(3.80.6.131) 您好!臺灣時間:2021/05/17 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張簡玫娟
研究生(外文):CHANG CHIEN,MEI-CHUAN
論文名稱:簡單模糊假設檢定
論文名稱(外文):Simple Fuzzy Testing Hypotheses
指導教授:唐惠欽唐惠欽引用關係
指導教授(外文):TANG,HUI-CHIN
口試委員:龔清景陳琪琪
口試委員(外文):KUNG,CHING-JINGCHEN,CHI-CHI
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:工業工程與管理系碩士在職專班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:模糊數算術梯形模糊數常態模糊數
外文關鍵詞:fuzzy numberfuzzy testing hypothesestrapezoidal fuzzy numbernormal fuzzy number
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在模糊統計推論中,模糊假設檢定是最重要,方法有Grzegorzewski (2000)接授區域法及拒絶區域法。依模糊隨機變數可分為相同類型模糊數及不同類型模糊數。相同類型模糊數可分為梯形模糊數,常態模糊數。不同類型模糊數為梯形模糊數及常態模糊數之混和,並以常態模糊數來逼近之。模糊數之機率分配可分為常態分配,常數及多項式。本研究依此不同組合,以一簡單例子,分析比較其結果。此結果,對於假設檢定有很大幫助,提供一合理解決方法。
In fuzzy inference problems, the fuzzy testing hypotheses is the most important one. The adopted methods are acceptance region method proposed by Grzegorzewski (2000) and the rejection region method. Two types of fuzzy random numbers are the same fuzzy random numbers and the mixed fuzzy random numbers. We consider the trapezoidal fuzzy numbers, the normal fuzzy number for the same fuzzy random numbers, and the mixed of the trapezoidal fuzzy numbers and normal fuzzy numbers for the mixed fuzzy random numbers. The mean of the mixed of the trapezoidal fuzzy numbers and normal fuzzy numbers is approximated by the normal fuzzy number. The distribution functions of the fuzzy number adopted are normal distribution, constant distribution and polynomial distribution. We present some examples to compare the results of the different combinations of the fuzzy testing hypotheses considered in this paper. These results provide insights into the fuzzy testing hypotheses.
中文摘要 i
英文摘要 ii
目 錄 iii
圖 目 錄 iv
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 論文架構 3
第二章 模糊集合及測試問題 4
2.1模糊集合 4
第三章 模糊敘述統計 10
3.1 模糊平均數 10
3.2 模糊變異數 13
第四章 模糊假設檢定 18
4.1 接授區域 18
4.2 拒絶區域 26
第五章 結論 38
參考文獻 45

1.Arnold, B.F.: Statistical tests optimally meeting certain fuzzy requirements on the power function and on the sample size. Fuzzy Set. Syst. 75(3), 365-372 (1995)
2.Bellman, R.E. and Zadeh, L.A.: Decision-making in a fuzzy environment: Manage. Sci. 17(4), B-141-B-164 (1970)
3.Casals, M.R., Gil, M.A. and Gil, P.: On the use of Zadeh's probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Set. Syst. 20(2), 175-190 (1986)
4.Chien-Wei, W.: Decision-making in testing process performance with fuzzy data. Eur. J. Oper. Res. 193(2), 499-509 (2009)
5.Delgado, M., Verdegay, J.L., and Vila, M.A.: Testing fuzzy hypotheses: a Bayesian approach. In: Gupta, M.M., Kandel, A., Bandler, W., Kiszka, J.B. (eds.) Approximate reasoning in Expert syst., Elsevier, Amsterdam, 307-316 (1985)
6.Filzmoser, P. and Viertl, R.: Testing hypotheses with fuzzy data: The fuzzy p-value. Metrika. 59(1), 21-29 (2004)
7.Kruse, R.: The strong law of large numbers for fuzzy random variables. Inform. Sci. 28(3), 233-241 (1982)
8.Kruse, R. and Meyer, K.D.: Confidence intervals for the parameters of a linguistic random variable. in J. Kacprzyk and M. Fedrizzi (Eds.): Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decis. Mak. (Springer, Berlin, 1988), 113-123 (1988)
9.Kwakernaak, H.: Fuzzy random variables, part I: definitions and theorems. Inform. Sci. 15(1), 1-15 (1978a)
10.Kwakernaak, H.: Fuzzy random variables, Part II: algorithms and examples for the discrete case. Inform. Sci. 17(3), 253-278 (1978b)
11.Lehmann, E.L.: Testing statistical hypotheses. 2nd ed., Wiley, New York (1986)
12.LINDO System Inc.: LINGO User’s Guide. LINDO System Inc., Chicago, Illinios (1999)
13.Liu, S.-T. and Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661-674 (2004)
14.Parchami, A., Taheri, S.M. and Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Stat. Pap. 51(1), 209-226 (2010)
15.Römer, C. and Kandel, A.: Statistical tests for fuzzy data. Fuzzy Set. Syst. 72(1), 1-26 (1995)
16.Saade, J.J. and Schwarzlander, H.: Fuzzy hypothesis testing with hybrid data. Fuzzy Set. Syst. 35(2), 197-212 (1990)
17.Son, J.C., Song, I. and Kim, H.Y.: A fuzzy decision problem based on the generalized Neyman-Pearson criterion. Fuzzy Set. Syst. 47(1), 65-75 (1992)
18.Taheri, S.M. and Arefi, M.: Testing fuzzy hypotheses based on fuzzy test statistic. Soft Comput. 13(6), 617-625 (2009)
19.Watanabe, N. and Imaizumi, T.: A fuzzy statistical test of fuzzy hypotheses. Fuzzy Set. Syst. 53(2), 167-178 (1993)
20.Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23(2), 421-427 (1968)

電子全文 電子全文(網際網路公開日期:20220703)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top