跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉盈志
研究生(外文):Ying-Zhi Ye
論文名稱:矽化鎳應用於熱阻型元件之研究
論文名稱(外文):Study on Nickel Silicide for Thermal Type Devices
指導教授:陳忠男
指導教授(外文):Chung-Nan Chen
口試委員:沈志雄鍾震桂陳忠男
口試委員(外文):Chin-Shown SheenChen-Kuei ChungChung-Nan Chen
口試日期:2017-01-16
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:95
中文關鍵詞:矽化鎳閃爍雜訊應力
外文關鍵詞:flicker noiseNiSistress
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討CMOS製程中之矽化鎳應用於熱阻型元件之可行性,在CMOS製程中,矽化鎳被利用來降低金屬連接層與元件間之接觸電阻,由於矽化鎳具有低片電阻、低應力、相容於CMOS 製程等優點,將其應用在熱型元件上便可與IC整合,形成智慧型感測晶片。
本研究中,首先在具有介電質層的矽晶片上各自形成於無摻雜之700Å、2000Å、5000Å及8000Å的多晶矽薄膜,經由微影製程定義圖形後,再以金屬濺鍍製程鍍上1000 Å鎳金屬薄膜,探討鎳金屬與不同厚度之多晶矽在350℃~850℃間之不同退火溫度下所形成之鎳矽化物特性,包含片電阻、電阻溫度係數、雜訊、應力,藉以評估其在熱阻型元件應用之可行性,並搭配二次離子質譜儀與X光繞射儀之量測結果做比對,分析所有參數下之鎳矽化物之組成。
退火溫度會影響鎳矽化物形成的晶格相位,鎳矽化物受到退火溫度影響形成的順序首先是在低溫時形成的Ni2Si,之後轉相為NiSi,最後在高溫下轉相為NiSi2,量測結果顯示在550℃退火溫度下,8000Å多晶矽與鎳形成之鎳矽化物薄膜具有最高電阻溫度係數0.47 %/℃,同時也具有最低片電阻0.77 Ω/sq。當退火溫度為350℃時,此鎳矽化物具有最低雜訊K值7.5E-28 m3,同時也具有最低應力-21.9 Mpa。比對材料組成之檢測結果,發現材料晶相為Ni¬2Si或是NiSi2其電阻溫度係數就較低,且會有較高的片電阻,NiSi相位具有較高的電阻溫度係數及較低的片電阻。鎳矽化物可利用退火溫度和多晶矽厚度之搭配,製作出不同特性之矽化物薄膜,具有高電阻溫度係數的NiSi相位矽化鎳適合應用於熱阻型的感測元件。


The purpose of the study is to estimate the nickel silicide film, which is used in CMOS process for reducing contact resistance between metal interconnections and devices, for the applications of thermal resistive devices. Nickel silicide films have the advantages of low sheet resistance, small mechanical stress and is compatible to CMOS process. These films have the potential to serve as the material of smart devices.
Undoped polysilicon films with thicknesses of 700 Å, 2000 Å, 5000 Å and 8000 Å were deposited onto a silicon wafer coated with a dielectric film respectively. A 1000 Å nickel layer film was next sputtered on the polysilicon films patterned by lithography process. Nickel silicide layers were formed by RTA process under annealing temperatures of 350 ℃ to 850 ℃ for 30 s. The material phase and composition of nickel silicide were analyzed by X-ray diffraction (XRD) and secondary ion mass spectrometry (SIMS). Ni2Si phase of nickel silicide was first formed by RTA below 350 ℃ and transformed the second phase NiSi under the temperatures of 350 ℃ ~750 ℃. Finally, the silicide film changed to NiSi2 phase above 750 ℃. In this study, the nickel silicide formed on 8000Å-thick polysilicon and annealed at 550 ℃ has sheet resistance of 0.77 Ω/sq and maximum TCR of 0.29 %/ ℃. On the other hand, the minimum flicker noise coefficient K and residual stress for Ni silicide are 7.5E-28 m3 and -21.9 MPa as the annealing temperature is 550℃.

摘 要
ABSTRACT
致謝
目錄
圖目錄
表目錄
第1章 緒論
1.1 前言
1.2 文獻回顧
1.2.1 CMOS不相容材料
1.2.2 CMOS相容材料
1.3 研究目的
1.4 論文架構
第2章 材料與理論介紹
2.1 金屬矽化物
2.1.1 矽化鈦
2.1.2 矽化鎳
2.2 電阻溫度係數
2.3 雜訊理論
2.3.1 熱雜訊
2.3.2 閃爍雜訊
2.3.3 溫度擾動雜訊
2.3.4 散射雜訊
2.3.5 總雜訊
2.3.6 殘留應力
第3章 材料製程規畫與分析
3.1 樣品參數規劃
3.1.1 材料製程線寬
3.1.2 材料樣品的製程
3.1.3 矽化鎳片電阻值測量
3.1.4 鎳矽化物電阻率
3.1.5 材料電阻溫度係數量測
3.1.6 XRD繞射分析
3.1.7 二次離子質譜儀分析
3.1.8 材料樣品雜訊分析
3.2 矽化鎳應力
3.2.1 應力樣品規劃
3.2.2 應力量測與分析
3.2.3 應力樣品片電阻量測
3.3 元件設計與量測
3.3.1 光罩設計
3.3.2 元件製作流程
3.3.3 元件電阻溫度係數量測
3.3.4 可靠度量測
第4章 結論與未來展望
參考文獻
附錄A 多晶矽厚度8000Å之雜訊量測


[1]W. Yan, H. Li, Y. Kuang, L. Du, and J. Guo, “Nickel membrane temperature sensor in micro-flow measurement,” J. Alloys Compd., vol. 449, no. 1–2, pp. 210–213, Jan. 2008.
[2]R. Buchner, K. Froehner, C. Sosna, W. Benecke, and W. Lang, “Toward Flexible Thermoelectric Flow Sensors: A New Technological Approach,” J. Microelectromechanical Syst., vol. 17, no. 5, pp. 1114–1119, Oct. 2008.
[3]D. Lee, H. Choi, K. Chung, B. Lee, and H. Yoon, “Fabrication of an integrated microfluidic device based on a heat-sensitive poly(N-isopropylacrylamide) polymer and micromachining protocols for programmed bio-molecular patterning,” Sens. Actuators B Chem., vol. 130, no. 1, pp. 150–157, Mar. 2008.
[4]P. Deng, Y.-K. Lee, and P. Cheng, “Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors,” Biosens. Bioelectron., vol. 21, no. 8, pp. 1443–1450, Feb. 2006.
[5]C. S. Liao, G. B. Lee, J. J. Wu, C. C. Chang, T. M. Hsieh, F. C. Huang, C. H. Luo, “Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases,” Biosens. Bioelectron., vol. 20, no. 7, pp. 1341–1348, Jan. 2005.
[6]C.L. Dai, M.C. Liu, F.S. Chen, C.C. Wu, and M.-W. Chang, “A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique,” Sens. Actuators B Chem., vol. 123, no. 2, pp. 896–901, May 2007.
[7]D. Goustouridis, G. Kaltsas, and A. G. Nassiopoulou, “A CMOS compatible thermal accelerometer without solid proof mass, based on porous silicon thermal isolation,” in Sensors, 2004. Proceedings of IEEE, 2004, pp. 848–851.
[8]K. Zhang, C. Rossi, M. Petrantoni, and N. Mauran, “A Nano Initiator Realized by Integrating Al/CuO-Based Nanoenergetic Materials With a Au/Pt/Cr Microheater,” J. Microelectromechanical Syst., vol. 17, no. 4, pp. 832–836, Aug. 2008.
[9]D. Briand, P. Q. Pham, and N. F. de Rooij, “Reliability of freestanding polysilicon microheaters to be used as igniters in solid propellant microthrusters,” Sens. Actuators Phys., vol. 135, no. 2, pp. 329–336, Apr. 2007.
[10]S. Z. Ali, A. De Luca, R. Hopper, S. Boual, J. Gardner, and F. Udrea, “A Low-Power, Low-Cost Infra-Red Emitter in CMOS Technology,” IEEE Sens. J., vol. 15, no. 12, pp. 6775–6782, Dec. 2015.
[11]S. Z. Ali, A. De Luca, Z. Racz, “Low power NDIR CO 2 sensor based on CMOS IR emitter for boiler applications,” in IEEE SENSORS 2014 Proceedings, 2014, pp. 934–937.
[12]M. Parameswaran, A. M. Robinson, D. L. Blackburn, M. Gaitan, and J. Geist, “Micromachined thermal radiation emitter from a commercial CMOS process,” IEEE Electron Device Lett., vol. 12, no. 2, pp. 57–59, 1991.
[13]L. Xu, T. Li, X. Gao, and Y. Wang, “A High-Performance Three-Dimensional Microheater-Based Catalytic Gas Sensor,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 284–286, Feb. 2012.
[14]M. Y. Afridi, J.S. Suehle, and M.E. Zaghloul,“A monolithic CMOS microhotplate-based gas sensor system,” IEEE Sens. J., vol. 2, no. 6, pp. 644–655, Dec. 2002.
[15]Q. Zhou, A. Sussman, J. Chang, J. Dong, A. Zettl, and W. Mickelson, “Fast response integrated MEMS microheaters for ultra low power gas detection,” Sens. Actuators Phys., vol. 223, pp. 67–75, Mar. 2015.
[16]H.-Y. Lee, S. Moon, S. J. Park, J. Lee, K.-H. Park, and J. Kim, “Micro-machined resistive micro-heaters for high temperature gas sensing applications,” Electron. Lett., vol. 44, no. 25, pp. 1460–1461, 2008.
[17]P.K. Guha , S.Z. Alia, C.C.C. Lee, F. Udrea, W.I. Milnea, T. Iwaki, J.A. Covington, and J.W. Gardner, “Novel design and characterisation of SOI CMOS micro-hotplates for high temperature gas sensors,” Sens. Actuators B Chem., vol. 127, no. 1, pp. 260–266, Oct. 2007.
[18]J. S. Suehle, R. E. Cavicchi, M. Gaitan, and S. Semancik, “Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing,” IEEE Electron Device Lett., vol. 14, no. 3, pp. 118–120, 1993.
[19]J. Lee and T. Kim, “MEMS solid propellant thruster array with micro membrane igniter,” Sens. Actuators Phys., vol. 190, pp. 52–60, Feb. 2013.
[20]王信智, “CMOS製程相容之量測熱導率微元件模擬、設計與製作,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2012.
[21]P. Barritault, M. Brun, O. Lartigue, J. Willemin, J.L. Ouvrier -Buffet,S. P, S.Nicoletti, “Low power CO2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source,” Sens. Actuators B Chem., vol. 182, pp. 565–570, Jun. 2013.
[22]M. U. Pralle , “Photonic crystals for narrow-band infrared emission,” 2002, vol. 4574, pp. 193–200.
[23]S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus,” J. Microelectromechanical Syst., vol. 7, no. 1, pp. 128–135, 1998.
[24]L. Xu, T. Li, X. Gao, and Y. Wang, “Development of a Reliable Micro-Hotplate With Low Power Consumption,” IEEE Sens. J., vol. 11, no. 4, pp. 913–919, Apr. 2011.
[25]M. Mihailović, J. F. Creemer, and P. M. Sarro, “Monocrystalline Si-based microhotplate heater,” Proc. SAFESTW, pp. 608–611, 2007.
[26]O. Madelung, H. Landolt, R. Börnstein, and W. Martienssen, Eds., Numerical data and functional relationships in science and technology:: new series. Group 3 Vol. 17 Subvol. a: Condensed matter Semiconductors Physics of group IV elements and III - V compounds. Berlin: Springer, 1982.
[27]P. Bhattacharyya, “Technological Journey Towards Reliable Microheater Development for MEMS Gas Sensors: A Review,” IEEE Trans. Device Mater. Reliab., vol. 14, no. 2, pp. 589–599, Jun. 2014.
[28]F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, and H. Möller, “A modular system of SiC-based microhotplates for the application in metal oxide gas sensors,” Sens. Actuators B Chem., vol. 64, no. 1–3, pp. 95–101, Jun. 2000.
[29]J. Spannhake et al., “SnO2:Sb – A new material for high-temperature MEMS heater applications: Performance and limitations,” Sens. Actuators B Chem., vol. 124, no. 2, pp. 421–428, Jun. 2007.
[30]L. Mele , “A molybdenum MEMS microhotplate for high-temperature operation,” Sens. Actuators Phys., vol. 188, pp. 173–180, Dec. 2012.
[31]M. Ehmann, P. Ruther, M. von Arx, and O. Paul, “Operation and short-term drift of polysilicon-heated CMOS microstructures at temperatures up to 1200 K,” J. Micromechanics Microengineering, vol. 11, no. 4, pp. 397–401, 2001.
[32]陳政嘉, “單晶矽紅外線微發射器的設計與製作之研究,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2009.
[33]P. Guha , “Novel design and characterisation of SOI CMOS micro-hotplates for high temperature gas sensors,” Sens. Actuators B Chem., vol. 127, no. 1, pp. 260–266, Oct. 2007.
[34]M. Mihailović, J. F. Creemer, and P. M. Sarro, “Monocrystalline Si-based microhotplate heater,” Proc. SAFESTW, pp. 608–611, 2007.
[35]J. F. Creemer et al., “Microhotplates with TiN heaters,” Sens. Actuators Phys., vol. 148, no. 2, pp. 416–421, 2008.
[36]G.-P. Ru, Y.-L. Jiang, X.-P. Qu, and B.-Z. Li, “Annealing process influence and dopant-silicide interaction in self-aligned NiSi technology,” in Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004., 2004, vol. 1, pp. 451–455 vol.1.
[37]M. Li, S.-K. Oh, H.-S. Shin, and H.-D. Lee, “Improvement of Thermal Stability of Nickel Silicide Using Co-sputtering of Ni and Ti for Nano-Scale CMOS Technology,” JSTSJournal Semicond. Technol. Sci., vol. 13, no. 3, pp. 252–258, Jun. 2013.
[38]H. Iwai, T. Ohguro, and S. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectron. Eng., vol. 60, no. 1, pp. 157–169, 2002.
[39]L. C. Kalutarage, P. D. Martin, M. J. Heeg, and C. H. Winter, “Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films,” J. Am. Chem. Soc., vol. 135, no. 34, pp. 12588–12591, 2013.
[40]林崇正, “金屬矽化物微型加熱器的設計與製作,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2013.
[41]T. Morimoto, H.S. Momose, and T. Iinuma., “A NiSi salicide technology for advanced logic devices,” in Electron Devices Meeting, 1991. IEDM’91. Technical Digest., International, 1991, pp. 653–656.
[42]K. Tsutsui, Ruifei Xiang, K. Nagahiro, T. Shiozawa, P. Ahmet, Y. Okuno, M. Matsumoto, M. Kubota, K. Kakushima and, H. Iwai., “Irregular Increase in Sheet Resistance of Ni Silicides at Temperature Range of Transition from NiSi to NiSi2,” in 2006 International Workshop on Junction Technology, 2006, pp. 188–191.
[43]K. Khosraviani and A. M. Leung, “Planar sacrificial surface micromachining by nickel silicide,” in TRANSDUCERS 2009-2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009, pp. 1055–1058.
[44]K. Nagahiro, K. Tsutsui, T. Shiozawa, R. Xiang, P. Ahmet, K. Kakushima, Y. Okuno, M. Matsumoto, M. Kubota and, H. Iwai., “Thermal stability of NiSi controlled by post silicidation metal doping method,” in 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, 2006, pp. 466–468.
[45]N. Kusunoki, K. Ohuchi, A. Hokazono, N. Aoki, H. Tanimoto, and K. Matsuzawa, “Topography and Schottky contact models applied to NiSi SALICIDE process [MOSFET applications],” in Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. International Conference on, 2003, pp. 59–62.
[46]L. C. Kalutarage, P. D. Martin, M. J. Heeg, and C. H. Winter, “Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films,” J. Am. Chem. Soc., vol. 135, no. 34, pp. 12588–12591, 2013.
[47]B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, “A study of the NiSi to NiSi2 transition in the Ni–Si binary system1,” Thin Solid Films, vol. 347, no. 1–2, pp. 201–207, Jun. 1999.
[48]B. Imbert, “Etude de la formation du siliciure de nickel-platine intégré dans la fabrication de transistors CMOS pour les technologies 65 et 45 nm,” Institut National Polytechnique de Grenoble-INPG, 2009.
[49]Florian Cacho, “Etude et simulation de la siliciuration du nickel : application dans les technologies MOS,” 2007.
[50]M. Ohring, Materials Science of Thin Films. Academic Press, 2001.
[51]蕭名宏, “以離子佈植製程調整電漿化學氣相沉積薄膜應力之研究,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2010.
[52]Ryuji Tomita, “A study on formation of high resistivity phases of nickel silicide at small area and its solution for scaled CMOS devices,” Doctorial Thesis, Tokyo lnstitute of Technology, 2013.
[53]P. L. Tam, Y. Cao, U. Jelvestam, and L. Nyborg, “Corrosion properties of thermally annealed and co-sputtered nickel silicide thin films,” Surf. Coat. Technol., vol. 206, no. 6, pp. 1160–1167, Dec. 2011.
[54]M. Li, S.-K. Oh, H.-S. Shin, and H.-D. Lee, “Improvement of Thermal Stability of Nickel Silicide Using Co-sputtering of Ni and Ti for Nano-Scale CMOS Technology,” JSTSJournal Semicond. Technol. Sci., vol. 13, no. 3, pp. 252–258, Jun. 2013.
[55]X. Guo, X. R. Wang, Y. L. Jiang, G. P. Ru, and B. Z. Li, “Nickel silicide formation on Si(110) substrate,” in 2010 International Workshop on Junction Technology Extended Abstracts, 2010, pp. 1–4.
[56]W. L. Chiu, C. H. Chiu, J. Y. Chen, C. W. Huang, Y. T. Huang, K. C. Lu, C. L. Hsin, P. H. Yeh and W. W. Wu., “Single-crystalline δ-Ni2Si nanowires with excellent physical properties,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 1–5, 2013.
[57]L. C. Kalutarage, P. D. Martin, M. J. Heeg, and C. H. Winter, “Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films,” J. Am. Chem. Soc., vol. 135, no. 34, pp. 12588–12591, 2013.
[58]F. Niklaus , “Characterization of transfer-bonded silicon bolometer arrays,” 2004, p. 521.
[59]陳君豪, “CMOS製程相容熱阻型紅外線微感測器材料低頻雜訊分析,” 碩士論文, 國立高雄應用科技大學光電與通訊工程研究所, 2015.
[60]E. G. Colgan, M. Mäenpää, M. Finetti, and M.-A. Nicolet, “Electrical characteristics of thin Ni2Si, NiSi, and NiSi2 layers grown on silicon,” J. Electron. Mater., vol. 12, no. 2, pp. 413–422, Mar. 1983.
[61]鄧旭昇, “超低電阻率單晶二矽化鎳之可靠度量測,” 碩士論文, 國立中央大學 電機工程學系 電機所碩士班, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top