(3.239.33.139) 您好!臺灣時間:2021/02/27 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳振宇
研究生(外文):CHEN,ZHEN-YU
論文名稱:底渣合成中孔材料擔載鈀金屬觸媒對萘與甲苯催化氧化/吸附之研究
論文名稱(外文):Pd supported on mesoporous materials synthesized from bottom ash for the catalytic oxidation and adsorption of naphthalene and toluene
指導教授:劉禎淑
指導教授(外文):LIU, ZHEN-SHU
口試委員:林秋良劉宗宏
口試委員(外文):LIN, CHIOU-LIANGLIOU,TZONG-HOMG
口試日期:2017-01-12
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與安全衛生工程系環境工程碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:底渣中孔材料催化氧化甲苯
外文關鍵詞:Bottom ashMCM-41Catalytic oxidationNaphthaleneToluene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要將底渣合成之MCM-41擔載貴金屬鈀(Pd),評估其對萘(Naphthalene, Nap)與甲苯(Toluene, Tol)催化氧化/吸附之效能,並將Pd/MCM-41進行相關之物化分析(包括:BET、XRD、XPS、ICP、TGA、SEM、TEM),以釐清可能影響Pd/MCM-41催化效能之相關因子。另外,所探討之操作條件包括不同反應溫度(150、200及250°C)、不同Pd擔載量(0.25%、0.5%及1%)、不同Nap進流濃度(50 ppm、100 ppm及150 ppm)與不同甲苯濃度(250 ppm及500 ppm),而總氣體流量為500 sccm,含氧率為10%。結果指出,(1)催化溫度增加至250°C時,具有穩定的100%之Nap去除效果與90%的CO2產率,主要反應機制為催化作用;(2)不同擔載量之觸媒對Nap之去除率皆可達到100%;(3)反應溫度為250°C時,0.5%Pd/MCM-41對不同Nap進流濃度皆可達到100%的Nap去除率及100%的CO2產率;(4)在反應溫度為250°C時,100 ppm Nap分別加入250 ppm與500 ppm甲苯時,其催化效率皆可達到100 %,而CO2產率皆可超過90%。本研究證實,焚化底渣所合成之MCM-41可成功擔載鈀金屬,並有效應用於催化氧化Nap與甲苯,為焚化底渣之回收開啟另一條再利用途徑。
Pd supported on MCM-41 synthesized from bottom ash for the catalytic oxidation and adsorption of naphthalene (Nap) and toluene (Tol) was investigated in this study. The chemical and physical analysis of Pd/MCM-41 including BET, XRD, XPS, ICP, TGA, SEM, and TEM were also determined. The operation conditions included catalytic temperatures (150, 200, 250°C), Pd loadings (0.25%, 0.5%, 1%), Nap concentrations (50, 100, 150 ppm), and toluene concentrations (250 ppm, 500 ppm). Moreover, the gas flow and the oxygen content were 500 sccm and 10%, respectively. The results indicated that the catalytic efficiency of Nap and CO2 yield increased with the increasing of temperature. When the catalytic temperature was 250°C, the catalytic efficiency of 100% for Nap and the CO2 yield of 90% were reached. Moreover, the effects of Pd loadings on Nap removal were insignificant, and the removal efficiencies of Nap on all catalysts were 100%. Both the catalytic efficiencies and CO2 yields for various concentrations of Nap on 0.5%Pd/MCM-41 at 250°C were 100%. When Nap and toluene coexisted in flue gas, the removal efficiencies of both Nap and toluene on 0.5%Pd/MCM-41 at 250°C were still maintained at 100%, and their CO2 yields exceeded 90%. This study confirmed that Pd supported on MCM-41 synthesized from bottom ash was successfully prepared, and Pd/MCM-41 was effectively applied for the catalytic oxidation of Nap and toluene.
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員會審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 1
第二章 文獻回顧 4
2.1 甲苯之特性 4
2.2 多環芳香烴(Polycyclic aromatic hydrocarbons, PAHs)之特性 5
2.2.1 萘之特性 6
2.3 中孔材料的發展及特性 7
2.3.1 中孔材料的合成機制 8
2.3.2 中孔材料M41S的特性 8
2.3.3 影響中孔材料備製之因素 9
2.4 底渣合成之中孔材料相關研究 10
2.5 催化反應 12
2.5.1 評估催化劑效能的因子 13
2.5.2 催化劑種類 15
2.5.3 附載催化劑之載體 16
2.5.4 催化劑之製備方式 17
2.5.5 觸媒失活 19
2.6 觸媒氧化之相關文獻 20
2.7 文獻總結 32
第三章 研究設備與方法 33
3.1 中孔材料MCM-41之備製 34
3.1.1 合成矽源之原料萃取 34
3.1.2 中孔材料MCM-41之合成 34
3.1.3 實驗藥品及氣體 35
3.2 中孔材料MCM-41之催化劑擔載 36
3.3 實驗設備與耗材 37
3.4 實驗操作與分析 43
3.4.1 含氧率測試 43
3.5 數據分析 46
3.6 觸媒物化性質分析 48
3.6.1 比表面積分析儀(ASAP 2020) 48
3.6.2 X-光單晶繞射儀 ( XRD ) 51
3.6.3 X射線光電子光譜儀 ( XPS ) 52
3.6.4 掃描式電子顯微鏡+能量散射光譜儀(SEM+EDS) 53
3.6.5 感應耦合電漿放射光譜儀 ( ICP ) 54
3.6.6 熱重分析儀 (PerkinElmer STA 6000 simultaneous TGA-DSC) 54
3.6.7 穿透式電子顯微鏡(JEOL JEM-2100) 55
3.7 萘與甲苯之去除率及二氧化碳產率計算公式 57
第四章 結果與討論 58
4.1 Pd/MCM-41之物化分析結果 58
4.1.1 BET分析 58
4.1.2 SEM分析結果 59
4.1.3 TEM分析結果 61
4.1.4 XRD分析結果 62
4.1.5 ICP分析結果 63
4.1.6 XPS元素分析 64
4.1.7 TGA數據 65
4.2 不同操作條件對催化反應之影響 65
第五章 結論與建議 74
5.1 結論 74
5.2 建議 75
參考文獻 76

Alothman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5(12), pp 2874-2902.
Bampenrat, A.; Meeyoo, V.; Kitiyanan, B.; Rangsunvigit, P.; Rirksomboon, T. Catalytic oxidation of Naphthalene over CeO2–ZrO2 mixed oxide catalysts. Catalysis Communications 2008, 9(14), pp 2349-2352.
Barakat, T.; Idakiev, V.; Cousin, R.; Shao, G. S.; Yuan, Z. Y.; Tabakova, T.; Siffert, S. Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides. Applied Catalysis B: Environmental 2014, 146, pp 138-146.
Beck, J. S.; VartUl, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Chu, C. T.; Schmitt, K. D.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society 1992, 114, pp 10834-10843.
Belton, G. R. Langmuir adsorption, the gibbs adsorption isotherm, and interracial kinetics in liquid metal systems. Metallurgical and Materials Transactions B, 1976, 7(1), pp 35-42
Brunauer, S., Emmet, P.H., Teller, E. Dynamic adsorption of water-soluable and insoluable vapours on activated carbon. Journal of America Chemistry Society, 1938, 60, pp 309.
Carrillo, A. M.; Carriazo, J. G. Cu and Co oxides supported on halloysite for the total oxidation of toluene. Applied Catalysis B: Environmental 2015, 164, pp 443-452.
Chandrasekar, G.; You, K. S.; Ahn, J. W.; Ahn, W.S. Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous and Mesoporous Materials 2008, 111(1-3), pp 455-462.
Chang, F. Y.; Chen, J. C.; Wey, M. Y. The activity of Rh/Al2O3 and Rh–Na/Al2O3 catalysts for PAHs removal in the waste incineration processes: Effects of particulates, heavy metals, and acid gases. Fuel 2009a, 88(9), pp 1563-1571.
Chang, F. Y.; Chen, J. C.; Wey, M. Y.; Tsai, S. A. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system." Journal of Hazardous Materials 2009, 170(1), pp 239-246.
Chen, C.; You, K. S.; Ahn, J. W.; Ahn, W. S. Synthesis of mesoporous silica from bottom ash and its application for CO2 sorption. Korean Journal of Chemical Engineering 2010, 27(3), pp 1010-1014.
Chiang, Y. W.; Ghyselbrecht, K.; Santos, R. M.; Meesschaert, B.; Martens, J. A. Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catalysis Today 2012, 190(1), pp 23-30.
Deng, Q. F.; Ren, T. Z.; Yuan, Z. Y. Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene. Reaction Kinetics, Mechanisms and Catalysis 2012, 108(2), pp 507-518.
Eberhart, J.P. Structural and Chemical Analysis of Materials. Wiley Chichester: England, 1991.
Gallastegi-Villa, M.; Aranzabal, A.; Romero-Sáez, M.; González-Marcos, J. A.; González-Velasco, J. R. Catalytic activity of regenerated catalyst after the oxidation of 1,2-dichloroethane and trichloroethylene. Chemical Engineering Journal 2014, 241, pp 200-206.
Gokce, Y.; Aktas, Z. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science 2014, 313, pp 352-359.
Halina, M.; Ramesh, S.; Yarmo, M. A.; Kamarudin, R. A. Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash. Materials Chemistry and Physics 2007, 101(2-3), pp 344-351.
He, C.; Li, P.; Wang, H.; Cheng, J.; Zhang, X.; Wang Y.; Hao, Z. Ligand-assisted preparation of highly active and stable nanometric Pd confined catalysts for deep catalytic oxidation of toluene. Journal of Hazardous Materals 2010, 181(1-3), pp 996-1003.
Jha, M. K.; Lee, J.; Kim, M.; Jeong, J.; Kim B.; Kumar, V. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy 2013, 133, pp 23-32.
Karim, N. A.; Kamarudin, S. K. An overview on non-platinum cathode catalysts for direct methanol fuel cell. Applied Energy 2013, 103, pp 212-220.
Ladd, M.F.C., Palmer, R.A. Structure determination by X-Ray crystallography. Kluwer Academic/Plenum Publishers: New York, 1993.
Leigh, V.; Ghattas, W.; Mueller-Bunz H.; and Albrecht, M. Synthesis of pincer-type N-heterocyclic carbene palladium complexes with a hemilabile ligand and their application in cross-coupling catalysis. Journal of Organometallic Chemistry 2014, 771, pp 33-39.
Li, D.; Li, C.; Suzuki, K. Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite. Applied Clay Science 2013, 78, pp 56-60.
Liu, D.; Wang, Y.; Shi, D.; Jia, X.; Wang, X.; Borgna, A.; Lau R.; Yang, Y. Methane reforming with carbon dioxide over a Ni/ZiO2–SiO2 catalyst: Influence of pretreatment gas atmospheres. International Journal of Hydrogen Energy 2012, 37(13), pp 10135-10144.
Maegawa, T.; Akashi, A.; Yaguchi, K.; Iwasaki, Y.; Shigetsura, M.; Monguchi, Y.; Sajiki, H. Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions. Chemistry-a European Journal 2009, 15(28), pp 6953-6963.
Mahmoud, M. H. H. Leaching Platinum-Group Metals in a Sulfuric Acid/Chloride Solution. Precious Metals: Aqueous 2003, 55, pp 37-40.
Mazurelle, J.; Lamonier, C.; Lancelot, C.; Payen, E.; Pichon, C.; Guillaume, D. Use of the cobalt salt of the heteropolyanion Co2Mo10O38H46- for the preparation of CoMoHDS catalysts supported on Al2O3, TiO2 and ZrO2. Catalysis Today 2008, 130(1), pp 41-49.
Misran, H.; Singh, R.; Begum, S.; Yarmo, M. A. Processing of mesoporous silica materials (MCM-41) from coal fly ash. Journal of Materials Processing Technology 2007, 186(1-3), pp 8-13.
More, P. M.; Nguyen, D. L.; Dongare, M. K.; Umbarkar, S. B.; Nuns, N.; Girardon, J. S.; Dujardin, C.; Lancelot, C.; Mamede A. S.; Granger, P. Rational preparation of Ag and Au bimetallic catalysts for the hydrocarbon-SCR of NOx: Sequential deposition vs. coprecipitation method. Applied Catalysis B: Environmental 2015, 162, pp 11-20.
Ndifor, E. N.; Garcia, T.; Solsona B.; Taylor, S. H. Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of Naphthalene, a model polycyclic aromatic hydrocarbon. Applied Catalysis B: Environmental 2007, 76(3-4), pp 248-256.
Northcott, K. A.; Miyakawa, K.; Oshima, S.; Komatsu, Y.; Perera J. M.; Stevens, G. W. The adsorption of divalent metal cations on mesoporous silicate MCM-41. Chemical Engineering Journal 2010, 157(1), pp 25-28.
Ozdemir, I.; Şahin, M.; Orhan R.; Erdem, M. Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology 2014, 125, pp 200-206.
Park, J. E.; Youn, H. K.; Yang, S. T.; Ahn, W. S. CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash. Catalysis Today 2012, 190(1), pp 15-22.
Park, J. I.; Lee, J. K.; Miyawaki, J.; Yoon S. H.; Mochida, I. Catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs) over SBA-15 supported metal catalysts. Journal of Industrial and Engineering Chemistry 2011, 17(2): 271-276.
Rangus, M.; Mazaj, M.; Dražić, G.; Popova, M.; Tušar, N. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC). Materials 2014, 7(6), pp 4243-4257.
Rizzo, L.; Koch, J.; Belgiorno, V.; Anderson, M. A. Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm. Desalination 2007, 211(1-3), pp 1-9.
Saqer, S. M., Kondarides, D. I.; Verykios, X. E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3. Applied Catalysis B: Environmental 2011, 103(3-4), pp 275-286.
Shimokawa, H.; Kurihara, Y.; Kusaba, H.; Einaga H.; Teraoka, Y. Comparison of catalytic performance of Ag- and K-based catalysts for diesel soot combustion. Catalysis Today 2012, 185(1), pp 99-103.
Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Block copolymer-templated mesoporous oxides. Current Opinion in Colloid & Interface Science 2003, 8(1), pp 109-126.
Soylu, G. S. P.; Özçelik, Z.; Boz, İ. Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite. Chemical Engineering Journal 2010, 162(1), pp 380-387.
Varela-Gandía, F. J.; Berenguer-Murcia, Á.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Sellick, D. R.; Taylor, S. H. Total oxidation of Naphthalene using palladium nanoparticles supported on BETA, ZSM-5, SAPO-5 and alumina powders. Applied Catalysis B: Environmental 2013, 129, pp 98-105.
Xu. X.; Li, J.; Hao, Z.; Zhao, C. W. Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation. Materials Research Bulletin 2006, 41(2), pp 406-413.
Yen, C. H.; Lin. H. W.; Tan, C. S. Hydrogenation of bisphenol A – Using a mesoporous silica based nano ruthenium catalyst Ru/MCM-41 and water as the solvent. Catalysis Today 2011, 174(1), pp 121-126.
Yuan, M. H.; Chang, C. Y.; Shie, J. L.; Chang, C. C.; Chen, J. H.; Tsai, W. T. Destruction of Naphthalene via ozone-catalytic oxidation process over Pt/Al2O3 catalyst. Journal of Hazardous Materials 2010, 175(1-3), pp 809-815.
王書駿,MCM-41孔徑控制之研究,碩士論文,國立中央大學,桃園縣,2005。
行政院環保署,宣導手冊-認識生活環境中毒性物質:甲苯(Toluene) 。http://www.epa.gov.tw/ct.asp?xItem=8283&ctNode=31454&mp=epa。日期:2015/9/30。
施怡之、李俊毅、姜昌明、黃柏懿翻譯,陳竹亭教授校讀,催化作用-化學邱比特,臺灣大學化學系。http://www.ch.ntu.edu.tw/~camp/camp93/catalysis1.doc。日期:2015/9/30。
高雄市焚化底渣再利用網,http://bottomash04.kcg.gov.tw/dispPageBox/ksba/ksba_cp.aspx?ddsPageID=EPAKS1G2,2017/04/06。
國立台北科技大學 精密研發與分析中心-儀器原理-TGA http://rndcic.ntut.edu.tw/files/11-1150-8921.php日期:2016/11/25。
國家環境毒物研究中心-甲苯。http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=86。日期:2015a/9/30。
國家環境毒物研究中心-萘。http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=141。日期:2015b/9/30。
捷東股份有限公司,INCA Energy 中文操作手冊,臺北市,2010。
連興隆,X-ray Photoelectron Spectroscopy, XPS,國立高雄大學,高雄市,2005。
陳志成,VOC觸媒線上再生技術研究,環保簡訊,2013,第19期,pp 1-2。
陳政安,利用穿透式電子顯微鏡分析奈米碳管之結構參數,碩士論文,國立清華大學,新竹市,2007。
陳泰君,活性碳纖維布對VOCs吸附動力模式之研究,碩士論文,元智大學,桃園市,2007。
博精儀器,Optima2100中文操作手冊,台北市,2007。
黃子光,下水污泥灰合成中孔徑分子篩及表面改質吸附重金屬之研究,碩士論文,國立中央大學,桃園縣,2010。
黃慧貞,土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究,碩士論文,國立中央大學,桃園縣,2006。
簡崇訓,Cu/CexZr1-xO2觸媒進行甲苯完全氧化反應之研究,碩士論文,國立中央大學,桃園縣,2009。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔