跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/14 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江炳煌
研究生(外文):JIANG BING-HUANG
論文名稱:(一)不同側鏈的共軛高分子對於有機太陽能電池 性能之影響(二)藉由界面工程提升倒置有機太陽能電池的性能
論文名稱(外文):1. The Effect of Side Chain on Organic Solar Cell Performanceof Conjugated Polymers2. Enhanced the Performance of Inverted Organic Photovoltaics by Interfacial Engineering
指導教授:陳志平陳志平引用關係
指導教授(外文):CHEN CHIH-PING
口試委員:孫亞賢游洋雁
口試委員(外文):SUN YA-SENYU YANG-YEN
口試日期:2017-06-28
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:共軛高分子界面層有機太陽能電池
外文關鍵詞:Conjugated polymersInterfacial layerOrganic photovoltaic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文第一部分,搭配不同共軛受體單元已經成為改變共軛高分子能階的好方法。在此,我們發現四種以indacenodithiophene(IDT)為主體的施體受體交錯共軛高分子。藉由搭配上不同受體單元( difluorobenzothiadizole: PIDTHT-FBT, difluoroquinoxaline: PIDTHT-QF, dicyanoquinoxaline PIDTHT-QCN, diketopyrrolopyrrole : PIDTHT-DPP) 來研究不同受體單元對IDT高分子的光電性能(吸收光譜、能級、空穴遷移率)和太陽能電池元件性能的影響。導入n -hexylthiophene鏈段,我們觀察到高分子的有更深的最高佔據分子軌道(HOMO)能階。我們也觀察到以PIDTHT-QF高分子作為電子施體的元件其最佳光電轉換效率(PCE)為5.2%。我們的研究結果表明具有合適受體單元的IDT高分子是非常有潛力的主動層材料。
第二部分則是發現將Jeffamines(工業聚醚胺衍生物)作為界面層(IFL)可以有效提高有機太陽能電池(OPV)的性能。我們使用了具有單胺或二胺結構與不同比例的環氧丙烷(PO)及環氧乙烷(EO)的四種Jeffamine 作為有機太陽能電池的陰極修飾層。 Jeffamine 可以修飾ZnO 的性能,改善了電子傳輸與提取的能力,從而使ZnO 層成為更有效的電子傳輸層。結構為玻璃/銦錫氧化物(ITO)/ ZnO(含或不含Jeffamine)/ PTB7:PC71BM / MoO3 / Ag 的倒置有機太陽能電池在AM 1.5G 太陽光(1000Wm-2)照明下的光電轉換效率(PCE)從8.1±0.49 增加到8.6±0.32%,其中含有Jeffamine-D2000 元件最佳的有機太陽能電池元件其效率可達9.1%,並表現出特別高的FF 為74.2%。

In the first part of this study, we know that the conjugated side chain has been regonized as a good way to change the energy levels of conjugated polymers. Here, we found four indacenodithiophene (IDT) based side chain conjugated donor-acceptor alternating polymers. Various acceptors units (difluorobenzothiadizole: PIDTHT-FBT, difluoroquinoxaline: PIDTHT-QF, dicyanoquinoxaline PIDTHT-QCN, diketopyrrolopyrrole : PIDTHT-DPP) were introduced to investigate the effect of conjugated side chains on their optoelectronic (absorption spectra, energy levels, space charge limited current (SCLC) hole mobility,) and organic photovoltaic (OPV) properties. We observed the deeper highest occupied molecular orbital (HOMO) energy levels of polymers when incorporated the alkyl−thiophene side chain. We observed the best power conversion efficiency(PCE) of 5.2% for this type of PIDTHT-QF based device. Our findings suggest that side chain conjugated (or called 2−Diminsional) IDT polymers with suitable electron-withdrawing groups are promising photovoltaic materials.
For the second part of this study, we have found that interfacial layers (IFLs) based on Jeffamines (industrial polyetheramine derivatives) can improve the performance of organic photovoltaics (OPVs). We evaluated four different Jeffamines (average molecular weight: 2000 g mol–1)—M2005, M2070, D2000, and ED-2003—having either a monoamine or diamine structure and various ratios of propylene oxide (PO) and ethylene oxide (EO) for their suitability as IF materials for OPV applications. The presence of the Jeffamine altered the work function of ZnO and improved the electron transport, thereby causing the ZnO layers to function more efficiently as electron-selective electrodes. The power conversion efficiencies (PCEs) of inverted devices having the layered configuration glass/indium tin oxide (ITO)/ZnO (with or without the Jeffamine)/PTB7:PC71BM/MoO3/Ag increased from 8.1 ± 0.49 to 8.6 ± 0.32% when containing the Jeffamine-D2000 under illumination with AM 1.5G solar light (1000 W m–2), the result of a significantly increased fill factor (FF). The greatest OPV performance was that of the device incorporating Jeffamine-D2000—a PCE of 9.1% and a remarkable FF of 74.2%.

目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vii
表索引 x
圖索引 xi
Part Ⅰ
不同側鏈的共軛高分子對於有機太陽能電池性能之影響 1
第一章緒論 2
1-1 前言 2
1-2 有機太陽能電池簡介 4
1-2-1 有機太陽能電池優勢 4
1-2-2 元件結構 5
1-2-3 發電原理 7
1-2-4 光電轉換效率定義 8
1-2-5 提升光電轉換效率(材料) 9
1-3 文獻回顧 11
1-3-1 IDT共軛高分子 11
1-3-2 不同受體單元 12
1-4 研究動機及目的 19
第二章 實驗 20
2-1 實驗設計 20
2-2性質分析 21
2-2-1 材料基本性質分析 21
2-2-2 光電性質分析 22
2-2-3 表面型態分析 22
2-2-4 電性質分析 23
2-3 實驗步驟 24
2-3-1 有機太陽電池元件製備 24
2-3-2 表面型態分析試片製備 25
2-3-3 載子遷移率分析試片製備 25
第三章 結果與討論 26
3-1 材料基本性質 26
3-2 光電性質分析 29
3-3 表面型態分析 31
3-4 電性質分析 33
第四章 結論 34
第五章 參考文獻 35
Part Ⅱ
藉由界面工程提升倒置有機太陽能電池的性能 38
第一章 緒論 39
1-1 提升光電轉換效率(工程) 39
1-2 文獻回顧 40
1-3 研究動機及目的 48
第二章 實驗 49
2-1 實驗設計 49
2-2 性質分析 49
2-2-1 表面型態分析 49
2-2-2 光電性質分析 50
2-2-3 電性質分析 51
2-3 實驗步驟 52
2-3-1 有機太陽電池元件製備 52
2-3-2 表面型態分析試片製備 53
2-3-3 載子遷移率分析試片製備 53
第三章 結果與討論 55
3-1 表面型態分析 55
3-2 光電性質分析 56
3-3 主動層型態分析 59
3-4 電性質分析 61
第四章 結論 63
第五章 參考文獻 64
表索引
Part Ⅰ
不同側鏈的共軛高分子對於有機太陽能電池性能之影響
表2- 1 高分子最佳效率的實驗條件 24
表3- 1不同IDT衍生高分子的基本性質 26
表3- 2不同IDT衍生高分子的光電轉換效率 30
Part Ⅱ
藉由界面工程提升倒置有機太陽能電池的性能
表2- 1 Jeffamine界面層製程參數 52
表3- 1 ZnO有無界面層的接觸角與表面能數據 55
表3- 2 不同界面層的光電轉換效率 58
圖索引
Part Ⅰ
不同側鏈的共軛高分子對於有機太陽能電池性能之影響
圖 1 1 全球能源結構變遷至2100年[1] 2
圖 1 2 AM1.5示意圖 3
圖 1 3 各種太陽能電池量效率紀錄[2] 4
圖 1 4 元件結構示意圖(a)單層接面結構(b)雙層接面結構(c)混摻異質接面結構 5
圖 1 5 各式傳輸層材料對應能階 6
圖 1 6 元件結構圖示(a)傳統結構(b)倒置結構 6
圖 1 7有機太陽能電池發電機制示意圖 7
圖 1 8 元件特性示意圖 8
圖 1 9 phenylene-thiophene-phenylene(TPT)衍生結構[15] 11
圖 1 10 Indacenodithiop-hene (IDT)衍生高分子結構[16] 12
圖 1 11非規則交錯的IDT衍生高分子[17] 13
圖 1 12不同強度拉電子基的非規則交錯IDT衍生高分子[20] 14
圖 1 13搭配兩種拉電子基(DTQ&DPP)的非規則交錯IDT衍生高分子[21] 14
圖 1 14 IDT與BT施體-受體交錯衍生高分子[22] 15
圖 1 15 IDT與dithienobenzoquinoxaline and dithienobenzopyridopyrazine施體-受體交錯衍生高分子[23] 15
圖 1 16 IDT與FBT&DFBT施體-受體交錯衍生高分子[24] 16
圖 1 17 Indacenodithiophene (IDT)與DPP施體-受體交錯衍生高分子[25] 17
圖 1 18 Indacenodithiophene (IDT)與DTQx施體-受體交錯衍生高分子[26] 17
圖 1 19導入n -hexylthiophene側鏈IDT與BT施體-受體交錯衍生高分子[27] 18
圖 1 20 IDT與FQ施體-受體交錯衍生高分子[28] 18
圖 1 21本次實驗主動層內電子施體材料的高分子結構 19
圖 2 1實驗的元件結構示意圖 20
圖 3 1不同IDT衍生高分子的TGA曲線圖 27
圖 3 2 不同IDT衍生高分子的UV光譜圖 28
圖 3 3不同IDT衍生高分子的光電轉換效率圖 29
圖 3 4不同IDT衍生高分子的EQE圖譜 31
圖 3 5 PIDTHT-FBT混PC71BM的表面形貌及相圖 32
圖 3 6 PIDTHT-QF混PC71BM的表面形貌及相圖 32
圖 3 7 PIDTHT-QCN混PC71BM的表面形貌及相圖 32
圖 3 8 PIDTHT-DPP混PC71BM的表面形貌及相圖 33
Part Ⅱ
藉由界面工程提升倒置有機太陽能電池的性能
圖1-1 能化碳球修飾主動層與電極之介面[15] 40
圖1-2 聚電解質介面層修飾主動層與電極之介面[16] 41
圖1-3 不同離化端對於氧化物電極表面的修飾[17] 42
圖1-4 分子上離化端數量對於氧化物電極表面的修飾[18] 43
圖1-5 PFN修飾ITO製備出高效率有機太陽能電池[19] 44
圖1-6 PFN修飾ZnO製備出高效率有機太陽能電池[20] 45
圖1-7 PEI修飾PH1000製備出全高分子有機太陽能電池[21] 45
圖1-8 PEI修飾ZnO製備出高效率有機太陽能電池[22] 46
圖1-9 不同分子量的PEI對元件性能之影響[23] 47
圖1-10 不同厚度的PEIE對元件性能之影響[24] 47
圖1-11 OPV 元件示意圖; Jeffamine 的化學結構 48
圖3-1 ZnO有無界面層的表面形貌 56
圖3-2 不同界面層的光電轉換效率圖 57
圖3-3 不同界面層的IPCE圖譜 59
圖3-4 無界面層元件的主動層表面形貌及相圖 60
圖3-5 含M2005界面層元件的主動層表面形貌及相圖 60
圖3-6 含M2070界面層元件的主動層表面形貌及相圖 60
圖3-7 含D2000界面層元件的主動層表面形貌及相圖 61
圖3-8 含ED2003界面層元件的主動層表面形貌及相圖 61
圖3-9 有無界面層的電子遷移率斜率圖 62
圖3-10 有無界面層的紫外光電子能譜 62




part I
[1]. Solarwirtschaft.de http://www.solarwirtschaft.de
[2]. National Renewable Energy Laboratory https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[3]. Kearns, David, and Melvin Calvin. The photovoltaic effect and photoconductivity in laminated organic systems. Journal of Chemical Physics 1958, 29, UCRL--8441 .
[4]. Tang, Ching W. Two‐layer organic photovoltaic cell. Applied Physics Letters 1986, 48, 183-185.
[5]. Yu, Gang, et al. Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789.
[6]. Moon, Ji Sun, et al. “Columnlike” structure of the cross-sectional morphology of bulk heterojunction materials. Nano letters 2008, 9, 230-234.
[7]. Coakley, Kevin M., and Michael D. McGehee. Conjugated polymer photovoltaic cells. Chemistry of materials 2004, 16, 4533-4542.
[8]. Chueh, Chu-Chen, Chang-Zhi Li, and Alex K-Y. Jen. Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy & Environmental Science 2015, 8, 1160-1189.
[9]. Yip, Hin-Lap, and Alex K-Y. Jen. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy & Environmental Science 2012, 5, 5994-6011.
[10]. Wang, Kai, et al. Inverted organic photovoltaic cells. Chemical Society Reviews 2016, 45, 2937-2975.
[11]. Moliton, André, and Jean‐Michel Nunzi. How to model the behaviour of organic photovoltaic cells. Polymer International 2006, 55, 583-600.
[12]. Dennler, Gilles, and Niyazi Serdar Sariciftci. Flexible conjugated polymer-based plastic solar cells: from basics to applications. Proceedings of the IEEE 2005, 93, 1429-1439.
[13]. Scharber, Markus C., et al. Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency. Advanced materials 2006, 18, 789-794.
[14]. Li, Yongfang. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of Chemical Research 2012, 45, 723-733.
[15]. Wong, Ken-Tsung, et al. Syntheses and structures of novel heteroarene-fused coplanar π-conjugated chromophores. Organic letters 2006, 8, 5033-5036.
[16]. Chan, Shu-Hua, et al. Synthesis, characterization, and photovoltaic properties of novel semiconducting polymers with thiophene− phenylene− thiophene (TPT) as coplanar units. Macromolecules 2008, 41, 5519-5526.
[17]. Chen, Chih-Ping, et al. Low-bandgap poly (thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. Journal of the American Chemical Society 2008, 130, 12828-12833.
[18]. Chen, Yi-Chun, et al. Effective Light Harvesting of Tandem Polymer Solar Cell. Journal of Solar Energy Engineering 2010, 132, 021103.
[19]. Chan, Shu-Hua, et al. Morphology evolution of spin-coated films of poly (thiophene− phenylene− thiophene) and [6, 6]-phenyl-C71-butyric acid methyl ester by solvent effect. Macromolecules 2010, 43, 3399-3405.
[20]. Yu, Chao-Ying, et al. Thiophene/phenylene/thiophene-based low-bandgap conjugated polymers for efficient near-infrared photovoltaic applications. Chemistry of Materials 2009, 21, 3262-3269.
[21]. Tsai, Jung‐Hsun, et al. New thiophene‐phenylene‐thiophene acceptor random conjugated copolymers for optoelectronic applications. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 2351-2360.
[22]. Chen, Yi-Chun, et al. Low-bandgap conjugated polymer for high efficient photovoltaic applications. Chemical Communications 2010, 46, 6503-6505.
[23]. Zhang, Yong, et al. Synthesis, characterization, charge transport, and photovoltaic properties of dithienobenzoquinoxaline-and dithienobenzopyridopyrazine-based conjugated polymers. Macromolecules 2011, 44, 4752-4758.
[24]. Zhang, Yong, et al. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications 2011, 47, 11026-11028.
[25]. Sun, Ying, et al. Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. Journal of Materials Chemistry 2012, 22, 5587-5595.
[26]. Guo, Xia, et al. Influence of D/A ratio on photovoltaic performance of a highly efficient polymer solar cell system. Advanced Materials 2012, 24, 6536-6541.
[27]. Chen, Chih‐Ping, and Hsiang‐Lin Hsu. Increasing the Open‐Circuit Voltage in High‐Performance Organic Photovoltaic Devices through Conformational Twisting of an Indacenodithiophene‐Based Conjugated Polymer. Macromolecular rapid communications 2013, 34, 1623-1628.
[28]. Chen, Chih-Ping, Yi-Chun Chen, and Chao-Ying Yu. Increased open circuit voltage in a fluorinated quinoxaline-based alternating conjugated polymer. Polymer Chemistry 2013, 4, 1161-1166.
part II
[1]. Kim, Jin Young, et al. New Architecture for high‐efficiency polymer photovoltaic cells using solution‐based titanium oxide as an optical spacer. Advanced materials 2006, 18, 572-576.
[2]. Atwater, Harry A., and Albert Polman. Plasmonics for improved photovoltaic devices. Nature materials 2010, 9, 205-213.
[3]. Li, Gang, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature materials 2005, 4, 864-868.
[4]. Lee, Jae Kwan, et al. Processing additives for improved efficiency from bulk heterojunction solar cells. Journal of the American Chemical Society 2008, 130, 3619-3623.
[5]. Park, Sung Heum, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature photonics 2009, 3, 297-302.
[6]. Ma, Wanli, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005, 15, 1617-1622.
[7]. Liang, Zhiqiang, et al. ZnO cathode buffer layers for inverted polymer solar cells. Energy & Environmental Science 2015, 8, 3442-3476.
[8]. Liu, Jun-peng, Kwang-Leong Choy, and Xiang-hui Hou. Charge transport in flexible solar cells based on conjugated polymer and ZnO nanoparticulate thin films. Journal of Materials Chemistry 2011, 21, 1966-1969.
[9]. Hau, Steven K., et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Applied Physics Letters 2008, 92, 225.
[10]. Li, Weiping, et al. High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT: PSS Layer with Water-Containing Methanol. ACS Applied Materials & Interfaces 2016.
[11]. Xu, Cong, et al. A wide temperature tolerance, solution-processed MoO x interface layer for efficient and stable organic solar cells. Solar Energy Materials and Solar Cells 2017, 159, 136-142.
[12]. Xiao, Biao, Hongbin Wu, and Yong Cao. Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells. Materials Today 2015, 18, 385-394.
[13]. Yi, Chao, et al. Interfacial engineering for high performance organic photovoltaics. Materials Today 2016, 19, 169-177.
[14]. Yin, Zhigang, Jiajun Wei, and Qingdong Zheng. Interfacial materials for organic solar cells: recent advances and perspectives. Advanced Science 2016, 3, 1500362.
[15]. George, Zandra, et al. Two-in-one: cathode modification and improved solar cell blend stability through addition of modified fullerenes. Journal of Materials Chemistry A 2016, 4, 2663-2669.
[16]. Le, Thinh P., et al. Miscibility and acid strength govern contact doping of organic photovoltaics with strong polyelectrolytes. Macromolecules 2015, 48, 5162-5171.
[17]. Kang, Rira, Seung-Hwan Oh, and Dong-Yu Kim. Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells. ACS applied materials & interfaces 2014, 6, 6227-6236.
[18]. Lee, Byoung Hoon, et al. Multi‐Charged Conjugated Polyelectrolytes as a Versatile Work Function Modifier for Organic Electronic Devices. Advanced Functional Materials 2014, 24, 1100-1108.
[19]. He, Zhicai, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics 2012, 6, 591-595.
[20]. Lee, Eui Jin, et al. An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. Journal of Materials Chemistry C 2016, 4, 2463-2469.
[21]. Zhou, Yinhua, et al. A universal method to produce low–work function electrodes for organic electronics. Science 2012, 336, 327-332.
[22]. Woo, S.; Hyun Kim, W.; Kim, H.; Yi, Y.; Lyu, H.-K.; Kim, Y. 8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanolayer-Modified Inorganic Electron-Collecting Buffer Layers. Adv. Energy Mater. 2014, 4, 1301692.
[23]. Courtright, B. A. E.; Jenekhe, S. A. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability. ACS Appl. Mater. Interfaces 2015, 7, 26167−26175.
[24]. Li, P.; et al. High-Efficiency Inverted Polymer Solar Cells Controlled by the Thickness of Polyethylenimine Ethoxylated (PEIE) Interfacial Layers. Phys. Chem. Chem. Phys. 2014, 16, 23792−23799.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊