跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊品珊
研究生(外文):Chuang, Pin Shan
論文名稱:再探極小極大理論在網球比賽的應用:發球及接球能力如何影響選手的發球策略
論文名稱(外文):Minimax Play in Tennis Revisited : How Serving and Returning Abilities Affect Players’ Strategic Behavior
指導教授:張元晨張元晨引用關係
指導教授(外文):Chang, Yuan Chen
學位類別:碩士
校院名稱:國立政治大學
系所名稱:財務管理研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:57
中文關鍵詞:賽局理論極大極小理論網球實證
外文關鍵詞:Game TheoryMinimaxEmpirical research of tennis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文參考Walker and Wooders (2001)的網球發球模型,並且使用較完整的網路社群記錄的網球比賽資料庫,檢驗網球選手的發球決策是否符合賽局理論中的混合策略理論預測的行為模式。Walker and Wooders (2001)提到要檢視混合策略是否成立,必須通過兩個假設檢定。第一個是無論發球的方向為何,發球的勝率均相等。第二個是發球的方向必須符合序列不相關。
相較先前的論文,我們更改了發球方向和分數的紀錄方式,使資料更符合比賽實際的情形。另外,我們使用了ATP網站上的排名,依發球者和接球者的能力排名將比賽區分為四個子集合,為的是觀察對戰組合對選手策略行為上的影響。
實證結果顯示,當在接發球者能力都很強的比賽中,混和策略並不成立。相對地,其他三個子集合中都符合理論預期。在序列不相關的檢定中,發球能力差的選手容易出現過度變換方向的情形,此可能因為選手要以不可預測來彌補發球能力的不足。另一方面,在好的發球者的比賽中,被拒絕的序列不相關檢定都是源自過少的方向變換,我們推斷因為發球者的發球品質好,所以更能著重於攻擊對手的弱點而非讓對手無法預測發球落點。
Using the tennis serving model introduced by Walker and Wooders (2001) and a more comprehensive database obtained from a tennis charting program, we test whether professional tennis players behave according to the predictions of the mixed strategy. We test two predictions from Walker and Wooders (2001) model: the hypothesis for equality of winning probability and serial independence. We improve the method of recording each point in matches and use the rank (serving rank and returning rank) from ATP leaderboards to separate our data to four subsets. We hypothesize that rivalry combination may have impact on the strategic behavior of players. Our empirical result shows that players don’t play mixed strategy in the top-ranking server vs. top-ranking receiver subset, while players conform to what theory suggests for the other subsets. On the other hand, run-test results show that poor servers tend to switch serving directions too often, probably to defend their weakness by creating more uncertainties in serves. However, good servers do not have this tendency because of their high serving quality.
1. Introduction...... 6
2. Literature Review...... 9
3. Theory and Model...... 15
4. Data and Methodology...... 20
4.1 Sample Selection...... 23
4.2 Methodology...... 25
4.2.1 Testing the Theory...... 25
4.2.2 Different Method to Record Each Point from Previous Papers...... 25
5. Empirical Result...... 27
5.1 Testing for Equality of Winning Probabilities......27
5.2 Testing for Serial Independence...... 29
6. Conclusion...... 30
Table A - Points recorded through Charting Match Project......32
Table B - Player’s handedness and rank on ATP leaderboards......33
Table C - Summary of empirical results...... 36
Table 1 - Testing for Equality of Winning Probability-Group 1 ......37
Table 2 - Testing for Equality of Winning Probability-Group 2......40
Table 3 - Testing for Equality of Winning Probability-Group 3......42
Table 4 - Testing for Equality of Winning Probability-Group 4......46
Table 5 - Testing for Serial Independence-Group 1....48
Table 6 - Testing for Serial Independence-Group 2......50
Table 7 - Testing for Serial Independence-Group 3......52
Table 8 - Testing for Serial Independence-Group 4......54
Reference...... 56
Bailey, B. J., & McGarrity, J. P. (2012). The effect of pressure on mixed-strategy play in tennis: The effect of court surface on service decisions. International Journal of Business and Social Science 3(20), 11-18.

Chiappori, P. A., Levitt, S., & Groseclose, T. (2002). Testing mixed-strategy equilibria when players are heterogeneous: The case of penalty kicks in soccer. American Economic Review 92:1138-1151.

Gauriot, R., Page, L., & Wooders, J. (2016). Nash at Wimbledon: Evidence from Half a Million Serves. Working paper.

Hsu, S. H., Huang, C. Y., & Tang, C. T. (2007). Minimax play at Wimbledon: comment. The American Economic Review 97(1), 517-523.

O'Neill, B. (1987). Nonmetric test of the minimax theory of two-person zerosum games. Proceedings of the National Academy of Sciences 84(7), 2106-2109.

Palacios-Huerta, I. (2003). Professionals play minimax. The Review of Economic Studies 70(2), 395-415.

Rowe, C. (2013). Testing the Minimax Theorem in the Field: The Interaction between Pitcher and Batter in Baseball. Working paper.

Spiliopoulos, L. (2016). Minimax Play at Wimbledon Redux. Working paper.


Walker, M., & Wooders, J. (2001). Minimax play at Wimbledon. The American Economic Review 91(5), 1521-1538.

Wiles, J. (2006). Mixed Strategy Equilibrium in Tennis Serves. Working paper.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top