(3.238.130.97) 您好!臺灣時間:2021/05/10 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝昌諺
研究生(外文):Hsieh, Chang-Yen
論文名稱:用濺鍍法製備具有高穿透率及低電阻之AZO和銀多層透明導電薄膜
論文名稱(外文):High Transparent Conductive Film,of low Resistance AZO and Ag Multilayer Preparation by Sputtering
指導教授:陳邦旭
指導教授(外文):Chen,Pang-Shiu
口試委員:陳邦旭李勝偉彭政雄
口試委員(外文):Chen, Pang-ShiuLee, Sheng-weiPeng, Cheng-hsiung
口試日期:2017-06-20
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程與材料科技系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:氧化鋅掺雜鋁透明導電氧化物濺鍍
外文關鍵詞:AZOAgRF magnetron sputteringtransparent electrodethermal stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究中使用濺鍍系統濺鍍掺鋁氧化鋅(AZO)、Ag/AZO、AZO/Ag、AZO/Ag/AZO與AZO/Ag/WO3結構進行探討。利用結構改變使透明導電薄膜在可見光區光子波長為(400~700 nm)具有高穿透率與低電阻特性。AZO其特性為良好透明介電材料,在AZO層中插入一層低電阻金屬薄膜,而此AZO/Ag/AZO結構在可接受的透光度下得到足夠的導電率。部分多層薄膜試片使用RTA進行N2氣氛退火,完成的薄膜將會使用UV/Vis/NIR光譜儀量測其光學性質、原子力顯微鏡觀察表面粗糙度與表面形貌、霍爾效應做多層薄膜的電性量測、掃描式電子顯微鏡觀測表面形貌和膜厚。從本論文中發現將金屬插入在AZO後之中的多重介電層/金屬/介電層可以擁有在可見光區具高透光率與低電阻,在導電性與可見光穿透率特性表現相當優異。
未退火的AZO/Ag/AZO三層結構中間Ag層厚度為10 nm,穿透率可以到達94%,因為銀反射可見光能力較弱,在AZO/Ag/AZO的550 nm光子穿透率有較佳的穿透率。當上下層AZO為對稱30 nm時,其此結構之片電阻為4.78 Ω/sq品質係數則是1.06×10-1 Ω-1,在第二部分,基層材料改變為WO3,目的為調整試片的光學性質使其有更高的可見光區穿透率,WO3為一個高功函數電洞傳輸層材料,而此AZO/Ag/WO3結構當上下層固定30 nm時Ag層10 nm,此結構之平均可見光穿透88%,則品質係數7.19×10-2 Ω-1。本研究結果顯示AZO/Ag/AZO光學特性與Ag薄膜厚度有關聯,Ag的最佳製備條件為使用直流濺鍍功率30 W,其Ag厚度為10 nm,退火溫度200 ℃,穿透率可以到達96 %。當AZO/Ag/AZO為30 nm時,其三層結構之片電阻為3.96Ω/sq品質係數則是1.6×10-1Ω-1(波長為 550 nm)。WO3與AZO結構中,最佳厚度為10與30奈米,退火溫度200 ℃。AZ/A/WO的550 nm光子穿透率為97 %, AZO與WO3為30 nm時,其AZ/A/WO三層結構之片電阻為4.58 Ω/sq品質係數也為1.6×10-1 Ω-1(波長為 550 nm),非對稱介電層/金屬/介電層亦可提供高品質係數透明電極。

In this thesis, several stacking layers of aluminum dope zinc oxide(AZO), Ag/AZO, AZO/Ag, AZO/Ag/AZO and AZO/Ag/WO3 were sputtered using sputtering system. With different layers for transparent conductive oxide (TCO) layers exhibit high transmittance in the visible region within the wavelength from 400 to 700 nm with low reistance. The AZO was characterized as a good transparent dielectric material, a low-resistance metal film was inserted into the AZO layer, The AZO/Ag/AZO structure can achieve a sufficient conductivity with an acceptable transparency. The thickness of the inserted Ag layer is 10 nm and the transmittance can reach 94 %. The AZO/Ag/AZO stacking layer showed weakly visible light reflectance and high transmittance at the wavelength of 550 nm. Both of the thickness of the upper and the lower AZO were 30 nm, the sheet resistance of this structure was 4.78 Ω/sq, the figure of merit (FOM) of AZO/Ag/AZO is 1.06×10-1 Ω-1. In the second part of this thesis, WO3 is a high work function and serve as a hole transport layer electrode. In the AZO/Ag/WO3 structure, with the upper and lower dielectric layer of 30 nm, and the average transmittance was 88 %. The FOM of AZO/Ag/WO3 is 7.19×10-2 Ω-1. The refractive index of the buffer was tuned to obtain high transmittance and low resistance. We also used RTA under N2 atmosphere to examine the thermal stability of the multilayer. The surface morphology revealed by atomic force microscopy were indicated the thermal stability of the multi-layers. Our results showed that the optical properties of AZO/Ag/AZO depended on the thickness of Ag film and the annealing temperature. The optimum FOM conditions of the inserted Ag layer was 10 nm in thickness, and the annealing temperature for the AZO/Ag/AZO was 200 °C. The sheet resistance of the AZO/Ag/AZO structure was down to 3.96 Ω/sq, and the FOM at the wavelength of 550 nm of the AZO/Ag/AZO is 1.6×10-1 Ω-1.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 1
第一章緒論 1
1.1透明導電薄膜 1
1.2金屬氧化物薄膜與應用 2
第二章文獻回顧 4
2.1透明導電薄膜(TCO)之基礎理論 4
2.1.1透明導電氧化物薄膜光學性質 4
2.1.2透明導電氧化物薄膜導電機制 8
2.1.3金屬薄膜層在透明導電膜的應用 9
2.1.4金屬氧化物半導體薄膜在透明導電膜的應用 10
2.2金屬氧化物薄膜製程方法回顧 10
2.2.1 電子束蒸鍍原理 10
2.2.2濺鍍沉積原理 11
2.2.3脈衝雷射沉積鍍膜原理 14
2.2.4化學氣相沉積原理 15
2.3氧化鋅(ZnO) &摻鋁氧化鋅(AZO) &氧化鎢(WO3)薄膜相關特性與在透明導電薄膜製程與應用 16
2.3.1氧化鋅(ZnO)晶體結構及特性 16
2.3.2摻鋁氧化鋅(AZO)晶體結構及特性 18
2.3.3摻鋁氧化鋅(AZO)晶體之電性 19
2.3.4摻鋁氧化鋅(AZO)晶體之光學特性 22
2.3.5 WO3材料的氣敏機制 24
2.3.6 WO3在透明導電薄膜製程與應用 25
2.4 Oxide/Metal/Oxide結構在透明導電模的應用 25
第三章實驗部分 28
3.1實驗材料與設備 28
3.1.1實驗材料 28
3.1.2 實驗設備 28
3.2實驗步驟 29
3.2.1流程圖 29
3.2.2基板清洗與前處理 29
3.2.3濺鍍步驟與製程參數 30
3.2.4熱退火處理 31
3.3量測儀器及原理 31
3.3.1光學特性-穿透率量測 32
3.3.2 X光繞射結構分析 32
3.3.3薄膜電性量測 34
3.3.4表面形貌分析 36
3.3.5薄膜厚度的測量 37
3.3.6橢圓偏光儀( Ellipsometer ) 38
第四章結果與討論 40
4.1在室溫下使用射頻(RF)濺鍍系統製備AZO單層薄膜結構 40
4.1.1以射頻(RF)功率固定通入不同氧氣流量濺鍍AZO單層薄膜光學分析 41
4.1.2單層AZO薄膜不同厚度下的光學分析 42
4.2 Ag&AZO薄膜之單層、雙層、多層結構 45
4.2.1金屬Ag膜厚對於上下厚度AZO薄膜之光電性質的影響 48
4.2.2 AZ-A-AZ薄膜系統,上下層相同的AZO厚度對稱結構 52
4.2.3 AZ-A-AZ薄膜系統,上層AZO厚度改變 54
4.3 AZ-A-AZ三層結構熱處理分析 57
4.3.1 AZ-A-AZ各銀膜厚的熱退火後之光學、電學特性 57
4.3.2 AZ-A-AZ下銀厚度10 nm熱處理後之晶體結構特性 64
4.3.3 AZ-A-AZ下銀厚度10 nm熱處理後之光學、電學特性分析 68
4.4三層結構探討多層結構底層WO3材料 70
4.4.1單層WO3熱處理後之光學分析 70
4.4.2 AZ-A-WO3各銀膜厚之光學、電學特性 74
4.4.3 AZ-A-WO3薄膜結構熱退火處理之光學、電性分析 77
4.4.4 WO3薄膜熱退火處理後濺鍍AZO與Ag薄膜之晶體結構與光學、電性分析 80
4.4.5 WO3薄膜熱退火處理後濺鍍AZO與Ag薄膜,再於同溫度熱退火處理 87
第五章結論 94
參考文獻 95


[1] K. Badeker, Ann. Phys, 22 (1907) 749.
[2] G. Rupprecht, Zeitschrift für Physik A Hadrons and Nuclei, 139 (1954) 504-517.
[3] a.R.G. H.J.J van Boort, Philips Tech. Rev, 29 (1968).
[4] L. Wang, J.S. Swensen, E. Polikarpov, D.W. Matson, C.C. Bonham, W. Bennett, D.J. Gaspar, A.B. Padmaperuma, Organic Electronics, 11 (2010) 1555-1560.
[5] A.R. Madaria, A. Kumar, C. Zhou, Nanotechnology, 22 (2011) 245201.
[6] W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, Z.C. Feng, Thin Solid Films, 519 (2010) 31-36.
[7] M. Gabás, P. Díaz-Carrasco, F. Agulló-Rueda, P. Herrero, A. Landa-Cánovas, J. Ramos-Barrado, Solar Energy Materials and Solar Cells, 95 (2011) 2327-2334.
[8] 安泰科銦研究團隊中國銦市場供需分析, (2016).
[9] J. Clatot, G. Campet, A. Zeinert, C. Labrugère, A. Rougier, Applied Surface Science, 257 (2011) 5181-5184.
[10] J. Wienke, B. Van Der Zanden, M. Tijssen, M. Zeman, Solar Energy Materials and Solar Cells, 92 (2008) 884-890.
[11] E. Johnson, P. Prod'homme, C. Boniface, K. Huet, T. Emeraud, P.R. i Cabarrocas, Solar Energy Materials and solar cells, 95 (2011) 2823-2830.
[12] K. Nagamoto, K. Kato, S. Naganawa, T. Kondo, Y. Sato, H. Makino, N. Yamamoto, T. Yamamoto, Thin Solid Films, 520 (2011) 1411-1415.
[13] J. Bian, X. Li, X. Gao, W. Yu, L. Chen, Applied Physics Letters, 84 (2004) 541-543.
[14] Y. Natsume, H. Sakata, Thin solid films, 372 (2000) 30-36.
[15] S. Studenikin, N. Golego, M. Cocivera, Journal of Applied Physics, 84 (1998) 2287-2294.
[16] J. Sun, D.A. Mourey, D. Zhao, T.N. Jackson, Journal of Electronic Materials, 37 (2008) 755-759.
[17] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Japanese Journal of Applied Physics, 36 (1997) L1453.
[18] N. Aghamalyan, I. Gambaryan, E.K. Goulanian, R. Hovsepyan, R. Kostanyan, S. Petrosyan, E. Vardanyan, A. Zerrouk, Semiconductor science and technology, 18 (2003) 525.
[19] 林彥甫, 蘇程裕, 林烜慶, 范富雄, 核殼氧化鎢/氧化鈦奈米結構材料與場發射特性之研究, NSC 98-2221-E-027-035-MY3.
[20] G. Haacke, Journal of Applied Physics, 47 (1976) 4086-4089.
[21] T.J. Coutts, D.L. Young, X. Li, Mrs Bulletin, 25 (2000) 58-65.
[22] G. Britton, ChemInform, 26 (1995).
[23] C.G. Granqvist, Solar energy materials and solar cells, 91 (2007) 1529-1598.
[24] A. Sarkar, S. Ghosh, S. Chaudhuri, A. Pal, Thin Solid Films, 204 (1991) 255-264.
[25] J. Bellingham, W. Phillips, C. Adkins, Journal of Materials Science Letters, 11 (1992) 263-265.
[26] 楊明輝, 工業材料雜誌, 2001.
[27] S.T. Tan, B. Chen, X. Sun, W. Fan, H.S. Kwok, X. Zhang, S. Chua, Journal of Applied Physics, 98 (2005) 013505.
[28] V. Gantmakher, Y. Levinson, Carrier scattering in metals and semiconductors, Elsevier, 2012.
[29] D. Sahu, S.-Y. Lin, J.-L. Huang, Applied Surface Science, 252 (2006) 7509-7514.
[30] P.B. Catrysse, S. Fan, Nano letters, 10 (2010) 2944-2949.
[31] J.-C. Manifacier, L. Szepessy, J. Bresse, M. Perotin, R. Stuck, Materials Research Bulletin, 14 (1979) 163-175.
[32] N.R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee, M. Brumbach, B. Kippelen, B. Domercq, S. Yoo, Thin Solid Films, 445 (2003) 342-352.
[33] A. Moholkar, S. Pawar, K. Rajpure, C. Bhosale, J. Kim, Applied Surface Science, 255 (2009) 9358-9364.
[34] A. Hjortsberg, I. Hamberg, C. Granqvist, Thin Solid Films, 90 (1982) 323-326.
[35] A.S.A.C. Diniz, Renewable Energy, 36 (2011) 1153-1165.
[36] J.A. Thornton, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 3059-3065.
[37] S.-H. Paeng, M.-W. Park, Y.-M. Sung, Surface and Coatings Technology, 205 (2010) S210-S215.
[38] W. Yang, Z. Liu, D.-L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Applied Surface Science, 255 (2009) 5669-5673.
[39] X. Sun, H.S. Kwok, Journal of applied physics, 86 (1999) 408-411.
[40] M. Godlewski, E. Guziewicz, G. Łuka, T. Krajewski, M. Łukasiewicz, A. Wachnicka, K. Kopalko, A. Sarem, B. Dalati, Thin Solid Films, 518 (2009) 1145-1148.
[41] H. Hartnagel, A. Dawar, A. Jain, C. Jagadish, Bristol and Ph, (1995).
[42] C. Kittel, Introduction to solid state physics, Wiley, 2005.
[43] 謝振剛, 國立中央大學圖書館, 氧化鋅鋁透明導電膜光、電特性之研究, 2005.
[44] S. Pearton, D. Norton, K. Ip, Y. Heo, T. Steiner, Superlattices and Microstructures, 34 (2003) 3-32.
[45] C. Jagadish, S.J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications, Elsevier, 2011.
[46] A.R. Hutson, Physical review, 108 (1957) 222.
[47] C. Klingshirn, physica status solidi (b), 71 (1975) 547-556.
[48] A. Djurišić, Y. Leung, K. Tam, L. Ding, W. Ge, H. Chen, S. Gwo, Applied Physics Letters, 88 (2006) 103107.
[49] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, Journal of crystal Growth, 225 (2001) 110-113.
[50] X. Zhang, Y. Liu, Z. Zhi, J. Zhang, Y. Lu, D. Shen, W. Xu, X. Fan, X. Kong, Journal of luminescence, 99 (2002) 149-154.
[51] R.W. Birkmire, Solar Energy Materials and Solar Cells, 65 (2001) 17-28.
[52] T. Miyata, T. Minami, K. Saikai, S. Takata, Journal of luminescence, 60 (1994) 926-929.
[53] V. Srikant, D.R. Clarke, Journal of Applied Physics, 83 (1998) 5447-5451.
[54] N. Data, Berlin:/Springer-Verlag, 1987.
[55] Y. Chen, D. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, T. Yao, Journal of Applied Physics, 84 (1998) 3912-3918.
[56] P. Yu, K. Tang, G. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Proc. the 23rd Int'l Conf. of semicon., 1996, pp. 1453-1456.
[57] T. Yamamoto, H. Katayama-Yoshida, Physica B: Condensed Matter, 302 (2001) 155-162.
[58] J. Hu, R.G. Gordon, Journal of Applied Physics, 71 (1992) 880-890.
[59] 李道惟, 臺北科技大學光電工程系所學位論文, 以噴霧熱解法成長p-type氧化鋅薄膜之研究, (2006) 1-85.
[60] H. Ohta, M. Orita, M. Hirano, H. Hosono, Journal of Applied Physics, 89 (2001) 5720-5725.
[61] D. Depla, M. Martins Saraiva, 13th International conference on Plasma Surface Engineering (PSE 2012), 2012.
[62] T. Minami, Semiconductor Science and Technology, 20 (2005) S35.
[63] R.G. Gordon, MRS bulletin, 25 (2000) 52-57.
[64] D. Zhang, T. Yang, J. Ma, Q. Wang, R. Gao, H. Ma, Applied Surface Science, 158 (2000) 43-48.
[65] O. Hamad, G. Braunstein, H. Patil, N. Dhere, Thin Solid Films, 489 (2005) 303-309.
[66] T. Minami, H. Nanto, S. Takata, Japanese Journal of Applied Physics, 23 (1984) L280.
[67] T. Minami, H. Sato, K. Ohashi, T. Tomofuji, S. Takata, Journal of Crystal Growth, 117 (1992) 370-374.
[68] K. Wasa, S. Hayakawa, (1992).
[69] B.N. Chapman, Glow discharge processes: sputtering and plasma etching, Wiley, 1980.
[70] A. Murali, A. Barve, V.J. Leppert, S.H. Risbud, I.M. Kennedy, H.W. Lee, Nano Letters, 1 (2001) 287-289.
[71] K. Chopra, S. Major, D. Pandya, Thin solid films, 102 (1983) 1-46.
[72] 李玉華, 科儀新知, 第十二卷第一期, 94 (1990).
[73] 陳建華, 成功大學化學工程學系學位論文, p型透明導電膜應用於有機發光二極體, (2003) 1-100.
[74] J.-M. Ting, B. Tsai, materials Chemistry and Physics, 72 (2001) 273-277.
[75] E. Fortunato, V. Assuncao, A. Goncalves, A. Marques, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho, R. Martins, Thin Solid Films, 451 (2004) 443-447.
[76] P. Song, M. Watanabe, M. Kon, A. Mitsui, Y. Shigesato, Thin Solid Films, 411 (2002) 82-86.
[77] E. Fortunato, A. Goncalves, A. Marques, A. Viana, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho, R. Martins, Surface and Coatings Technology, 180 (2004) 20-25.
[78] T. Minami, H. Sato, H. Imamoto, S. Takata, Japanese journal of applied physics, 31 (1992) L257.
[79] X. Hao, J. Ma, D. Zhang, T. Yang, H. Ma, Y. Yang, C. Cheng, J. Huang, Applied Surface Science, 183 (2001) 137-142.
[80] B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, C. Granqvist, Physical Review B, 37 (1988) 10244.
[81] L. Cruz, C. Legnani, I. Matoso, C. Ferreira, H. Moutinho, Materials Research Bulletin, 39 (2004) 993-1003.
[82] C.-Y. Lee, S.-J. Kim, I.-S. Hwang, J.-H. Lee, Sensors and Actuators B: Chemical, 142 (2009) 236-242.
[83] C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, T. Kerdcharoen, Sensors, 10 (2010) 7705-7715.
[84] T. Maruyama, S. Arai, Journal of the Electrochemical Society, 141 (1994) 1021-1024.
[85] P. Shen, J. Syed‐Bokhari, A. Tseung, Journal of The Electrochemical Society, 138 (1991) 2778-2783.
[86] T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, S. Han, Vacuum, 83 (2008) 257-260.
[87] A. Indluru, T. Alford, Journal of Applied Physics, 105 (2009) 123528.
[88] S.K. Jung, S.H. Sohn, Molecular Crystals and Liquid Crystals, 513 (2009) 301-310.
[89] Y.-R. Lee, E.-M. Kim, J.-P. Oh, B.-Y. Oh, D.-C. Shin, G.-S. Heo, Thin Solid Films, 558 (2014) 31-36.
[90] Y.-S. Park, H.-K. Park, J.-A. Jeong, H.-K. Kim, K.-H. Choi, S.-I. Na, D.-Y. Kim, Journal of The Electrochemical Society, 156 (2009) H588-H594.
[91] M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. Piel, M. Aldissi, Thin Solid Films, 518 (2009) 1250-1253.
[92] J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Applied Physics Letters, 85 (2004) 3450-3452.
[93] A. Klöppel, W. Kriegseis, B. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube, Thin Solid Films, 365 (2000) 139-146.
[94] H.S. Roh, S.H. Cho, W.J. Lee, physica status solidi (a), 207 (2010) 1558-1562.
[95] M. Girtan, Solar Energy Materials and Solar Cells, 100 (2012) 153-161.
[96] J.-A. Jeong, Y.-S. Park, H.-K. Kim, Journal of Applied Physics, 107 (2010) 023111.
[97] T. Chiba, Y. Kudo, M. Kawamura, Y. Abe, K.H. Kim, Vacuum, 121 (2015) 320-322.
[98] N. Meshram, C. Loka, K.R. Park, K.-S. Lee, Materials Letters, 145 (2015) 120-124.
[99] A. Solov’ev, N. Sochugov, K. Oskomov, N. Zaharov, Protection of Metals and Physical Chemistry of Surfaces, 46 (2010) 438-443.
[100] Y. Abe, T. Nakayama, Materials Letters, 61 (2007) 3897-3900.
[101] S. Song, T. Yang, Y. Xin, L. Jiang, Y. Li, Z. Pang, M. Lv, S. Han, Current Applied Physics, 10 (2010) 452-456.
[102] A. Bingel, M. Steglich, P. Naujok, R. Müller, U. Schulz, N. Kaiser, A. Tünnermann, Thin Solid Films, 616 (2016) 594-600.
[103] J. Li, J.-H. Zhang, X.-Y. Jiang, Z.-L. Zhang, Thin Solid Films, 605 (2016) 263-266.
[104] D. Miao, S. Jiang, H. Zhao, S. Shang, Z. Chen, Journal of Alloys and Compounds, 616 (2014) 26-31.
[105] J.-H. Qi, Y. Li, T.-T. Duong, H.-J. Choi, S.-G. Yoon, Journal of Alloys and Compounds, 556 (2013) 121-126.
[106] L. Si-Ning, Z. Yan-Wen, S. Tian-Yi, W. Fa-Yu, Nanoscience and Nanotechnology Letters, 7 (2015) 743-748.
[107] H.-W. Wu, R.-Y. Yang, C.-M. Hsiung, C.-H. Chu, Thin Solid Films, 520 (2012) 7147-7152.
[108] C. Guillen, J. Herrero, physica status solidi (a), 207 (2010) 1563-1567.
[109] A. Mosbah, M. Aida, Journal of Alloys and Compounds, 515 (2012) 149-153.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔