahmet, Y. Okuno, M. Matsumoto, M. Kubota, K. Kakushima and, H. Iwai., “Irregular Increase in Sheet Resistance of Ni Silicides at Temperature Range of Transition from NiSi to NiSi2,” in 2006 International Workshop on Junction Technology, 2006, pp. 188–191.
[43]K. Khosraviani and A. M. Leung, “Planar sacrificial surface micromachining by nickel silicide,” in TRANSDUCERS 2009-2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009, pp. 1055–1058.
[44]K. Nagahiro, K. Tsutsui, T. Shiozawa, R. Xiang, P. Ahmet, K. Kakushima, Y. Okuno, M. Matsumoto, M. Kubota and, H. Iwai., “Thermal stability of NiSi controlled by post silicidation metal doping method,” in 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, 2006, pp. 466–468.
[45]N. Kusunoki, K. Ohuchi, A. Hokazono, N. Aoki, H. Tanimoto, and K. Matsuzawa, “Topography and Schottky contact models applied to NiSi SALICIDE process [MOSFET applications],” in Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. International Conference on, 2003, pp. 59–62.
[46]L. C. Kalutarage, P. D. Martin, M. J. Heeg, and C. H. Winter, “Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films,” J. Am. Chem. Soc., vol. 135, no. 34, pp. 12588–12591, 2013.
[47]B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, “A study of the NiSi to NiSi2 transition in the Ni–Si binary system1,” Thin Solid Films, vol. 347, no. 1–2, pp. 201–207, Jun. 1999.
[48]B. Imbert, “Etude de la formation du siliciure de nickel-platine intégré dans la fabrication de transistors CMOS pour les technologies 65 et 45 nm,” Institut National Polytechnique de Grenoble-INPG, 2009.
[49]Florian Cacho, “Etude et simulation de la siliciuration du nickel : application dans les technologies MOS,” 2007.
[50]M. Ohring, Materials Science of Thin Films. Academic Press, 2001.
[51]蕭名宏, “以離子佈植製程調整電漿化學氣相沉積薄膜應力之研究,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2010.[52]Ryuji Tomita, “A study on formation of high resistivity phases of nickel silicide at small area and its solution for scaled CMOS devices,” Doctorial Thesis, Tokyo lnstitute of Technology, 2013.
[53]P. L. Tam, Y. Cao, U. Jelvestam, and L. Nyborg, “Corrosion properties of thermally annealed and co-sputtered nickel silicide thin films,” Surf. Coat. Technol., vol. 206, no. 6, pp. 1160–1167, Dec. 2011.
[54]M. Li, S.-K. Oh, H.-S. Shin, and H.-D. Lee, “Improvement of Thermal Stability of Nickel Silicide Using Co-sputtering of Ni and Ti for Nano-Scale CMOS Technology,” JSTSJournal Semicond. Technol. Sci., vol. 13, no. 3, pp. 252–258, Jun. 2013.
[55]X. Guo, X. R. Wang, Y. L. Jiang, G. P. Ru, and B. Z. Li, “Nickel silicide formation on Si(110) substrate,” in 2010 International Workshop on Junction Technology Extended Abstracts, 2010, pp. 1–4.
[56]W. L. Chiu, C. H. Chiu, J. Y. Chen, C. W. Huang, Y. T. Huang, K. C. Lu, C. L. Hsin, P. H. Yeh and W. W. Wu., “Single-crystalline δ-Ni2Si nanowires with excellent physical properties,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 1–5, 2013.
[57]L. C. Kalutarage, P. D. Martin, M. J. Heeg, and C. H. Winter, “Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films,” J. Am. Chem. Soc., vol. 135, no. 34, pp. 12588–12591, 2013.
[58]F. Niklaus , “Characterization of transfer-bonded silicon bolometer arrays,” 2004, p. 521.
[59]陳君豪, “CMOS製程相容熱阻型紅外線微感測器材料低頻雜訊分析,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2015.[60]E. G. Colgan, M. Mäenpää, M. Finetti, and M.-A. Nicolet, “Electrical characteristics of thin Ni2Si, NiSi, and NiSi2 layers grown on silicon,” J. Electron. Mater., vol. 12, no. 2, pp. 413–422, Mar. 1983.
[61]鄧旭昇, “超低電阻率單晶二矽化鎳之可靠度量測,” 碩士論文, 國立中央大學 電機工程學系 電機所碩士班, 2014.