|
1.Disorders, N.I.o.D.a.O.C. Hearing, Ear Infections, and Deafness. Available from: https://www.nidcd.nih.gov/health/hearing-ear-infections-deafness. 2.Angeli, S., X. Lin, and X.Z. Liu, Genetics of hearing and deafness. Anat Rec (Hoboken), 2012. 295(11): p. 1812-29. 3.The Hereditary Hearing loss Homepage March 13 th , 2017; Available from: http://hereditaryhearingloss.org. 4.Chien, W.W., et al., Gene therapy for sensorineural hearing loss. Ear Hear, 2015. 36(1): p. 1-7. 5.Park, Y.H., Stem Cell Therapy for Sensorineural Hearing Loss, Still Alive? J Audiol Otol, 2015. 19(2): p. 63-7. 6.Schwander, M., B. Kachar, and U. Muller, Review series: The cell biology of hearing. J Cell Biol, 2010. 190(1): p. 9-20. 7.Muller, U. and A. Littlewood-Evans, Mechanisms that regulate mechanosensory hair cell differentiation. Trends Cell Biol, 2001. 11(8): p. 334-42. 8.Mann, Z.F. and M.W. Kelley, Development of tonotopy in the auditory periphery. Hear Res, 2011. 276(1-2): p. 2-15. 9.Hudspeth, A.J., How hearing happens. Neuron, 1997. 19(5): p. 947-50. 10.Muller, M., The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear Res, 1996. 94(1-2): p. 148-56. 11.Lim, D.J., Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am, 1980. 67(5): p. 1686-95. 12.Hudspeth, A.J., Making an effort to listen: mechanical amplification in the ear. Neuron, 2008. 59(4): p. 530-45. 13.Rhode, W.S., Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am, 1971. 49(4): p. Suppl 2:1218+. 14.Hudspeth, A.J. and D.P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A, 1977. 74(6): p. 2407-11. 15.Rzadzinska, A.K., et al., An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J Cell Biol, 2004. 164(6): p. 887-97. 16.Falk, N., et al., Specialized Cilia in Mammalian Sensory Systems. Cells, 2015. 4(3): p. 500-19. 17.Bashtanov, M.E., et al., The mechanical properties of chick (Gallus domesticus) sensory hair bundles: relative contributions of structures sensitive to calcium chelation and subtilisin treatment. J Physiol, 2004. 559(Pt 1): p. 287-99. 18.Oshima, K., et al., Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell, 2010. 141(4): p. 704-16. 19.Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99. 20.Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6. 21.Uccelli, A., L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008. 8(9): p. 726-36. 22.Kondo, M., Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev, 2010. 238(1): p. 37-46. 23.Slack, J.M., Stem cells in epithelial tissues. Science, 2000. 287(5457): p. 1431-3. 24.Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004. 116(5): p. 639-48. 25.Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8. 26.Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7. 27.Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 28.Takahashi, K., et al., Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc, 2007. 2(12): p. 3081-9. 29.Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72. 30.Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7. 31.Jeon, S.J., et al., Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci, 2007. 34(1): p. 59-68. 32.Beisel, K., et al., Regenerating cochlear hair cells: quo vadis stem cell. Cell Tissue Res, 2008. 333(3): p. 373-9. 33.Ronaghi, M., et al., Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev, 2014. 23(11): p. 1275-84. 34.Cotanche, D.A. and C.L. Kaiser, Hair cell fate decisions in cochlear development and regeneration. Hear Res, 2010. 266(1-2): p. 18-25. 35.Fritzsch, B., et al., Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn, 2005. 233(2): p. 570-83. 36.Pan, N., et al., Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res, 2011. 275(1-2): p. 66-80. 37.Erkman, L., et al., Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature, 1996. 381(6583): p. 603-6. 38.Keating, D.J., Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem, 2008. 104(2): p. 298-305. 39.Rasmussen, N., Mitochondrial structure and the practice of cell biology in the 1950s. J Hist Biol, 1995. 28(3): p. 381-429. 40.Meisinger, C., A. Sickmann, and N. Pfanner, The mitochondrial proteome: from inventory to function. Cell, 2008. 134(1): p. 22-4. 41.Giles, R.E., et al., Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A, 1980. 77(11): p. 6715-9. 42.Pagliarini, D.J., et al., A mitochondrial protein compendium elucidates complex I disease biology. Cell, 2008. 134(1): p. 112-23. 43.Fish, J., N. Raule, and G. Attardi, Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science, 2004. 306(5704): p. 2098-101. 44.Brand, M.D. and D.G. Nicholls, Assessing mitochondrial dysfunction in cells. Biochem J, 2011. 435(2): p. 297-312. 45.Wei, Y.H. and H.C. Lee, Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood), 2002. 227(9): p. 671-82. 46.Li, Y., et al., Generation and bioenergetic analysis of cybrids containing mitochondrial DNA from mouse skeletal muscle during aging. Nucleic Acids Res, 2010. 38(6): p. 1913-21. 47.Smeitink, J., L. van den Heuvel, and S. DiMauro, The genetics and pathology of oxidative phosphorylation. Nat Rev Genet, 2001. 2(5): p. 342-52. 48.Devasagayam, T.P., et al., Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India, 2004. 52: p. 794-804. 49.Fridovich, I., Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem, 1997. 272(30): p. 18515-7. 50.Adam-Vizi, V. and C. Chinopoulos, Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006. 27(12): p. 639-45. 51.Bell, E.L., et al., The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol, 2007. 177(6): p. 1029-36. 52.Roth, E., Oxygen free radicals and their clinical implications. Acta Chir Hung, 1997. 36(1-4): p. 302-5. 53.Rhee, S.G., Cell signaling. H2O2, a necessary evil for cell signaling. Science, 2006. 312(5782): p. 1882-3. 54.Wallace, D.C., Mitochondrial diseases in man and mouse. Science, 1999. 283(5407): p. 1482-8. 55.Wallace, D.C., Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen, 2010. 51(5): p. 440-50. 56.Lightowlers, R.N., et al., Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet, 1997. 13(11): p. 450-5. 57.Shoffner, J.M., et al., Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell, 1990. 61(6): p. 931-7. 58.Noer, A.S., et al., A tRNA(Lys) mutation in the mtDNA is the causal genetic lesion underlying myoclonic epilepsy and ragged-red fiber (MERRF) syndrome. Am J Hum Genet, 1991. 49(4): p. 715-22. 59.Shtilbans, A., et al., G8363A mutation in the mitochondrial DNA transfer ribonucleic acidLys gene: another cause of Leigh syndrome. J Child Neurol, 2000. 15(11): p. 759-61. 60.Wu, S.B., et al., Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol, 2010. 41(2-3): p. 256-66. 61.Enriquez, J.A., A. Chomyn, and G. Attardi, MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet, 1995. 10(1): p. 47-55. 62.Chen, C.Y., et al., Decreased heat shock protein 27 expression and altered autophagy in human cells harboring A8344G mitochondrial DNA mutation. Mitochondrion, 2011. 11(5): p. 739-49. 63.Folmes, C.D., et al., Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells, 2013. 31(7): p. 1298-308. 64.Cherry, A.B., et al., Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells, 2013. 31(7): p. 1287-97. 65.Ma, H., et al., Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015. 524(7564): p. 234-8. 66.Wahlestedt, M., et al., Somatic cells with a heavy mitochondrial DNA mutational load render induced pluripotent stem cells with distinct differentiation defects. Stem Cells, 2014. 32(5): p. 1173-82. 67.Chou, S.J., et al., Impaired ROS Scavenging System in Human Induced Pluripotent Stem Cells Generated from Patients with MERRF Syndrome. Sci Rep, 2016. 6: p. 23661. 68.Gadue, P., et al., Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A, 2006. 103(45): p. 16806-11. 69.Pera, E.M., et al., Neural and head induction by insulin-like growth factor signals. Dev Cell, 2001. 1(5): p. 655-65. 70.Corwin, J.T. and D.A. Cotanche, Development of location-specific hair cell stereocilia in denervated embryonic ears. J Comp Neurol, 1989. 288(4): p. 529-37. 71.Swanson, G.J., M. Howard, and J. Lewis, Epithelial autonomy in the development of the inner ear of a bird embryo. Dev Biol, 1990. 137(2): p. 243-57. 72.Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-56. 73.Kiernan, A.E., et al., Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 2005. 434(7036): p. 1031-5. 74.Morrisey, E.E., et al., GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev, 1998. 12(22): p. 3579-90. 75.Vidricaire, G., K. Jardine, and M.W. McBurney, Expression of the Brachyury gene during mesoderm development in differentiating embryonal carcinoma cell cultures. Development, 1994. 120(1): p. 115-22. 76.Brugmann, S.A., et al., Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development, 2004. 131(23): p. 5871-81. 77.Kwon, H.J., et al., Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet, 2010. 6(9): p. e1001133. 78.Li, H., et al., Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13495-500. 79.Chen, W., et al., Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature, 2012. 490(7419): p. 278-82. 80.Zhang, X., et al., Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell, 2010. 7(1): p. 90-100. 81.Curto, G.G., et al., Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev, 2014. 23(23): p. 2813-30. 82.Meyers, J.R., et al., Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci, 2003. 23(10): p. 4054-65. 83.Li, H., et al., Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear. J Comp Neurol, 2004. 468(1): p. 125-34. 84.Tang, Z.H., et al., Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Transl Med, 2016. 5(5): p. 561-71. 85.Sinkkonen, S.T., et al., Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep, 2011. 1: p. 26. 86.Chen, P., et al., The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development, 2002. 129(10): p. 2495-505. 87.Trokovic, R., et al., Advanced feeder-free generation of induced pluripotent stem cells directly from blood cells. Stem Cells Transl Med, 2014. 3(12): p. 1402-9. 88.Fujikura, J., et al., Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia, 2012. 55(6): p. 1689-98. 89.Fischel-Ghodsian, N., et al., Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol, 1997. 18(3): p. 173-8. 90.Esterberg, R., et al., Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest, 2016. 126(9): p. 3556-66. 91.Mandal, S., et al., Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells, 2011. 29(3): p. 486-95. 92.Liu, X.P., et al., Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun, 2016. 7: p. 11508. 93.El-Amraoui, A. and C. Petit, Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci, 2005. 118(Pt 20): p. 4593-603. 94.Narsinh, K., K.H. Narsinh, and J.C. Wu, Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circ Res, 2011. 108(9): p. 1146-56. 95.Raya, A., et al., Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009. 460(7251): p. 53-9. 96.Park, I.H., et al., Disease-specific induced pluripotent stem cells. Cell, 2008. 134(5): p. 877-86. 97.Itzhaki, I., et al., Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 2011. 471(7337): p. 225-9. 98.Chamberlain, S.J., et al., Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A, 2010. 107(41): p. 17668-73. 99.Moretti, A., et al., Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med, 2010. 363(15): p. 1397-409. 100.Dimos, J.T., et al., Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 2008. 321(5893): p. 1218-21. 101.Lee, G., et al., Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 2009. 461(7262): p. 402-6. 102.Ebert, A.D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009. 457(7227): p. 277-80. 103.Lemonnier, T., et al., Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum Mol Genet, 2011. 20(18): p. 3653-66.
|