(34.229.64.28) 您好!臺灣時間:2021/05/06 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹其樺
研究生(外文):CHAN, CHI-HUA
論文名稱:企業採用雲端運算服務之發展現況及決策因素探討
論文名稱(外文):Analysis of Enterprise’s Adopting of Cloud Computing Service and the Decision-making Factors
指導教授:蘇宜芬蘇宜芬引用關係
指導教授(外文):SU, YI-FEN
口試委員:蘇宜芬葛廷斌陳明賢
口試委員(外文):SU, YI-FENGE, TING-BINCHEN, MING-HSIEN
口試日期:2017-06-09
學位類別:碩士
校院名稱:明新科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:雲端運算服務TOE架構資訊科技採用
外文關鍵詞:Cloud computing serviceTOE FrameworkIT adoption
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著近幾年的發展,雲端運算服務儼然成為企業採用資訊科技的主流,產官學界也持續看好其發展性。但根據過往相關研究與報導顯示台灣地區的企業採用雲端運算服務尚未達到普及程度,為了找出關鍵影響因素,本研究以科技-組織-環境架構 (Technology-Organization-Environment Framework, TOE Framework),以理論基礎分為三大構面來探討企業對雲端運算服務之採用與決策,分別為科技面 (Technology) 、組織面 (Organization) 以及環境面 (Environment)。科技面提出成本認知效益與安全性認知障礙兩部分,組織面提出高階主管支持,環境面則提出外部壓力、政府政策及資訊供應商配合。本研究透過問卷發放的方式調查並以台灣地區企業為主要研究對象及樣本蒐集的對象,共回收78份有效問卷。從樣本敘述性統計部分得知,企業規模主要以中大型企業居多,且填答者主要為企業內部的資訊人員,另外在企業雲端化的情況能夠得知,已採用(計畫採用)與未採用(不確定是否採用)雲端運算服務的企業分別占總樣本數57.7% 及42.3%,說明目前企業採用雲端運算服務的比例並不高,且採用(計畫採用)之類型也較偏向於普及且日常的雲端運算服務,也就是說目前企業對雲端運算服務還存有疑慮,因此也不願將重要營運及財務等資訊佈署於雲端環境中。在假設檢定的部分,本研究以迴歸分析衡量自變項與依變項的關係,發現成本認知效益、安全性認知障礙及政府政策對於企業採用雲端運算服務的影響因素中達到顯著影響。本研究期望透過研究結果提出相關建議,以供未來企業與雲端供應商在雲端化方面能夠有參考方向。
Cloud computing service has become a trend recently. There are lot of information service providers launch the cloud computing-based services. According to past research found that Taiwan's enterprises in the use of cloud computing services are not common yet. This research explores the decision-making factors of the adoption of cloud computing services by the technology-organization-environment architecture (TOE). At the technology level, came up with cost recognition benefit facet and safety cognitive disorder facet. At the organization level, came up with senior executive support facet. At the environment level, came up with external pressure facet、government policy facet and the cooperation of information provider facet. This study use the questionnaire survey method and data collection is from Taiwan enterprises as the main research object. There were 78 usable responses obtained. The research result shows enterprise scale to medium and large majority, and the fillers are the most information providers. In addition, the enterprises have used and not used cloud computing are accounts for 57.7% and 42.3% of the sample. The result has proved the willingness of using cloud computing is not high. The use of cloud computing type bias to the daily and universal which means that there is doubt about cloud computing. Most of the enterprise doesn’t want keep the important company information to the cloud. Through the regression analysis, the result shows cost recognition benefit facet、safety cognitive disorder facet and government policy facet which are the most significant factors. This result shed light on companies and information technology service providers for cloud computing adoption.
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究流程 2
第二章 文獻探討 5
2.1 雲端運算 5
2.1.1 雲端運算定義與特性 5
2.1.2 企業採用雲端服務之效益與挑戰 10
2.1.3 企業雲端化 15
2.2 科技採用之文獻探討 17
2.2.1 科技採用之相關理論架構 17
2.2.2 影響組織採用資訊科技之相關因素 20
2.3 科技-組織-環境 (TOE) 架構 21
2.3.1 科技-組織-環境 (TOE) 架構概述 21
2.3.2 科技-組織-環境 (TOE) 架構文獻探討 24
2.4 小結 25
第三章 研究方法 26
3.1 研究架構 26
3.2 研究假設 27
3.3 研究問卷設計 30
3.4 研究對象 32
3.5 問卷進行方式 32
3.6 資料分析方法 33
第四章 資料分析與討論 35
4.1 問卷回收狀況 35
4.2 樣本敘述性統計 35
4.3 問卷敘述性統計 41
4.4 問卷信度及效度分析 45
4.5 皮爾森相關分析 48
4.6 假設檢定 49
4.7 研究結果討論 52
第五章 結論與建議 55
5.1 研究結論 55
5.2 管理意涵 56
5.3 研究限制與未來研究建議 57
參考文獻 58
附錄 研究問卷 67

1.中央社 (2017),WanaCrypt0r 2.0 勒索病毒肆虐殃及台灣-重點一次看,科技新報,2017年5月15日,取自: http://technews.tw/2017/05/13/wannacry-status/。
2.王鵬 (2009),走進雲端運算,台北市: 佳魁資訊。
3.行政院科技會報辦公室 (2010),“雲端運算發展方案”,行政院科技會報, 2016年7月4日,取自: http://www.bost.ey.gov.tw/Upload/RelFile/1033/3070/67006566-3804-46f4-bd8c-be079a159d89.pdf。
4.李芳榮 (2010),資訊技術治理對企業雲端運算服務導入意願的影響及其干擾項,銘傳大學資訊管理系碩士在職專班論文。
5.林宜隆 (2015),“雲端安全化及雲端鑑識化之新思維與新趨勢-雲端應用化,也要雲端安全化”,台網中心電子報,2017年2月8日,取自: http://www.myhome.net.tw/2015_08/p02.htm。
6.林彥廷 (2010),醫療資訊系統導入與發展的研究以台北某區域醫院為個案,台北市: 世新大學資訊管理學研究所(含碩專班) 碩士學位論文。
7.國際數據資訊IDC (2016),“2017年台灣ICT市場十大趨勢預測”,2017年1月3日,取自: http://www.idc.com.tw/about/495.html。
8.國際數據資訊IDC (2008),“2007下半年台灣資訊科技服務(IT Services)市場營收達9.61億美元;綠色IT, 虛擬化等解決方案將帶動軟體服務市場成長”,IDC官方網站,2016年7月10日,取自: http://www.idc.com.tw/about/6.html。
9.許陳候 (2011),企業運用雲端運算的關鍵因素探討,國立中山大學管理學院高階經營碩士班論文。
10.張馨文 (2013),企業採用雲端運算之因素,國立東華大學會計與財務碩士學位學程論文。
11.郭斯彥 (2011),“雲端運算-資訊科技成熟下的委外產物”,臺大校友雙月刊,第七十二期,9-15頁。
12.陳俊翰 (2010),新型態資訊科技基礎建設-組織對私有雲端運算採用之認知因素研究,國立台灣大學資訊管理學系碩士論文。
13.陳敬恆 (2012),企業導入雲端運算策略模式之研究,輔仁大學資訊管理學系碩士在職專班論文。
14.陳瀅 (2010),雲端策略:雲端運算與虛擬化技術,台北市:天下雜誌。
15.彭秀琴、張念慈 (2011),“雲端運算下資訊安全之探討”,行政院經濟建設委員會研究報告,172-192頁。
16.童昱傑 (2013),影響企業將雲端運算技術導入商業模式之關鍵因素探討,逢甲大學科技管理研究所碩士學位論文。
17.黃正欣 (2010),探討影響企業導入B2B交易平台因素之研究,國立高雄第一科技大學行銷與流通管理系碩士論文。
18.黃彥棻 (2015),“索尼影業遭駭事件始末大剖析”,iThome官網,2016年4月27日,取自: http://www.ithome.com.tw/news/93457。
19.黃重憲 (2009),“淺談雲端運算”,國立台灣大學計算機及資訊網路中心電子報,2016年6月25日,取自: http://www.cc.ntu.edu.tw/chinese/epaper/0008/20090320_8008.htm。
20.黃興進、韓懷恩、郭光明、鄭嘉挺 (2011),以糖尿病為例探討影響醫院建置個人健康紀錄入口網站之關鍵因素-資訊人員之觀點,資訊管理學報,第19卷,第2期,407-437頁。
21.經濟部中小企業處 (2015),“中小企業認定標準”,2017年4月5日,取自: http://www.moeasmea.gov.tw/ct.asp?xItem=672&ctNode=214。
22.經濟部技術處 (2010) ,“發展雲端科技”,2016年8月13日,取自: http://www.moea.gov.tw/ad/Ad01/content/ContentDetail.aspx?menu_id=3707。
23.資策會MIC (2013a),“資通訊服務產業年鑑-雲端運算篇”,臺北:經濟部技術處。
24.資策會MIC (2013b),“全球雲端運算資訊安全發展趨勢”,資策會官網, 2017年2月18日,取自: http://www.mic.iii.org.tw/aisp/reports/reportdetail_register.asp?docid=3027&rtype=freereport#。
25.趙子仲 (2004),跨組織資訊系統採用及擴展因素之研究,國立中央大學資訊管理學系碩士論文。
26.鐘嘉德、高天助、楊嘉栩 (2010),“雲端運算與產業發展”,研考雙月刊, 第34卷,第4期,20-31頁。
27.Ajzen, I. & Madden, T. (1986). “Prediction of goal-directed behavior: attitude, intentions, and perceived behavioral control”, Journal of Experimental Social Psychology, Vol. 22, No. 5, pp. 453-474.
28.Ajzen, I. (1985). “From intentions to actions: A theory of planned behavior”, In Antonopoulos, Kuhl, J., & Beckman, J., (Eds.), Action Control: From Cognition to Behavior. Heidelberg: Springer.
29.Ajzen, I., & Fishbein, M. (1980). “Understanding attitudes and predicting social behavior”, NJ: Prentice-Hall.
30.Aldhizer, G. R., & Bowles, J. R. (2011) “Mitigating the growing threat to sensitive data: 21st century mobile devices”, The CPA Journal, Vol. 81, No. 5, pp. 58-63.
31.Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. & Brandic, I. (2009). “Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility”, Future Generation Computer Systems, Vol. 25, No. 6, pp. 599-616.
32.Carlin, S., & Curran, K. (2011). “Cloud computing security”, International Journal of Ambient Computing and Intelligence, Vol. 3, No. 1, pp. 38-46.
33.Chan, S. C. H. & Ngai E. W. T. (2007). “A qualitative study of information technology adoption: how ten organizations adopted web-based training”, Information Systems Journal, Vol. 17, No. 3, pp. 289-315.
34.Chen, L. (2010). “Business-IT alignment maturity of companies in China”, Information and Management, Vol. 47, No. 1, pp. 9-16.
35.Chwelos, P., Benbasat, I., & Dexter, A. S. (2001). “Research report: Empirical test of an EDI adoption model”, Information Systems Research, Vol. 12, No. 3, pp. 304-321.
36.Cloud Security Alliance. (2013). “The notorious nine cloud computing top threats in 2013”, Retrieved on February 1, 2017, from https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf.
37.Daryl, C. P., David, M. S., Thomas, J. B., David, W. C., David, J. C., Donna, S., Rakesh, K., & Bruce, R. (2009). Five refining attributes of public and private cloud computing, Stamford, CT: Gartner.
38.Davis, F. D. (1989). “Perceived usefulness, perceived ease of use, and user acceptance of information technology”, MIS Quarterly, Vol. 13, No. 3, pp. 319-340.
39.Dennis, A. R., Wixom, B. H. & Vandenberg, R. J. (2001). “Understanding fit and appropriation effects in group support systems via meta-analysis”, MIS Quarterly, Vol. 25, No. 2, pp. 167-193.
40.Fichman, R. G., & Kemerer, C. F. (1997). “The assimilation of software process innovations: An organizational learning perspective”, Management Science, Vol. 43, No. 10, pp. 1345-1363.
41.Gatignon, H., & Robertson, T. S. (1989). “Technology diffusion: An empirical test of competitive effects”, Journal of Marketing, Vol. 53, No. 1, pp. 35-49.
42.Gutierrez, A., Boukrami, E., & Lumsden, R. (2015). “Technological, organizational and environmental factors influencing managers’ decision to adopt cloud computing in the UK”, Journal of Enterprise Information Management, Vol. 28, No. 6, pp. 788-807.
43.Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis with reading, (3rd ed.) New York: Macmillan Publishing Company.
44.Ho, K. C., Hui, P. C. L., Tao, X. & Yeung, P. K. W. (2003). “Measuring the technological development of the textiles and clothing industry in Hong Kong”, International Journal of Services Technology and Management, Vol. 4, No. 3, pp. 255-286.
45.Hutchings, A., Smith, R. G., & James, L. (2013). “Cloud computing for small business: Criminal and security threats and prevention measures”, Trends & Issues in Crime and Criminal Justice, No.456, Australian Institute of Criminology, May 2013.
46.Iyer, B., & Henderson, J. C. (2010). “Preparing for the future: understanding the seven capabilities of cloud computing”, MIS Quarterly Executive, Vol. 9, No. 2, pp. 117-131.
47.Jeon, B. N., Han, K. S. & Lee, M. J. (2006). “Determining factors for the adoption of e-business: the case of SMEs in Korea”, Applied Economics, Vol. 38, No. 16, pp. 1905-1916.
48.Kaiser, H. (1974). “An index of factorial simplicity”, Psychometrika, Vol. 39, pp. 31-36.
49.Karahanna, E., Agarwal, R. & Angst, C.M. (2006). “Reconceptualizing compatibility beliefs in technology acceptance research”, MIS Quarterly, Vol. 30, No. 4, pp. 781-804.
50.Khoumbati, K., Themistocleous, M. & Irani, Z. (2006). “Evaluating the adoption of enterprise application integration in health-care organizations”, Journal of Management Information Systems, Vol. 22, No. 4, pp. 69-108.
51.Kim, S. & Garrison, G. (2010). “Understanding users’ behaviors regarding supply chain technology: determinants impacting the adoption and implementation of RFID technology in South Korea”, International Journal of Information Management, Vol. 30, No. 5, pp. 388-398.
52.Kuan, K. K. Y., & Chau, P. Y. K. (2001). “A perception-based model for EDI adoption in small businesses using a technology-organization-environment framework”, Information & Management, Vol. 38, No. 8, pp. 507-521.
53.Kwon, T. H. & Zmud, R. W. (1987). “Unifying the fragmented models of information systems implementation”, in Antonopoulos, Hirschheim, R. (Eds.), Critical Issues in Information Systems Research, New York: Wiley.
54.Kwong, S. W. & Park, J. (2008). “Digital music services: consumer intention and adoption”, Service Industries Journal, Vol. 28, No. 10, pp. 1463-1481.
55.Lee, T. (2007). “Nurses’ experiences in using a nursing information system: early stage of technology implementation”, CIN: Computers, Informatics, Nursing, Vol. 25, No. 5, pp. 294-300.
56.Lertwongsatien, C., & Wongpinunwatana, N. (2003). “E-commerce adoption in Thailand: An empirical study of small and medium enterprises (SMEs)”, Journal of Global Information Technology Management, Vol. 6, No. 3, pp. 67-83.
57.Lim, K. H., Sia, C. L., Lee, M. K. O. & Benbasat, I. (2006). ”Do I trust you online, and if so, will I buy? An empirical study of two trust-building strategies”, Journal of Management Information Systems, Vol. 23, No. 2, pp. 233-266.
58.Linthicum, D. S. (2009). Cloud computing and SOA convergence in your enterprise: A step-by-step guide, Addison-Wesley Professional.
59.Lu, J., Yu, C. S., Liu, C., & Yao, J. E. (2003). “Technology acceptance model for wireless internet”, Internet Research: Electronic Networking Applications and Policy, Vol. 13, No. 3, pp. 206-222.
60.Marsan, C. D. (2008). “The Google-ization of Bechtel”, Retrieved on March19, 2016, from http://www.networkworld.com/article/2276889/data-center/the-google-ization-of-bechtel.html.
61.Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). “Cloud computing-The business perspective”, Decision Support Systems, Vol. 51, No. 1, pp. 176-189.
62.Moore, G. C., & Benbasat, I. (1991). “Development of an instrument to measure the perceptions of adopting an information technology innovation”, Information Systems Research, Vol. 2, No. 3, pp. 192-222.
63.National Institute of Standards and Technology. (2009). “The NIST definitionof cloud computing v15”, Retrieved on March 10, 2016, from http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf.
64.Nunnally, J. C. (1978). Psychometric theory, New York: McGraw Hill.
65.Ramgovind, S., Eloff, M. M., & Smith, E. (2010). “The management of security in cloud computing”, In PROC 2010 IEEE International Conference on Cloud Computing.
66.Randall, D. M. & Gibson, A. M. (1990). “Methodology in business ethical research: A review and critical assessment”, Journal of Business Research, Vol. 9, No. 6, pp. 457-471.
67.Rashmi, Dr. S., Mehfuz, & Dr. G., Sahoo. (2012). “A five-phased approach for the cloud migration”, International Journal of Emerging Technology and Advanced Engineering, Vol. 2, No. 4, pp. 286-291.
68.Rogers, E. M. (1962). Diffusion of Innovation, New York: Free Press.
69.Ryu, S., Ho, S. H., & Han, I. (2003). “Knowledge sharing behavior of physicians in hospitals”, Expert Systems with Applications, Vol. 25, No. 1, pp. 113-122.
70.Sultan, N. (2010). “Cloud computing for education: A new dawn?” International Journal of Information Management, Vol. 30, No. 2, pp. 109-116.
71.Sysfore Technologies. (2011). “Migrating your application to the cloud”, Retrieved on February 15, 2017, from http://www.sysfore.com/Assets/PDF/Migrate_Your_Application_To_The_Cloud.pdf.
72.Talukder, A. K., Zimmerman, L. & Prahalad, H. A. (2010). “Cloud economics: principles, costs, and benefits”, in Antonopoulos, N. & Gillam, L. (Eds.), Cloud computing, pp. 343-360, London: Springer.
73.Tanenbaum, W. A., & Armstrong, A. (2010). “Green technology law and business 2010: legislation, financing, carbon trading and sustainability”, PLI No. 22737, January, pp. 272.
74.Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). “The process of technological innovation”, Lexington, Mass: Lexington Books.
75.Wang, Y. M., Wang, Y. S., & Yang, Y. (2010). “Understanding the determinants of RFID adoption in the manufacturing industry”, Technological Forecasting & Social Change, Vol. 77, No. 5, pp. 803-815.
76.Yi, M. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). “Understanding information technology acceptance by individual professionals: toward an integrative view”, Information & Management, Vol. 43, No. 3, pp. 350-363.
77.Zhu, K., Kraemer, K., & Xu, S. (2003). “Electronic business adoption by European firms: a cross-country assessment of the facilitators and inhibitors”, European Journal of Information Systems, Vol. 12, No. 4, pp. 251-268.
78.Zhu, Y., & Li, Y. (2010). “What leads to post-implementation success of ERP? An empirical study of the Chinese retail industry”, International Journal of Information Management, Vol. 30, pp. 265-276.

電子全文 電子全文(網際網路公開日期:20220501)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔