(3.80.6.131) 您好！臺灣時間：2021/05/17 02:46

### 詳目顯示:::

:

• 被引用:0
• 點閱:105
• 評分:
• 下載:0
• 書目收藏:0
 在模糊統計推論中，模糊假設檢定是最重要，方法有Grzegorzewski (2000)接授區域法及拒絶區域法。依模糊隨機變數可分為相同類型模糊數及不同類型模糊數。相同類型模糊數可分為梯形模糊數，常態模糊數。不同類型模糊數為梯形模糊數及常態模糊數之混和，並以常態模糊數來逼近之。模糊數之機率分配可分為常態分配，常數及多項式。本研究依此不同組合，以一簡單例子，分析比較其結果。此結果，對於假設檢定有很大幫助，提供一合理解決方法。
 In fuzzy inference problems, the fuzzy testing hypotheses is the most important one. The adopted methods are acceptance region method proposed by Grzegorzewski (2000) and the rejection region method. Two types of fuzzy random numbers are the same fuzzy random numbers and the mixed fuzzy random numbers. We consider the trapezoidal fuzzy numbers, the normal fuzzy number for the same fuzzy random numbers, and the mixed of the trapezoidal fuzzy numbers and normal fuzzy numbers for the mixed fuzzy random numbers. The mean of the mixed of the trapezoidal fuzzy numbers and normal fuzzy numbers is approximated by the normal fuzzy number. The distribution functions of the fuzzy number adopted are normal distribution, constant distribution and polynomial distribution. We present some examples to compare the results of the different combinations of the fuzzy testing hypotheses considered in this paper. These results provide insights into the fuzzy testing hypotheses.
 中文摘要 i英文摘要 ii目 錄 iii圖 目 錄 iv第一章 緒論 11.1 研究動機 11.2 研究目的 21.3 論文架構 3第二章 模糊集合及測試問題 42.1模糊集合 4第三章 模糊敘述統計 103.1 模糊平均數 103.2 模糊變異數 13第四章 模糊假設檢定 184.1 接授區域 184.2 拒絶區域 26第五章 結論 38參考文獻 45
 1.Arnold, B.F.: Statistical tests optimally meeting certain fuzzy requirements on the power function and on the sample size. Fuzzy Set. Syst. 75(3), 365-372 (1995)2.Bellman, R.E. and Zadeh, L.A.: Decision-making in a fuzzy environment: Manage. Sci. 17(4), B-141-B-164 (1970)3.Casals, M.R., Gil, M.A. and Gil, P.: On the use of Zadeh's probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Set. Syst. 20(2), 175-190 (1986)4.Chien-Wei, W.: Decision-making in testing process performance with fuzzy data. Eur. J. Oper. Res. 193(2), 499-509 (2009)5.Delgado, M., Verdegay, J.L., and Vila, M.A.: Testing fuzzy hypotheses: a Bayesian approach. In: Gupta, M.M., Kandel, A., Bandler, W., Kiszka, J.B. (eds.) Approximate reasoning in Expert syst., Elsevier, Amsterdam, 307-316 (1985)6.Filzmoser, P. and Viertl, R.: Testing hypotheses with fuzzy data: The fuzzy p-value. Metrika. 59(1), 21-29 (2004)7.Kruse, R.: The strong law of large numbers for fuzzy random variables. Inform. Sci. 28(3), 233-241 (1982)8.Kruse, R. and Meyer, K.D.: Confidence intervals for the parameters of a linguistic random variable. in J. Kacprzyk and M. Fedrizzi (Eds.): Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decis. Mak. (Springer, Berlin, 1988), 113-123 (1988)9.Kwakernaak, H.: Fuzzy random variables, part I: definitions and theorems. Inform. Sci. 15(1), 1-15 (1978a)10.Kwakernaak, H.: Fuzzy random variables, Part II: algorithms and examples for the discrete case. Inform. Sci. 17(3), 253-278 (1978b)11.Lehmann, E.L.: Testing statistical hypotheses. 2nd ed., Wiley, New York (1986)12.LINDO System Inc.: LINGO User’s Guide. LINDO System Inc., Chicago, Illinios (1999)13.Liu, S.-T. and Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661-674 (2004)14.Parchami, A., Taheri, S.M. and Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Stat. Pap. 51(1), 209-226 (2010)15.Römer, C. and Kandel, A.: Statistical tests for fuzzy data. Fuzzy Set. Syst. 72(1), 1-26 (1995)16.Saade, J.J. and Schwarzlander, H.: Fuzzy hypothesis testing with hybrid data. Fuzzy Set. Syst. 35(2), 197-212 (1990)17.Son, J.C., Song, I. and Kim, H.Y.: A fuzzy decision problem based on the generalized Neyman-Pearson criterion. Fuzzy Set. Syst. 47(1), 65-75 (1992)18.Taheri, S.M. and Arefi, M.: Testing fuzzy hypotheses based on fuzzy test statistic. Soft Comput. 13(6), 617-625 (2009)19.Watanabe, N. and Imaizumi, T.: A fuzzy statistical test of fuzzy hypotheses. Fuzzy Set. Syst. 53(2), 167-178 (1993)20.Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23(2), 421-427 (1968)
 電子全文(網際網路公開日期：20220703)
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 模糊最短路徑問題 2 模糊敍述統計 3 混合型模糊數算術

 無相關期刊

 無相關點閱論文

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室