跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥全
研究生(外文):Chen, Yen-Chuan
論文名稱:探討A8344G粒線體DNA突變於人類誘導性多功能幹細胞之類內耳纖毛細胞分化過程之影響
論文名稱(外文):Effects of Mitochondrial DNA A8344G Mutation on the Differentiation of Inner Ear Hair Cell-like Cells from Human Induced Pluripotent Stem Cells
指導教授:許益超許益超引用關係
指導教授(外文):Hsu, Yi-Chao
口試委員:許益超李燕晉林鴻清沈家寧
口試委員(外文):Hsu, Yi-ChaoLee, Yann-JinnLin, Hung-ChingShen, Chia-Ning
口試日期:2017-08-07
學位類別:碩士
校院名稱:馬偕醫學院
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:80
中文關鍵詞:聽力障礙內耳毛細胞人類誘導性多功能幹細胞
外文關鍵詞:auditory impairmentinner ear hair cellshuman induced pluripotent stem cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
聽覺障礙(聽障)是最常見的聽力受損疾病,影響了各個年齡層的人們。每1000位新生兒就有2~3位患有聽障,嚴重可能導致耳聾。聽障是內耳毛細胞由於環境噪音、細胞老化、基因突變、耳毒性藥物、病毒感染所造成。在哺乳類動物中內耳毛細胞的失去是不可逆的,內耳毛細胞具有纖毛,其重要於聲音訊息的傳導。利用幹細胞進行毛細胞的分化已被證實具有可行性,如: 小鼠胚胎幹細胞、骨髓間葉幹細胞、誘導性多功能幹細胞和人類胚胎幹細胞等。肌陣攣癲癇症候群 (MERRF) 為粒線體疾病的一種,會引發癲癇、運動失調、視覺萎縮、聽覺障礙等病徵。大部分 MERRF 病人其病主要因為粒線體 DNA 在第8344個核苷酸產生由腺嘌呤(Adenine)變成鳥糞嘌呤 (Guanine) 的突變,導致胺基酸轉移核苷酸(tRNALys)的功能異常。在本研究中,我們首先將誘導性多功能幹細胞誘導分化成內耳毛細胞,並建立人類誘導性多功能幹細胞之內耳毛細胞分化的平台。我們利用此平台去誘導帶有A8344G粒線體DNA突變的誘導多功能幹細胞分化成內耳毛細胞並利用此內耳毛細胞分化平台去篩選能促進內耳毛細胞分化的基因。結果顯示,使用人類多功能幹細胞所分化出來的類毛細胞具有經典毛細胞的基因表達及蛋白質表現。然而,利用電子掃描顯微鏡觀察時,可以發現到類毛細胞的細胞表面呈現未成熟的毛束構造。帶有A8344G粒線體突變的人類誘導多功能幹細胞亦可進行內耳毛細胞的誘導分化,但所分化之纖毛則無複雜之立體結構。更進一步地,在帶有A8344G 粒線體DNA突變的人類誘導多功能幹細胞和經分化而得的類毛細胞中,我們發現到高反應性的活性氧分子(ROS)的累積及抗氧化基因表現的上升。此外,我們發現一個對於纖毛形成重要的轉錄因子X (TF-X),其對人類誘導性多功能幹細胞之內耳毛細胞分化可能具有調控的效果,實驗結果顯示 TF-X單獨存在並不會對內耳毛細胞之分化有顯著的影響,但是TF-X和已知的內耳纖毛增生轉錄因子ATOH1同時作用下可以觀察毛細胞基因的表現顯著上升及獲得結構上更加成熟的纖毛束。由以上結果顯示A8344G粒線體DNA突變會促使高反應性的活性氧分子增加,影響抗氧化基因的表現。TF-X和ATOH1基因共同表現能促使內耳毛細胞的毛束構造更加成熟。本研究在再生醫學上將有助於內耳毛細胞再生的發展,並在臨床應用上有助於聽覺障礙的治療方式突破以及疾病機轉的探討。
Hearing impairment (HI) is the most common hearing-loss disorder, it affects peoples of all ages. Approximately 2~3 in 1,000 children are born with impaired hearing, seriously it may cause deafness. HI is caused by environmental noise, aging, genetic mutation, ototoxic drugs or viral infections. In mammals, losing of inner ear hair cells (HCs) is irreversible. HCs differentiation is feasible and has been demonstrated in different types of stem cells, such as bone marrow-derived mesenchymal stem cells, mouse and human embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs). Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a mitochondrial disease characterized by myoclonus epilepsy, ataxia, ragged-red fibers, myopathy and sensorineural hearing loss. MERRF syndrome is primarily caused by an A to G point mutation at mitochondrial DNA (mtDNA) 8344 that disrupts tRNALys and causes protein synthesis dysfunction. In this study, we differentiated human induced pluripotent stem cells (hiPSCs) into HCs and generated HCs that carry the mtDNA A8344G mutation from MERRF-hiPSC. In addition, we identified a transcription factor X (TF-X) that is crucial for ciliogenesis. Our results showed that hiPSC derived from MERRF patients (MERRF-hiPSCs, harboring A8344G mutation) had similar otic differentiation ability to hiPSC without mtDNA A8344G mutation. MERRF-hiPSC-derived HCs could express classical hair cell (HC) markers such as Myosin 7A and Espin, but failed to exhibit stereociliary bundles. MERRF-hiPSC and MERRF-hiPSC-derived HC-like cells exhibited significantly higher reactive oxygen species (ROS) production and upregulated antioxidant genes expression. Furthermore, we demonstrated that TF-X combination with ATOH1 could significantly upregulate HC marker genes expression and promote the differentiated HCs with more mature stereociliary bundles on cell surface. In conclusion, these findings showed that MERRF-hiPSCs and –HCs carrying the mtDNA A8344G mutation displayed contained accumulated ROS levels, upregulated antioxidant genes expression and hair bundles with abnormal structure. TF-X combination with ATOH1 promoted the HCs with more mature stereociliary bundles. The gained knowledge from this study will facilitate the development of HCs regeneration for regenerative medicine, and generation of patient-specific HCs for disease modeling of deafness.
中文摘要 I
Abstract III
Table of Contents V
List of Figures VII
List of Tables VIII
Abbreviation IX
Chapter 1 Introduction 1
1-1. Hearing loss 2
1-2. Auditory system in humans 3
1-3. Inner ear HCs 4
1-4. Stem cells 5
1-5. ESCs and iPSCs 6
1-6. Regeneration of HCs from stem cells 7
1-7. Role of Atoh1 transcription factor in inner ear HCs development 8
1-8. Mitochondria 9
1-9. Mitochondrial DNA mutation and reactive oxygen species 11
1-10. Mitochondrial disease : myoclonic epilepsy associated with ragged-red fibers syndrome (MERRF) 12
1-11. Significance 13
Chapter 2 Materials and Methods 14
2-1. Cells 15
2-2. Embryoid body formation 15
2-3. Otic progenitors induction 15
2-4. Inner ear HCs differentiation 16
2-5. Reverse transcription polymerase chain reaction (RT-PCR) 16
2-6. Quantitative polymerase chain reaction (qPCR) 16
2-7. Immunocytochemistry (ICC) 16
2-8. Scanning electron microscopy (SEM) 17
2-9. Flow cytometry 17
2-10. mtDNA A8344G mutation sequencing 17
Chapter 3 Results 19
3-1. Generation of inner ear HC-like cells from hiPSCs 20
3-2. Specific gene marker expression during HC differentiation derived from hiPSCs 21
3-3. The expression of HC markers in HC-like cells after long-term differentiation 22
3-4. Mechanosensory hair cell-like cells fail to acquire mature stereociliary bundles 23
3-5. mtDNA A8344G mutation do not interfere otic differentiation process 23
3-6. mtDNA A8344G mutation causes ROS overproduction and alternates antioxidant genes expression in hiPSCs and hiPSC-derived inner ear HCs 25
3-7. The ATOH1 and TF-X gene combination promotes inner ear HC differentiation and the formation of stereociliary bundles 26
Chapter 4 Discussion 28
4-1. Generation of human HCs from hiPSCs in vitro 29
4-2. Diseases-specific hiPSC as a disease model 29
4-3. MtDNA A8344G leads to mitochondrial dysfunction 30
4-4. HCs with MYO7A mutation falls to acquire stereociliary bundles. 31
4-5. Conclusion 32
Reference 33


1.Disorders, N.I.o.D.a.O.C. Hearing, Ear Infections, and Deafness. Available from: https://www.nidcd.nih.gov/health/hearing-ear-infections-deafness.
2.Angeli, S., X. Lin, and X.Z. Liu, Genetics of hearing and deafness. Anat Rec (Hoboken), 2012. 295(11): p. 1812-29.
3.The Hereditary Hearing loss Homepage March 13 th , 2017; Available from: http://hereditaryhearingloss.org.
4.Chien, W.W., et al., Gene therapy for sensorineural hearing loss. Ear Hear, 2015. 36(1): p. 1-7.
5.Park, Y.H., Stem Cell Therapy for Sensorineural Hearing Loss, Still Alive? J Audiol Otol, 2015. 19(2): p. 63-7.
6.Schwander, M., B. Kachar, and U. Muller, Review series: The cell biology of hearing. J Cell Biol, 2010. 190(1): p. 9-20.
7.Muller, U. and A. Littlewood-Evans, Mechanisms that regulate mechanosensory hair cell differentiation. Trends Cell Biol, 2001. 11(8): p. 334-42.
8.Mann, Z.F. and M.W. Kelley, Development of tonotopy in the auditory periphery. Hear Res, 2011. 276(1-2): p. 2-15.
9.Hudspeth, A.J., How hearing happens. Neuron, 1997. 19(5): p. 947-50.
10.Muller, M., The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear Res, 1996. 94(1-2): p. 148-56.
11.Lim, D.J., Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am, 1980. 67(5): p. 1686-95.
12.Hudspeth, A.J., Making an effort to listen: mechanical amplification in the ear. Neuron, 2008. 59(4): p. 530-45.
13.Rhode, W.S., Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am, 1971. 49(4): p. Suppl 2:1218+.
14.Hudspeth, A.J. and D.P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A, 1977. 74(6): p. 2407-11.
15.Rzadzinska, A.K., et al., An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J Cell Biol, 2004. 164(6): p. 887-97.
16.Falk, N., et al., Specialized Cilia in Mammalian Sensory Systems. Cells, 2015. 4(3): p. 500-19.
17.Bashtanov, M.E., et al., The mechanical properties of chick (Gallus domesticus) sensory hair bundles: relative contributions of structures sensitive to calcium chelation and subtilisin treatment. J Physiol, 2004. 559(Pt 1): p. 287-99.
18.Oshima, K., et al., Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell, 2010. 141(4): p. 704-16.
19.Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
20.Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
21.Uccelli, A., L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008. 8(9): p. 726-36.
22.Kondo, M., Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev, 2010. 238(1): p. 37-46.
23.Slack, J.M., Stem cells in epithelial tissues. Science, 2000. 287(5457): p. 1431-3.
24.Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004. 116(5): p. 639-48.
25.Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
26.Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
27.Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
28.Takahashi, K., et al., Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc, 2007. 2(12): p. 3081-9.
29.Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
30.Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
31.Jeon, S.J., et al., Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci, 2007. 34(1): p. 59-68.
32.Beisel, K., et al., Regenerating cochlear hair cells: quo vadis stem cell. Cell Tissue Res, 2008. 333(3): p. 373-9.
33.Ronaghi, M., et al., Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev, 2014. 23(11): p. 1275-84.
34.Cotanche, D.A. and C.L. Kaiser, Hair cell fate decisions in cochlear development and regeneration. Hear Res, 2010. 266(1-2): p. 18-25.
35.Fritzsch, B., et al., Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn, 2005. 233(2): p. 570-83.
36.Pan, N., et al., Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res, 2011. 275(1-2): p. 66-80.
37.Erkman, L., et al., Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature, 1996. 381(6583): p. 603-6.
38.Keating, D.J., Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem, 2008. 104(2): p. 298-305.
39.Rasmussen, N., Mitochondrial structure and the practice of cell biology in the 1950s. J Hist Biol, 1995. 28(3): p. 381-429.
40.Meisinger, C., A. Sickmann, and N. Pfanner, The mitochondrial proteome: from inventory to function. Cell, 2008. 134(1): p. 22-4.
41.Giles, R.E., et al., Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A, 1980. 77(11): p. 6715-9.
42.Pagliarini, D.J., et al., A mitochondrial protein compendium elucidates complex I disease biology. Cell, 2008. 134(1): p. 112-23.
43.Fish, J., N. Raule, and G. Attardi, Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science, 2004. 306(5704): p. 2098-101.
44.Brand, M.D. and D.G. Nicholls, Assessing mitochondrial dysfunction in cells. Biochem J, 2011. 435(2): p. 297-312.
45.Wei, Y.H. and H.C. Lee, Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood), 2002. 227(9): p. 671-82.
46.Li, Y., et al., Generation and bioenergetic analysis of cybrids containing mitochondrial DNA from mouse skeletal muscle during aging. Nucleic Acids Res, 2010. 38(6): p. 1913-21.
47.Smeitink, J., L. van den Heuvel, and S. DiMauro, The genetics and pathology of oxidative phosphorylation. Nat Rev Genet, 2001. 2(5): p. 342-52.
48.Devasagayam, T.P., et al., Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India, 2004. 52: p. 794-804.
49.Fridovich, I., Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem, 1997. 272(30): p. 18515-7.
50.Adam-Vizi, V. and C. Chinopoulos, Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006. 27(12): p. 639-45.
51.Bell, E.L., et al., The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol, 2007. 177(6): p. 1029-36.
52.Roth, E., Oxygen free radicals and their clinical implications. Acta Chir Hung, 1997. 36(1-4): p. 302-5.
53.Rhee, S.G., Cell signaling. H2O2, a necessary evil for cell signaling. Science, 2006. 312(5782): p. 1882-3.
54.Wallace, D.C., Mitochondrial diseases in man and mouse. Science, 1999. 283(5407): p. 1482-8.
55.Wallace, D.C., Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen, 2010. 51(5): p. 440-50.
56.Lightowlers, R.N., et al., Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet, 1997. 13(11): p. 450-5.
57.Shoffner, J.M., et al., Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell, 1990. 61(6): p. 931-7.
58.Noer, A.S., et al., A tRNA(Lys) mutation in the mtDNA is the causal genetic lesion underlying myoclonic epilepsy and ragged-red fiber (MERRF) syndrome. Am J Hum Genet, 1991. 49(4): p. 715-22.
59.Shtilbans, A., et al., G8363A mutation in the mitochondrial DNA transfer ribonucleic acidLys gene: another cause of Leigh syndrome. J Child Neurol, 2000. 15(11): p. 759-61.
60.Wu, S.B., et al., Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol, 2010. 41(2-3): p. 256-66.
61.Enriquez, J.A., A. Chomyn, and G. Attardi, MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet, 1995. 10(1): p. 47-55.
62.Chen, C.Y., et al., Decreased heat shock protein 27 expression and altered autophagy in human cells harboring A8344G mitochondrial DNA mutation. Mitochondrion, 2011. 11(5): p. 739-49.
63.Folmes, C.D., et al., Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells, 2013. 31(7): p. 1298-308.
64.Cherry, A.B., et al., Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells, 2013. 31(7): p. 1287-97.
65.Ma, H., et al., Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015. 524(7564): p. 234-8.
66.Wahlestedt, M., et al., Somatic cells with a heavy mitochondrial DNA mutational load render induced pluripotent stem cells with distinct differentiation defects. Stem Cells, 2014. 32(5): p. 1173-82.
67.Chou, S.J., et al., Impaired ROS Scavenging System in Human Induced Pluripotent Stem Cells Generated from Patients with MERRF Syndrome. Sci Rep, 2016. 6: p. 23661.
68.Gadue, P., et al., Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A, 2006. 103(45): p. 16806-11.
69.Pera, E.M., et al., Neural and head induction by insulin-like growth factor signals. Dev Cell, 2001. 1(5): p. 655-65.
70.Corwin, J.T. and D.A. Cotanche, Development of location-specific hair cell stereocilia in denervated embryonic ears. J Comp Neurol, 1989. 288(4): p. 529-37.
71.Swanson, G.J., M. Howard, and J. Lewis, Epithelial autonomy in the development of the inner ear of a bird embryo. Dev Biol, 1990. 137(2): p. 243-57.
72.Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-56.
73.Kiernan, A.E., et al., Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 2005. 434(7036): p. 1031-5.
74.Morrisey, E.E., et al., GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev, 1998. 12(22): p. 3579-90.
75.Vidricaire, G., K. Jardine, and M.W. McBurney, Expression of the Brachyury gene during mesoderm development in differentiating embryonal carcinoma cell cultures. Development, 1994. 120(1): p. 115-22.
76.Brugmann, S.A., et al., Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development, 2004. 131(23): p. 5871-81.
77.Kwon, H.J., et al., Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet, 2010. 6(9): p. e1001133.
78.Li, H., et al., Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13495-500.
79.Chen, W., et al., Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature, 2012. 490(7419): p. 278-82.
80.Zhang, X., et al., Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell, 2010. 7(1): p. 90-100.
81.Curto, G.G., et al., Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev, 2014. 23(23): p. 2813-30.
82.Meyers, J.R., et al., Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci, 2003. 23(10): p. 4054-65.
83.Li, H., et al., Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear. J Comp Neurol, 2004. 468(1): p. 125-34.
84.Tang, Z.H., et al., Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Transl Med, 2016. 5(5): p. 561-71.
85.Sinkkonen, S.T., et al., Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep, 2011. 1: p. 26.
86.Chen, P., et al., The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development, 2002. 129(10): p. 2495-505.
87.Trokovic, R., et al., Advanced feeder-free generation of induced pluripotent stem cells directly from blood cells. Stem Cells Transl Med, 2014. 3(12): p. 1402-9.
88.Fujikura, J., et al., Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia, 2012. 55(6): p. 1689-98.
89.Fischel-Ghodsian, N., et al., Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol, 1997. 18(3): p. 173-8.
90.Esterberg, R., et al., Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest, 2016. 126(9): p. 3556-66.
91.Mandal, S., et al., Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells, 2011. 29(3): p. 486-95.
92.Liu, X.P., et al., Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun, 2016. 7: p. 11508.
93.El-Amraoui, A. and C. Petit, Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci, 2005. 118(Pt 20): p. 4593-603.
94.Narsinh, K., K.H. Narsinh, and J.C. Wu, Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circ Res, 2011. 108(9): p. 1146-56.
95.Raya, A., et al., Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009. 460(7251): p. 53-9.
96.Park, I.H., et al., Disease-specific induced pluripotent stem cells. Cell, 2008. 134(5): p. 877-86.
97.Itzhaki, I., et al., Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 2011. 471(7337): p. 225-9.
98.Chamberlain, S.J., et al., Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A, 2010. 107(41): p. 17668-73.
99.Moretti, A., et al., Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med, 2010. 363(15): p. 1397-409.
100.Dimos, J.T., et al., Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 2008. 321(5893): p. 1218-21.
101.Lee, G., et al., Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 2009. 461(7262): p. 402-6.
102.Ebert, A.D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009. 457(7227): p. 277-80.
103.Lemonnier, T., et al., Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum Mol Genet, 2011. 20(18): p. 3653-66.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top