(3.238.173.209) 您好!臺灣時間:2021/05/16 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周妤倢
研究生(外文):CHOU,YU-CHIEH
論文名稱:兩種納氏偏好關係之研究
論文名稱(外文):Two types of Nakamura Preference Relations
指導教授:唐惠欽唐惠欽引用關係
指導教授(外文):TANG,HUI-CHIN
口試委員:龔清景
口試委員(外文):KUNG,CHING-JING
口試日期:2017-05-11
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:工業工程與管理系碩士在職專班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:49
中文關鍵詞:模糊數排序偏好關係納氏偏好關係
外文關鍵詞:fuzzy numberrankingpreference relationNakamura preference relations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在模糊決策問題,模糊數之排序是一基本問題,偏好關係乃提供此一問題之合理解決方法之一,本研究乃探討由Nakamura (1986)所提出之兩種偏好關係,探討其基本性質,計算程式,並針對八種個案問題,分析其結果,比較兩種偏好關係在此八種個案問題之結果,此結果,對於模糊數排序提供一合理解決方法。
In fuzzy decision problems, the fuzzy number ranking is the basic problem. Among which, the fuzzy preference relation is the reasonable one to provide the fuzzy number ranking. This paper studies the two types of Nakamura preference relations. These two types satisfy the reciprocal property. All the cases are divided to the eight cases. For each Nakamura preference relation, the computational program is presented. We also compare the values of the two types of Nakamura preference relations. These results provide insights into the Nakamura preference relations.
中文摘要 i
英文摘要 ii
目 錄 iii
圖 目 錄 iv
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 論文架構 2
第二章 模糊集合及測試問題 3
2.1 模糊集合 3
2.2 個案問題 7
第一章 第一種NAKAMURA偏好關係 16
3.1 第一種NAKAMURA偏好關係 16
3.2 個案問題 17
3.3 計算程式 25
第二章 第二種NAKAMURA偏好關係 29
4.1 第二種NAKAMURA偏好關係 29
4.2 個案問題 29
4.3 第一種及第二種NAKAMURA偏好關係之比較 33
第三章 結論 39
參考文獻 42

1.J.M. Adamo, Fuzzy decision trees, Fuzzy Sets and Systems, 4 (1980) 207-219.
2.S.M. Baas, H. Kwakernaak, Rating and ranking of multiple-aspect alternatives using fuzzy sets, Automatica 13 (1977) 47-58.
3.J.F. Baldwin, N.C.F. Guild, Comparison of fuzzy sets on the same decision space, Fuzzy Sets and Systems 2 (1979) 213-231.
4.G. Bortolan, R. Degni, A review of some methods for ranking fuzzy subsets, Fuzzy Sets and Systems 15 (1985) 1-19.
5.L. Campos, A. Munoz, A subjective approach for ranking fuzzy numbers, Fuzzy Sets and Systems 29 (1989) 145-153.
6.S. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and Systems 17 (1985) 113-129.
7.F. Choobineh, H. Li, An index for ordering fuzzy numbers, Fuzzy Sets and Systems 54 (1993) 287-294.
8.D. Dubois, H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Inform. Sci. 30 (1983) 183-224.
9.P. Fortemps, M. Roubens, Ranking and defuzzizcation methods based on area compensation, Fuzzy Sets and Systems 82 (1996) 319-330.
10.S. Freeling, Fuzzy sets and decision analysis, IEEE Trans. Systems Man Cybernet. 10 (1980) 341-354.
11.R. Jain, A procedure for multiple-aspect decision making using fuzzy set, Internat. J. Systems Sci. 8 (1977) 1-7.
12.R. Jain, Decision making in the presence of fuzzy variables, IEEE Trans. Systems Man Cybernet. SMC-6 (1976) 698-703.
13.E. Kerre, The use of fuzzy set theory in eletrocardiological diagnostics, in: M.M. Gupta, E. Sanchez (Eds.), Approximate Reasoning in Decision-Analysis, North-Holland, Amsterdam, 1982, pp. 277-282.
14.K. Kim, K.S. Park, Ranking fuzzy numbers with index of optimism, Fuzzy Sets and Systems 35 (1990) 143-150.
15.W. Kolodziejczyk, Orlovsky's concept of decision-making with fuzzy preference relation { further results, Fuzzy Sets and Systems 19 (1990) 197-212.
16.T. Liou, J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets and Systems 50 (1992) 247-255.
17.K. Nakamura, Preference relations on a set of fuzzy utilities as a basis for decision making, Fuzzy Sets and Systems 20 (1986) 147-162.
18.S.V. Ovchinnikov, Transitive fuzzy ordering of fuzzy numbers, Fuzzy Sets and Systems 35 (1989) 283-295.
19.J.J. Saade, H. Schwarzlander, Ordering fuzzy sets over the real line: an approach based on decision making under uncertainty, Fuzzy Sets and Systems 50 (1992) 237-246.
20.R.M. Tong, P.P. Bonissone, A linguistic approach between fuzzy numbers and its use in fuzzy sets, IEEE Trans. Systems Man Cybernet. 10 (1980) 716-723.
21.X. Wang, E.E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems 118 (2001) 375-385.
22.R.R. Yager, Ranking fuzzy subsets over the unit interval, Proc. CDC (1978) 1435-1437.
23.R.R. Yager, On choosing between fuzzy subsets, Kybernetes 9 (1980) 151-154.
24.R.R. Yager, A procedure for ordering fuzzy sets of the unitinterval, Inform. Sci. 24 (1981) 143-161.
25.Y. Yuan, Criteria for evaluating fuzzy ranking methods, Fuzzy Sets and Systems 43 (1991) 139-157.

電子全文 電子全文(網際網路公開日期:20220703)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top