跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江俊穎
研究生(外文):CHIANG, CHUN-YING
論文名稱:高性能可拉伸式有機太陽能電池
論文名稱(外文):High-Performance Stretchable Organic Photovoltaics
指導教授:陳志平陳志平引用關係
指導教授(外文):CHEN, CHIH-PING
口試委員:孫亞賢游洋雁陳志平
口試委員(外文):SUN, YA-SENYU, YANG-YENCHEN, CHIH-PING
口試日期:2017-06-28
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:有機太陽能電池可拉伸式光伏聚二甲基矽氧烷3M膠帶
外文關鍵詞:Organic Solar cellStretchablePhotovoltaicPDMS3M elastomer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究,成功的在polydimethylsiloxane (PDMS)及3M彈性體上製作出高效能有機太陽能電池,我們選擇可拉伸延展性的材料,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)添加Zonyl作為下電極,Gallium-indium eutectic (EGaIn)作為上電極,主動層使用poly[[4,8-bis[(2-ethylhexyl)oxbenzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4-b] thiophenediyl ]] : [6,6]-phenyl-C70-butyric-acid-methyl-ester (PTB7:PCBM)。在這結構中達成高功率轉換效率,並討論拉伸對於效率的影響,最佳優化的3M元件中開路電壓0.75V,電流密度12.79 mAcm−2,填充因子0.54,在一太陽光下的功率轉換效率為5.2%;PDMS元件中開路電壓0.71V,電流密度12.70 mAcm−2,填充因子0.41,在一太陽光下的功率轉換效率為3.5%。此外,可拉伸式太陽能電池元件經過50次20%伸長量的重覆拉伸可以維持80%的效率。
In this study, success fabricated the high efficiency organic solar on polydimethylsiloxane (PDMS) and 3M Tape ,we choose the stretchable polymer material, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) containing Zonyl to be bottom electrode ,Gallium-indium eutectic (EGaIn) to be top electrode, active layer is poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4-b] thiophenediyl ]] : [6,6]-phenyl-C70-butyric-acid-methyl-ester (PTB7:PCBM). In this structure achieve high power conversion efficiency (PCE), and also discussion stretching effect of PCE. The optimal 3M devices open-circuit voltage of 0.75V, short-circuit current density of 12.79 mAcm−2, fill factor of 0.54, and power conversion efficiency of 5.2% at 1 sun ; PDMS devices open-circuit voltage of 0.71V, short-circuit current density of 12.70 mAcm−2, fill factor of 0.41, and power conversion efficiency of 3.5% at 1 sun. In addition, the stretchable solar cells retained 80% of its original PCE after 50 cycles of stretching 20% strain.
目錄
明志科技大學碩士學位論文指導教授推薦書 I
明志科技大學碩士學位口試委員審定書 II
誌謝 III
中文摘要 IV
英文摘要 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池介紹與種類 3
1.2-1 矽晶太陽能電池 3
1.2-2 無機化合物半導體太陽能電池 5
1.2-3 有機太陽能電池 6
1.2-4 染料敏化太陽能電池 8
1.3 太陽能電池工作原理 9
1.3-1 開路電壓(Open Circuit Voltage, Voc) 12
1.3-2 短路電流(Short Circuit Current, Isc) 12
1.3-3 填充因子(Fill Factor, F.F.) 12
1.3-4 能量轉換效率(Power Conversion Efficiency, PCE) 13
1.4 太陽能光譜圖 13
第二章 文獻回顧與研究動機 15
2.1 文獻回顧 15
2.1-1 有機太陽能電池發展 16
2.1-2 可拉伸式基板 18
2.1-3 新型透明電極 20
2.1-4 添加劑對新型透明電極的影響 27
2.2 研究動機 30
第三章 實驗內容 31
3.1 實驗藥品 31
3.2-1 使用儀器 33
3.2-2 分析儀器 34
3.3 實驗流程圖 35
3.4 實驗步驟 37
第四章 結果與討論 39
4.1 光學性質分析 39
4.2 親疏水性分析 40
4.3 表面分析 41
4.4 伸長量對於表面形貌之影響 43
4.5 拉伸元件光電轉換效率分析 51
第五章 結論 54
參考文獻 55



圖目錄
圖1-1、全球太陽光電安裝量統計預測 2
圖1-2、全球風力發電安裝量統計預測 2
圖1-3、典型有機太陽能電池結構 8
圖1-4、染料敏化太陽能電池機制 9
圖1-5、太陽能電池機制 11
圖1-6、J-V曲線參數示意圖 11
圖1-7、太陽放射光譜圖 14
圖1-8、Air Mass示意圖 14
圖2-1、PTB7:PC71BM元件結構示意圖 16
圖2-2、施體型聚合物化學結構 17
圖2-3、可拉伸是有機太陽能電池製作流程示意圖 18
圖2-4、可拉伸式OLED製作示意圖 19
圖2-5、(a)為厚度對片電阻及穿透率的變化(b)ITO及PH1000-10%穿透率 20
圖2-6、可撓式透明電極彎曲測試 21
圖2-7、可撓式太陽能電池結構示意圖 22
圖2-8、大面積印刷可撓式太陽能電池 22
圖2-9、(a)未處理及(b)化學處理奈米銀線SEM表面形貌圖 23
圖2-10、(a)未處理及(b)物理處理奈米銀線SEM表面形貌圖 23
圖2-11、(a)奈米銀線元件結構示意圖(b)彎曲中元件J-V曲線圖 24
圖2-12、(a)PAP透明電極結構示意圖(b)PAP結構破壞性干涉示意圖 25
圖2-13、(a)ITO與PAP電極於不同彎曲半徑電性分析(b)ITO與PAP電極於1000次彎曲電性分析 25
圖2-14、未處理、氧電漿處理、氮電漿處理之PDMS水接觸角 26
圖2-15、浸泡測試、黏貼測試、震盪測試於PDMS其銀電極之影響 26
圖2-16、PDMS電極彎曲測試、沾黏測試及拉伸測試 27
圖2-17、(a)不同比例添加劑對抗拉模數的影響(b)不同比例添加劑產生裂痕的應變量 28
圖2-18、(a)不同比例添加劑片電阻變化(b)不同比例添加劑不同應變量下片電阻的影響 29
圖3-1、Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]結構式 31
圖3-2、[6,6]-phenyl C71 butyric acid methyl ester結構式 31
圖3-3、Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)結構式 32
圖3-4、3M Tape元件實驗流程圖 35
圖3-5、PDMS元件實驗流程圖 36
圖3-6、3M Tape元件結構圖 37
圖3-7、PDMS元件結構圖 38
圖4-1、3M elastomer、PDMS、PEDOT:PSS/PDMS、PEDOT:PSS/3M、UV-vis穿透光譜圖 39
圖4-2、水接觸角、二碘甲烷接觸角及表面能,上排分別為3M elastomer、PDMS、PDMS(氧電漿處理1分鐘)之水接觸角,下排分別為3M elastomer、PDMS、PDMS(氧電漿處理1分鐘)二碘甲烷接觸角 40
圖4-3、上排為AFM 3M elastomer/PEDOT:PSS(PH1000)粗糙圖及相圖,下排為AFM PDMS/PEDOT:PSS(PH1000)粗糙度及相圖 42
圖4-4、上排為AFM 3M elastomer/PEDOT:PSS(PH1000)/PTB7:PC71BM粗糙圖及相圖,下排為AFM PDMS/PEDOT:PSS(PH1000) /PTB7:PC71BM粗糙度及相圖 42
圖4-5、3M elastomer未預拉時,PEDOT:PSS(左排)、PTB7:PCB71M(右排)在拉伸量0%到20%時的OM圖 45
圖4-6、3M elastomer預拉10%時,PEDOT:PSS(左排)、PTB7:PCB71M(右排)在拉伸量0%到20%時的OM圖 46
圖4-7、3M elastomer預拉20%時,PEDOT:PSS(左排)、PTB7:PCB71M(右排)在拉伸量0%到20%時的OM圖 47
圖4-8、PDMS未預拉時,PEDOT:PSS(左排)、PTB7:PCB71M(右排)在拉伸量0%到20%時的OM圖 48
圖4-9、PDMS預拉10%時,PEDOT:PSS(左排)、PTB7:PCB71M(右排)在拉伸量0%到20%時的OM圖 49
圖4-10、PDMS預拉20%時,PEDOT:PSS(左排)、PTB7:PCB71M(右排)在拉伸量0%到20%時的OM圖 50
圖4-11、PDMS及3M元件之J-V曲線圖 52
圖4-12、3M elastomer元件重複拉伸50次20%之J-V曲線圖 53


表目錄
表1-1、各類太陽能電池效率總表 5
表2-1、PTB7-Th在不同比例PC71BM下之最佳效率 36 17
表2-2、PffBT4T-2OD衍生物與不同碳材之最佳效率 37 17
表2-3、可撓式太陽能電池最佳效率 22
表2-4、有機太陽能電池彎曲半徑對於效率之影響 24
表4-1、最佳化PDMS及3M元件之效率 52
表4-2、3M elastomer元件重複拉伸50次20%之效率 53


1.經濟能源農業處 全球綠色能源發展趨勢. http://www.ey.gov.tw/policy9/cp.aspx?n=B9C5E550F0D6C668.
2.Becquerel, A., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes rendus de lÁcademie des sciences 1839, 9, 145-149.
3.Chapin, D. M.; Fuller, C.; Pearson, G., A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 1954, 25 (5), 676-677.
4.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications 2015, 23 (1), 1-9.
5.Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic solar cells. Advanced functional materials 2001, 11 (1), 15-26.
6.Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258 (5087), 1474-6.
7.Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G., Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 2009, 3 (11), 649-653.
8.Ghosh, A. K. F., T., Journal of Applied Physics 1978, 49, 5982-5989.
9.Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell. Applied Physics Letters 1996, 68 (22), 3120-3122.
10.He, M.; Jung, J.; Qiu, F.; Lin, Z., Graphene-based transparent flexible electrodes for polymer solar cells. Journal of Materials Chemistry 2012, 22 (46), 24254-24264.
11.Tang, C. W., Two‐layer organic photovoltaic cell. Applied Physics Letters 1986, 48 (2), 183-185.
12.Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270 (5243), 1789-1791.
13.Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4 (2), 145-153.
14.Dissanayake, D.; Roberts, B.; Ku, P.-C., Plasmonic backscattering enhanced inverted photovoltaics. Applied Physics Letters 2011, 99 (11), 113306.
15.Sunlight. https://en.wikipedia.org/wiki/Sunlight.
16.Hoppea, H.; Sariciftci, N. S., Organic solar cells: An overview. J. Mater. Res 2004, 19 (7), 1925.
17.Pastorelli, F.; Schmidt, T. M.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M.; Krebs, F. C., The Organic Power Transistor: Roll-to-Roll Manufacture, Thermal Behavior, and Power Handling When Driving Printed Electronics. Advanced Engineering Materials 2016, 18 (1), 51-55.
18.Gevorgyan, S. A.; Madsen, M. V.; Roth, B.; Corazza, M.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M.; Krebs, F. C., Lifetime of Organic Photovoltaics: Status and Predictions. Advanced Energy Materials 2016, 6 (2), 1501208.
19.Emmott, C. J. M.; Moia, D.; Sandwell, P.; Ekins-Daukes, N.; Hösel, M.; Lukoschek, L.; Amarasinghe, C.; Krebs, F. C.; Nelson, J., In-situ, long-term operational stability of organic photovoltaics for off-grid applications in Africa. Solar Energy Materials and Solar Cells 2016, 149, 284-293.
20.Wang, K.; Liu, C.; Meng, T.; Yi, C.; Gong, X., Inverted organic photovoltaic cells. Chem Soc Rev 2016, 45 (10), 2937-75.
21.McCoul, D.; Hu, W.; Gao, M.; Mehta, V.; Pei, Q., Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electronic Materials 2016, 2 (5), 1500407.
22.Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z., Stretchable Organic Solar Cells. Advanced materials 2011, 23 (15), 1771-1775.
23.Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. L., Recent Progress in Electronic Skin. Advanced Science 2015, 2 (10), 1500169.
24.Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S., Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 2012, 3, 770.
25.Kang, H.; Jung, S.; Jeong, S.; Kim, G.; Lee, K., Polymer-metal hybrid transparent electrodes for flexible electronics. 2015, 6, 6503.
26.Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L., Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem Rev 2015, 115 (23), 12666-731.
27.Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H., Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy 2016, 1, 15027.
28.Chen, S.; Lee, K. C.; Zhang, Z.-G.; Kim, D. S.; Li, Y.; Yang, C., An Indacenodithiophene–Quinoxaline Polymer Prepared by Direct Arylation Polymerization for Organic Photovoltaics. Macromolecules 2016, 49 (2), 527-536.
29.Savagatrup, S.; Printz, A. D.; O'Connor, T. F.; Zaretski, A. V.; Rodriquez, D.; Sawyer, E. J.; Rajan, K. M.; Acosta, R. I.; Root, S. E.; Lipomi, D. J., Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy & Environmental Science 2015, 8 (1), 55-80.
30.Chortos, A.; Koleilat, G. I.; Pfattner, R.; Kong, D.; Lin, P.; Nur, R.; Lei, T.; Wang, H.; Liu, N.; Lai, Y.-C.; Kim, M.-G.; Chung, J. W.; Lee, S.; Bao, Z., Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced materials 2016, 28 (22), 4441-4448.
31.Lee, H.; Kim, M.; Kim, I.; Lee, H., Flexible and Stretchable Optoelectronic Devices using Silver Nanowires and Graphene. Advanced materials 2016, 28 (22), 4541-4548.
32.Guo, C. F.; Chen, Y.; Tang, L.; Wang, F.; Ren, Z., Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes. Nano Letters 2016, 16 (1), 594-600.
33.Vosgueritchian, M.; Lipomi, D. J.; Bao, Z., Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Advanced Functional Materials 2012, 22 (2), 421-428.
34.He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics 2012, 6 (9), 591-595.
35.He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y., Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics 2015, 9 (3), 174-179.
36.Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H., Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature communications 2014, 5, 5293.
37.Yin, D.; Feng, J.; Ma, R.; Liu, Y.-F.; Zhang, Y.-L.; Zhang, X.-L.; Bi, Y.-G.; Chen, Q.-D.; Sun, H.-B., Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. 2016, 7, 11573.
38.Liu, T.; Zuo, L.; Ye, T.; Wu, J.; Xue, G.; Fu, W.; Chen, H., Low temperature processed ITO-free perovskite solar cells without a hole transport layer. RSC Advances 2015, 5 (115), 94752-94758.
39.Na, S. I.; Kim, S. S.; Jo, J.; Kim, D. Y., Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced materials 2008, 20 (21), 4061-4067.
40.Meng, W.; Ge, R.; Li, Z.; Tong, J.; Liu, T.; Zhao, Q.; Xiong, S.; Jiang, F.; Mao, L.; Zhou, Y., Conductivity enhancement of PEDOT: PSS films via phosphoric acid treatment for flexible all-plastic solar cells. ACS applied materials & interfaces 2015, 7 (25), 14089-14094.
41.Liu, K.; Larsen-Olsen, T. T.; Lin, Y.; Beliatis, M.; Bundgaard, E.; Jørgensen, M.; Krebs, F. C.; Zhan, X., Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems. Journal of Materials Chemistry A 2016, 4 (3), 1044-1051.
42.Lu, H.; Zhang, D.; Cheng, J.; Liu, J.; Mao, J.; Choy, W. C., Locally Welded Silver Nano‐Network Transparent Electrodes with High Operational Stability by a Simple Alcohol‐Based Chemical Approach. Advanced Functional Materials 2015, 25 (27), 4211-4218.
43.Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T. T.; Aso, Y.; Suganuma, K., Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research 2011, 4 (12), 1215-1222.
44.Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W., Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS applied materials & interfaces 2011, 3 (10), 4075-4084.
45.Li, C.-Y.; Liao, Y.-C., Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment. ACS applied materials & interfaces 2016, 8 (18), 11868-11874.
46.Savagatrup, S.; Chan, E.; Renteria‐Garcia, S. M.; Printz, A. D.; Zaretski, A. V.; O'Connor, T. F.; Rodriquez, D.; Valle, E.; Lipomi, D. J., Plasticization of PEDOT: PSS by common additives for mechanically robust organic solar cells and wearable sensors. Advanced Functional Materials 2015, 25 (3), 427-436.
47.Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393 (6681), 146-149.

電子全文 電子全文(網際網路公開日期:20221231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊