(3.238.186.43) 您好!臺灣時間:2021/02/25 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴邦旭
研究生(外文):Pang-Hsu Tai
論文名稱:生物礦化技術應用於混凝土修復之研究
論文名稱(外文):Application of Microbial Induced Calcium Carbonate Precipitation in Concrete Repairment
指導教授:陳豪吉陳豪吉引用關係
口試委員:湯兆緯潘煌鍟李明君黃玉麟
口試日期:2017-07-24
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:混凝土裂縫細菌抗彎強度抗壓強度
外文關鍵詞:concrete crackbacteriaflexural strengthcompressive strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1021
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究焦點在於利用微生物碳酸鈣沉澱反應過程(Microbial Induced Calcium Carbonate Precipitation, MICP)進行結構物裂縫之修補,研究中採用Bacillus pasteurii菌種於混凝土裂縫之修復。由研究結果顯示,菌液濃度對於試體之抗彎強度亦會有影響,其強度增加幅度以菌液濃度100%者為最明顯,其裂縫寬度為1mm與2mm之混凝土試體,經修補後抗彎強度提高幅度高達32.58 %與51.01 %。此外,由抗壓強度試驗結果顯示,裂縫為1mm與2mm之混凝土試體在菌液濃度為100%之條件下,其修補後抗壓強度可提高28.58 %與23.85%。由上述結果可知利用MICP工法修補裂縫,確實可以提升混凝土抗彎強度與抗壓強度等力學性質,具有實質上之修補效果。
The research focus on using Microbial induce carbonate precipitation (Microbial Induced Calcium Carbonate Precipitation, MICP) to repair the microcrack in concrete. In this research we tried to use Bacillus pasteurii for the repairmen of the microcrack in concrete. The results of serial tests prove that the higher the concentration of the bacterial broth, the greater the amount of calcium carbonate precipitate was induced, while using Bacillus pasteurii broth for concrete crack rehabilitation. The flexural strengths of the repaired concrete test samples were the greatest at 100% bacterial concentration. Compared to the control group (bacterial concentration of 0%), the flexural strength had increased by 32.58% for 1-mm crack samples and 51.01% for 2-mm crack samples, and the compression strength had increased by 28.58% and 23.85%, respectively. The tests all confirm that the using bacteria in concrete crack rehabilitation can increase the flexural and compression strength of the repaired concrete due to Microbial induce carbonate precipitation (MICP).
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vii
照片目錄 ix
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的及內容 2
第二章 文獻回顧 4
2.1 菌株應用於水泥基材的修復 4
2.2 微生物性誘導碳酸鈣沉積(MICP)作用 5
2.2.1 Bacillus pasteurii菌種 6
2.2.2 MICP微生物作用之機理 8
2.3 外界環境條件對MICP的影響 10
2.3.1 pH值的影響 10
2.3.2 環境溫度的影響 11
2.3.3 細胞濃度的影響 12
2.4 微生物性誘導碳酸鈣沉澱之應用 13
2.4.1 降低材料之滲透性 13
2.4.2 混凝土裂縫之修補 14
2.4.3 砂柱之膠結 15
2.5 MICP技術應用於自癒混凝土上研究 16
第三章 試驗規劃 26
3.1試驗材料 26
3.2試驗設備 27
3.3計畫執行步驟與方式 29
3.3.1 菌體比對篩選及大量產菌之研究 29
3.3.2 Bacillus pasteurii製備及孢子化過程 30
3.3.3 菌體孢子化之微觀及活性試驗 32
3.3.4 混凝土裂縫經MICP修補之效果探討 37
第四章 試驗結果與討論 57
4.1菌體比對篩選及進行大量產菌之研究 57
4.1.1 試驗進行程序 57
4.1.2 試驗結果分析與討論 61
4.2 Bacillus pasteurii孢子化研究 65
4.2.1 Bacillus pasteurii菌株孢子化後微觀試驗 65
4.2.2 Bacillus pasteurii菌株孢子化後活性確認試驗 67
4.3 混凝土裂縫以MICP修補之效果探討 69
4.3.1 混凝土裂縫修補後之力學性質 69
4.3.2 以MICP工法修補混凝土裂縫之可行性評估 74
第五章 結論與建議 104
5.1 結論 104
5.2建議 106
參考文獻 107
[1]NEMATI M, VOORDOUW G. (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically76 [J]. Enzyme Microb Technol, 33(5): 635–642.
[2]STOCKS-FISCHER S, GALINAT J K, BANG S S. Microbiological precipitation of CaCO3 [J]. Soil Biol Biochem, 1999, 31(11): 1 563–1 571.
[3]RODRIGUEZ NAVARRO C, RODRIGUEZ GALLEGO M, BEN CHEKROUN K, et al. (2003) Conservation of ornamental stone by myxococcus xanthium-induced carbonate biomineralization [J]. Appl Environ Microbiol, 69(4): 2 182–2 193.
[4]DICK J, de WINDT W, de GRAEF B, et al. (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species [J]. Biodegradation, 17(4): 357–367.
[5]Whiffin, V. S., Lambert, J. W. M., Van Ree, C. C. D. (2005). Biogrout and biosealing—porespace engineering with bacteria. Geostrata – Geo Institute for ASCE 5 (5), 13–16, 36.
[6]Van Meurs, G. A., Van der Zon, W. H., Lambert, J. W. M., Van Ree, C. C. D., Whiffin, V. S., Molendijk, W. O. (2006). The challenge to adapt soil properties. In: Thomas, H. R.(Ed.), Proceedings of the 5th International Congress on Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics. Thomas Telford Ltd., Cardiff,Wales, 1658.
[7]Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Biotechnol, 7(2), 139-153.
[8]DeJong, J., Mortensen, B., & Martinez, B. (2007). Bio-Soils Interdisciplinary Science and Engineering Initiative. NSF Final Report for Grant #CMS-0628782, 85.
[9]Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microb. Technol., 28, 404-409.
[10]Bachmeier, K. L., Williams, A. E., Warmington, J. R., & Bang, S. S. (2002). Urease activity in microbiologically-induced calcite precipitation. J. Biotech., 93, 171-181.
[11]Day, J. L., Ramakrishnan, V., & Bang, S. S. (2003). Microbiologically induced sealant for concrete crack remediation. Proceedings of the 16th Engineering Mechanics Conference, Seattle, WA.
[12]DeJong, J.T., Fritzges, M.B., & Nusslein, K. (2006). Microbial induced cementation to control sand response to undrained shear. ASCE J. Geotech. Geoenviron. Eng. 132(11), 1381–1392.
[13]Fernandes, P. (2006). Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol. Biotechnol. 73, 291-296.
[14]Perito, B., & Mastromei, G. (2003). Conservation of monumental stones by bacterial biomineralization. Microbiol, 30, 113–114.
[15]De Muynck, W., Cox, K., & De Beli, N., et al. (2007). Bacterial carbonate precipitation as an alternative surface treatment for concrete [J]. Constr Build Mater, doi:10.1016/j.conbuildmat. 2006.12.011.
[16]Stocks-fischer, S., Galinat, J. K., Bang, S. S. (1999). Microbiological precipitation of CaCO3 [J]. Soil Biol Biochem, 31(11): 1563–1571.
[17]Nemati, M., Voordouw, G. (2003). Modification of porous media permeability using calcium carbonate produced enzymatically in situ. EnzymeMicrob. Tech. 33 (5), 635–642.
[18]Rodriguez, N. C., Rodriguez, G. M., Ben C. K., et al. (2003). Conservation of ornamental stone by myxococcus xanthium-induced carbonate biomineralization [J]. Appl Environ Microbiol, 69(4): 2182–2193.
[19]Dick, J., De Windt, W., De Graef, B., et al. (2006). Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species [J]. Biodegradation, 17(4), 357-367.
[20]Tiano, P. (1995). Stone reinforcement by calcite crystals precipitation induced by organic mat rix macromolecules [J]. Studies in Conservation, 40 (3):171~176.
[21]Ruixing, W., Chunxiang, Q., Jianyun, W. (2010). Study on Microbiological precipitation of CaCO3. 東南大學學報(自然科學版).
[22]Ruixing, W., Chunxiang, Q. (2010). Restoration of Defects on the Surface of Cement-Based Materials by Microbiologically precipitated CaCO3. 東南大學學報(矽酸鹽).
[23]Kitamura, M., Konno, H. (2002). Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions [J]. Journal of Crystal Growth, 236, 323-332.
[24]Zeshan, H., Yulin, D. (2003). Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants [J]. Journal of Colloid and Interface Science, (266): 359-365.
[25]Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Material Journal, 98(1), 3-9.
[26]Ramakrishnan, V., Ramesh, K. P., Bang. S. S. (2001). Bacterial Concrete [C]. Proceedings of SPIE, 4234, Smart Materials, Alan R. Wilson, Hiroshi Asanuma, Editors, 168~176. [44]Lirong Zhong, M. R. Islam. (2010). 一種新型微生物封堵裂縫的試驗研究. 國外油田工程.
[27]Liang Cheng, Ralf Cord-Ruwisch,” In situ soil cementation with ureolytic bacteria by surface percolation”, Ecological Engineering 64– 72,2012.
[28]Zeshan, H., Yulin, D. (2004). Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate [J]. Powder Technology, (140):10-16.
[29]Liang, C., Chun-Xiang, Q., Rui-Xing, W., & Jian-Yun, W. Study on the Mechanism of Calcium Carbonate Formation Inducedby Carbonate-mineralization Microbe. 東南大學學報(化學).
[30]J.Y. Wanga,b,c, D. Snoeck a,c,d, S. Van Vlierberghe d, W. Verstraete b, N. De Belie a, Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete, Construction and Building Materials, 2014, 68, 110-119.
[31]Virginie Wiktor, Henk M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete, Cement & Concrete Composites, 2011, 33,763-770.
[32]M. Guadalupe Sierra-Beltran, H.M. Jonkers, E. Schlangen, Characterization of sustainable bio-based mortar for concrete repair, Construction and Building Materials, 2014, 67, 344-352.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔