(3.227.0.150) 您好!臺灣時間:2021/05/06 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李豫民
研究生(外文):LI,YU-MING
論文名稱:台南市濕地碳匯功能之調查研究
論文名稱(外文):Study on Carbon Sink Capacity of Wetlands in Tainan
指導教授:鄭魁香鄭魁香引用關係
口試委員:鄒禕詹明勇鄭魁香
口試日期:2017-05-22
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:二氧化碳七股濕地碳匯
外文關鍵詞:Carbon dioxideChiku WetlandsCarbon Sink
相關次數:
  • 被引用被引用:1
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來在全球氣候變遷的過程中,因二氧化碳(CO2)長期累積於大氣中而造成地球暖化。其中濕地因具有吸收或排放二氧化碳的功能,其相關碳匯效能之研究更是蓬勃發展,本研究針對位於台南之七股潟湖、虎頭埤與嘉南藥理科技大學人工濕地進行水質分析,二氧化碳(CO2)、甲烷(CH4)及氧化亞氮(N2O)的釋放通量、水中藻類總初級生產量及底泥有機碳密度,進而進行碳吸存及氣體交換通量之分析與測量,以因應國際發展趨勢,發展濕地碳匯管理的技術。
本研究碳收支計算法使用淨生態系統生產量(NEP,Net Ecosystem Production)的觀念結合到碳質量平衡模式中。將濕地的淨初級生產量(NPP,Net primary Productivity)扣除濕地的異營性呼吸量(HR,Heterogeneous Respiration)即可得到淨生態系統生產量(NEP),以濕地碳吸存能力及碳庫量估算法,即可求得該類型濕地碳吸存能力及碳庫量。
本研究果發現碳匯能力最強者為嘉藥人工濕地,年平均碳收支量SSF濕地高達1,644 g Cm-2 yr-1,其次為七股紅樹林溼地504~727 g Cm-2 yr-1,而其他濕地僅表現出微弱的碳匯能力,甚至有部分呈現出排放碳源的結果。

In recent years, the research of wetlands has played an important role in the process of global climate change due to the long-term sequestration of atmospheric carbon dioxide (CO2). Because of its functionality to absorb or emit carbon dioxide, together with the performance of carbon sequestration, wetlands have the environmental characteristics of high water levels and anaerobic bottom. This study is based on the Chiku Lagoon, Hu-Tou-Pi Reservoir and constructed wetland in Chia-Nan University of Pharmacy & Science to monitor water quality, gross primany production, emission fluxes of CO2, CH4 and N2O, and the soil organic carbon density to analyze carbon sequestration gas flux measurements calculated exchange. The research can respond the international development trends, and develop the technology of wetland carbon management.
This study combines the carbon balance calculation method with the concept of net ecosystem production into the carbon mass balance model. The net primary production of the wetland will be deducted from the net primary production of the wetland. The carbon storage capacity and carbon stock of the wetland can be obtained by estimating the carbon storage capacity and carbon stock.
The results of this study found that the strongest carbon sink capacity about 1,644 g Cm-2 yr-1 for artificial SSF wetland in Chia-Nan University of Pharmacology and Science, and the second strong carbon sink capacity reach 504~727 g Cm-2 yr-1 for mangrove forest in Chiku. Other wetlands show only weak carbon sink, and even some of them are carbon source.

摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖 目 錄 VI
表 目 錄 VII
第一章 緒 論 1
1.1 前言 1
1.2 研究目的 1
1.3 研究區域 1
第二章 文獻探討 5
2.1濕地 5
2.2濕地生態功能 12
2.3 濕地碳循環 13
2.4 濕地碳匯調查 15
2.5 濕地碳匯能力 17
第三章 研究方法與分析技術 26
3.1碳平衡估算方法 26
3.2碳庫變化估算法 30
3.3採氣罩分析技術 35
3.4經驗公式差補法推估全年交換通量 38
3.5空間外推法推估濕地的碳匯或交換通量 39
3.6微氣象技術 40
3.7初級生產量與異營性呼吸通量 41
3.8濕地底泥或土壤長期碳累積量 43
第四章 採樣與分析 45
4.1海岸鹹水濕地 45
4.2淡水埤塘濕地 48
4.3淡水人工溼地 48
4.4監測方法 51
第五章 研究成果 60
5.1海岸鹹水濕地 60
5.2淡水埤塘濕地 68
5.3淡水人工溼地 70
第六章 結論與建議 72
6.1結論 72
6.2建議 73
參考文獻 75


王巧萍、杜清澤,2008,木麻黃海岸林土壤碳庫存,97 年度森林碳管理研討會論文集,pp.31-40。
王銀波、謝學武,1997,臺灣中南部水稻田、旱田、濕地、林地、及坡地土壤甲烷之釋出及其影響因子。臺灣地區大氣環境變遷,pp.99-121。國立臺灣大學農業化學系和國立臺灣大學全球變遷中心,台北,臺灣。
王樹倫、陳鎮東、張哲明,1997,臺灣臨近水域甲烷通量之研究。臺灣地區大氣環境變遷,pp.143-154。國立臺灣大學農業化學系和國立臺灣大學全球變遷中心,台北,臺灣。
王樹倫、陳鎮東、張哲明、呂世宗,1995,南臺灣河、湖、淺海及溼地之甲烷釋出量研究。國家科學委員會專題研究報告,台北,臺灣。pp.19。
內政部營建署,2008,國家重要濕地彙編
內政部營建署,2008,國家重要濕地導覽手冊
內政部營建署城鄉發展分屬,2011,國家重要濕地碳匯功能調查計畫總結報告書,高苑科技大學綠工程技術研發中心
何佳穎,2012,南台灣紅樹林濕地碳吸存能力之調查及,嘉南藥理科技大學環境工程與科學系碩士論文。
吳淑岱,1995,空氣與廢氣監測分析方法,中國環境科學出版社。
姜春足,2013,急水溪河口紅樹林濕地碳匯之初探,崑山科技大學環境工程研究所碩士論文。
范貴珠,2007,台南縣急水溪海茄苳林分枯落物量及養分之動態變化,台灣林業科學 22(4),pp.441-454。
陳易佐,2007,大型校園人工溼地實場操作模式探討,嘉南藥理科技大學環境工程與科學系碩士論文。
陳韋志,2004,環境因子的變化對人工溼地硝酸鹽去除功能的影響,嘉南藥理科技大學環境工程與科學系碩士論文。
陳家璽,2012,南臺灣淡水埤塘與鹹水潟湖溫室氣體通量之調查,嘉南藥理科技大學環境工程與科學系碩士論文。
陳顗竹、賴朝明、楊盛行,2003,濕地二氧化碳及甲烷通量測定及減量對策。溫室氣體通量測定及減量對策(Ⅳ),pp.237-250。國立臺灣大學全球變遷中心,台北,臺灣。
馬維君,2000,臺灣地區蛋雞產業溫室氣體排放之探討,中國文化大學生物科技研究所碩士論文。
莊建和,2010,人工濕地碳質量收支平衡及碳吸存能力之研究,嘉南藥理科技大學環境工程與科學系碩士論文。
張哲明、陳鎮東、王樹倫,1998,南臺灣河、湖、淺海及溼地之甲烷釋出量研究。
張讚昌、楊盛行,1998,臺灣北部水稻田、溼地及森林土壤之甲烷釋放。臺灣地區大氣環境變遷(三),pp.7-33。國立臺灣大學農業化學系和國立臺灣大學全球變遷中心,台北,臺灣。
張讚昌、楊盛行,2003。臺灣溼地甲烷釋放。溫室氣體通量測定及減量對策 (Ⅳ), pp.199-222。國立臺灣大學全球變遷中心、國立臺灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,臺灣。
黃穎俊,2015,二氧化碳及甲烷通量觀測與排放量建立-以台灣七股濕地為例,國立中興大學環境工程系研究所碩士論文。
楊盛行、劉清標、陳顗竹、張讚昌、魏嘉碧、賴朝明、王銀波、趙震慶、張哲明、王樹倫、陳鎮東,2003,臺灣河川湖泊溼地甲烷及氧化亞氮排放量測。全球變遷通訊雜誌 40: pp.59-71。
萬鑫偉,2012,七股鹽田濕地潮間帶灘地初級生產量及溫室氣體通量調查,嘉南藥理科技大學環境工程與科學系碩士論文。
錢元皓,2003,臺灣水田、旱田與濕地土壤氧化亞氮之釋放通量及其減量對策,國立臺灣大學農業化學研究所碩士論文。
賴建志,2008,人工溼地之甲烷及氧化亞氮釋放研究,嘉南藥理科技大學環境工程與科學系碩士論文。
賴爽云,2008,遙測應用於高雄市都市林碳吸存之評估,國立屏東科技大學森林系碩士學位論文。
謝漢欽、汪大維、林俊,2003,應用地理資訊系統估算六龜試驗林森林蓄積變動之二氧化碳吸存效應,臺灣林業科學18 (3):pp.171-82。

Anderson, C.J., Mitsch, W.J., 2006. Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26, 779-792.
Aselman, I., Crutzen, P.J., 1989. A global inventory of wetland distribution and seasonality, net primary productivity, and estimated methane emissions. In A.F. Bouwman, ed. Soils and Greenhouse effect. John wiley & Sons, New York, pp 441-449.
Baker-Blocker, A., Donahue, T. M. and Mancy, K. H., 1977. Methane flux from wetlands area. Tellus 29, 245-250.
Baldocchi, D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9, 479-492.
Breuer, L., Papen, H., Butterbach-Bahl, K., 2000. N2O emission from tropicalforest soils of Australia. J Geophys Res 105: 26353–26367 Brevik, E.C., Homburg, J.A.A., 2004. 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena 57, 221–232
Brix, H., Sorrell, B.K., Lorenzen, B., 2001. Are Phragmites- dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69, 313–324.
Brunskill, G. J., Zagorskis, I., Pfitzner, J., 2002. Carbon burial rates in sediments and a carbon mass balance for the herbert river region of the great barrier reef continental shelf, north Queensland, Australia. Estuarine, Coastal and Shelf Science 54, 677–700.
Bubier, J.L., Crill, P.M., Moore, T.R., Savage, K., Varner, R.K., 1998. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochemical Cycles 12, 703-714.
Bubier, J., Frolking, S., Crill, P., Linder, E., 1999. Net ecosystem productivity and its uncertainty in a diverse boreal peatland. Journal of Geophysical Research, 104, 27683–27692.

Cheng, X., Peng, R., Chen, J. Luo, Y., Zhang, Q., An, S., Chen, J., Li, B., 2007. CH4 and N2O emissions from Spatina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere 68, 420-427.
Carroll, P. and Crill, P., 1997. Carbon balance of a temperate poor fen. Global Biogeochemical Cycles 11, 349-356.
Delaune, R.D., Smith, C.J., Patrick, W.H. Jr., 1983. Methane release from Gulf coast wetlands. Tellus 35B, 8-15.
Denmead, O.T., Macdonald, B.C.T., Bryant, G., White, I., Moody, P., Dalal, R.C., Stainlay, W., 2006. Greenhouse gas emissions from sugarcane soils and nitrogen fertiliser management. Proc Aust Soc Sugar Cane Technol 28, 252–260
Euliss,N.H.Jr., Gleason, R.A., Olness, A., McDougal, R.L., Murkin, H.R., Robarts, R.D., Bourbonniere, R.A., Warner, B.G., 2006. North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361:179–188.
Gabriel, M.L., Roxane, M., Jacques, B., Florent, C., 2009. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environmental Pollution 157,748–754.
Gorham, E., 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1, 182–195.
Greenway, M., Woolley, A., 1999. Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecological Engineering 12, 39-55.
Greenway, M., 2005. The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecological Engineering 25, 501-509.
Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E. Rasmadi, M., Tsuruta, H., 2005. Greenhouse gas emission from tropical peatlands of Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems 71, 73-98.
Hemond, H.F., 1980 Biochemistry of Thoreau’s Bog, Concord, Mass. Ecological Monographs 50, 507-526.
IPCC, 2001. Climate Change 2001: The Scientific Basis. Published for the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK.
IPCC, 2006, 2006 IPCC Guidelines for National Greenhouse Gas. Inventories. Volume 4, Agriculture Forestry and Other Land Use. Institute for Global Environmental Strategies, Hayama.
IPCC, 2007, Climate Change 2007: The Physical Science Basis. Published for the Intergovernmental Panel on Climate Changs (IPCC). Cambridge University Press, UK.
Inamori, R., Gui, P., Dass, P., Matsumura, M., Xu, K.Q., Kondo, T., Ebie, Y., Inamori, Y., 2007. Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochemistry 42, 363–373.
International Water Association(IWA), 2000. Constructed Wetlands for Pollution Control. Processes, Performance, Design and Operation. IWA Publishing, London.
Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., Tsuruta, H., 2003.Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peadlands located in coastal area of South Kalimantan. Chemosphere 52, 603-608.
Jing, S.R., Lin, Y.F., Shih, K.C., and Lu, H.W., 2008. Applications of Constructed Wetlands for Water Pollution Control in Taiwan-Review. ASCE Journal - Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, October, 249-259.
Johansson, A.E., Gustavsson, A.M., Oquist, M.G., Svensson, B.H., 2004. Methane emissions from a constructed wetland treating wastewater- seasonal and spatial distribution and dependence on edaphic factors. Water Research 38, 3960-3970.
Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A., 2010. Carbon Storage and Fluxes within Freshwater Wetlands: a Critical Review. Wetland 30, 111-124.
Liikanen, A., Huttunen, J.T., Karjalainen, S.M., Heikkinen, K., Vaisanen,T.S., Nykanen, H, Martikainen, P.J., 2006. Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland putifying peat mining runoff waters. Ecological Engineering 26, 241-251.
Lovett, G.M., Cole, J.J., Pace, M.L., 2006. Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9, 152-155.
Malmer, N., 1975. Development of bog mires. In A.D. Hasler, ed. Coupling of and and Water System. Ecology Studies 10. Springer-Verlag, New York, pp. 85-92
Mander, U., Teiter, S., Augustin, J., 2005. Emission of greenhouse gases from constructed wetlands for wastewater treatment and from riparian buffer zones. Water Science and Technology 52 (10-11), 167-176.
Mander, U., Lõhmusa, K., Teiter, S., Nurka, K., Mauring, T., Augustin, J., 2008. Gaseous fluxes from subsurface flow constructed wetlands for wastewater treatment. Journal of Environmental Science and Health, Part A 40, 1215-1226.
Megonigal, J.P., Hines, M.E., Visscher, P.T., 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In W.H. Schlesinger, ed. Biogeochemistry. Elsevier-Pergamon, Oxford, UK, pp.317-424.
Migne, A., Davoult, D., Plilmount, N., Menu, D., Boucher, G., Guttuso, J.P., Rybarczyk, H., 2002. A closed-chamber CO2-flux method for estimating intertidal primary production and respiration under emersed conditions. Marine Biology 140, 865-869.
Moore, T.R., Bellamy, D.J. (1974) Peatlands. Springer-Verlag, New York. pp.221
McCarty G.W., Ritchie J.C., 2002. Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution 116: 423–430.
Mitsch W.J., Wu, X., 1995. Wetland and global change. In Lal, R., Kimble, J., Levine, E., Stewart, B.A. eds. Advances in Soil Science, Soil Management, and Greenhouse Effect. CRC/Press/Lewis Publishers, Boca Raton, FL.
Mitsch, W. J., Gosselink, J. G., 1993, “Wetlands 2 ed,” Van Nostrand Reinhold, N.Y. Mitsch WJ, Gosselink JG 2007, Wetlands, 4th edn. Wiley, New York.
Piceka, T., Cizkova, H., Duseka, J., 2007. Greenhouse gas emissions from a constructed wetland-Plants as important sources of carbon. Ecological Engineering 31, 98-106.
Pumpanen J, Kolari P, Ilvesniemi H et al., 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159–176.
Rayment, M.B., Jarvis, P.G., 1997. An improved open chamber system for measuring soil CO2 effluxes in the field. J. Geophysical Research 102, D24, 28,779-28,784.
Roulet, N.T., 2000. Peatland, carbon storage, greenhouse gases, and Kyoto Protocol: prospects and significance for Canada. Wetlands 20, 605-615.
Roulet, N.T., Lafleur, P.M., Richard, P.J.H., Moore, T.R., Humphreys, E.R., Bubier, J.L., 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13, 397-411.
Sebacher, D.I., Harriss, R.C., Bartlett, K.B., 1985. Methane emissions to the atmosphere through aquatic plants. J. Environ. Qual. 14, 40–46.
Schlesinger W.H., 1991. Biogeochemistry: an analysis of global change. Academic, San Diego.
Schrier-Uijl, A.P., Varaart, A.J., Leffelaar, P.A., Berendse, F., Veenendaal, E.M., 2010. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands.
Song, C., Zhang, J., Wang, Y., Wang, Y., Zhao, Z., 2008. Emission of CO2, CH4 and N2O from freshwater marsh in northeast China. J. of Environmental Management 88, 428-436.
Søvik, A. K., Kløve, B., 2007. Emission of N2O and CH4 from a constructed wetland in southeastern Norway, Science of the Total Environ. 380, 28-37.
Søvik, A.K., Augustin, J., Heikkinen, K., Huttunen, J.T., Necki, J.M., Karjalainen, S.M., Kløve, B., Liikanen, A., Mander, Ü., Puustinen, M., Teiter, S., Wachniew, P., 2006. Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of Environmental Quality 35, 2360–2373
Stadmark, J., Leonardson, L., 2005. Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecological Engineering 25, 542-551.
Tai, P.D., Li, P.J., Sun, T.H., He, Y.W., Zhou, Q.X., Gong, Z.G., Mizouchi, M., Inamori, Y., 2002. Greenhouse gas emissions from a constructed wetland for municipal sewage treatment. Journal of Environmental Science 14 (1), 27-33.
Tanner, C. C., Adams, D. D., Downes, M. T., 1997. Methane Emissions from Constructed Wetlands Treating Agricultural Wastewaters. Journal of Environmental Quality 26, 1056-1062.
Trumbore, S.E., Bubier, J.L., Harden, J.W., Grill, P.M., 1999. Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research 104 (D22), 27,673-27,682.
Trumbore, S.E., Harden, J.W., 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research 102, 817–830.
Turunen, C., Tomppo, E., Tolonen, K., Reinkainen, E., 2002. Estimating carbon accumulation rates of undrained mires in Finland: application to boreal and subarctic regions. Holocene 12, 69–80.
U.S. Environmental Protection Agency, 2000. Manual for Constructed Wetlands Treatment of Municipal Wastewaters. EPA/625/R-99/010, Cincinnati.
Waddington J.M., Roulet, N.T., 1996. Atmosphere-wetland carbon exchange: scale dependency of CO2 and CH4 exchange on the development topography of a peatland. Global Biogeochemistry and Cycles 10, 233-245.
Waddington J.M., Roulet, N.T., 2000. Carbon balance of a boreal patterned peatland. Global Change Biology 6, 87-97.
Wallen, B., 1992. Methods for studying below-ground production in mire ecosystem. Suo 43, 155-162.
Wallen, S.C., 2005. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22, 73-94
Wang, Y., Inamori, R., Kong, H., Xu, K., Inamori, Y., Kondo, T., Zhang, J., 2008. Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations. Ecological Engineering 32, 22-29.
Wang, Z.P., Zeng, Z., Patrick, W.H. JR., 1996. Methane emissions from narural wetlands. Environmental Monitoring and assessments 42, 143-161.
Westlake, D.F., 1982. The primary productivity of water plants. In: Symoens, J.J., Hooper, S.S., Compére, P. (Eds.), Studies on Aquatic Vascular Plants. Royal Botanical Society of Belgium, Brussels, pp. 165–180.
Whitting GJ, Chanton JP 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53:521–528.
Worrall, F., Reed, M., Warburton, J., Burt, T., 2003. Carbon budget for British upland peat catchment. The Science of the Total Environment 312, 133-146.
Zhang, F.W., Liu, A.H., Li, Y.N., Zhao, L., Wang, Q.X., Du, M.Y., 2008. CO2 flux in alpine wetland ecosystem on the Qinghai Tibetan Plateau, China. Acta Ecologica Sinica 28 (2), 453-462.
Zhu, N., An, P., Krishnakumar, B., Zhao, L., Sun, L., Mizuochi, M., Inamori, Y., Effect of plant harvest on methane emission from two constructed wetlands designed for the treatment of wastewater. Journal of EnvironmentalManagement 85, 936-943.
Zou, J.W., Huang, Y., Zheng, X.H., Wang, Y., Chen, Y.Q., 2004. Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere. Chinese Science Bulletin 49, 381-388.

電子全文 電子全文(網際網路公開日期:20220601)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔