|
[1]NEMATI M, VOORDOUW G. (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically76 [J]. Enzyme Microb Technol, 33(5): 635–642. [2]STOCKS-FISCHER S, GALINAT J K, BANG S S. Microbiological precipitation of CaCO3 [J]. Soil Biol Biochem, 1999, 31(11): 1 563–1 571. [3]RODRIGUEZ NAVARRO C, RODRIGUEZ GALLEGO M, BEN CHEKROUN K, et al. (2003) Conservation of ornamental stone by myxococcus xanthium-induced carbonate biomineralization [J]. Appl Environ Microbiol, 69(4): 2 182–2 193. [4]DICK J, de WINDT W, de GRAEF B, et al. (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species [J]. Biodegradation, 17(4): 357–367. [5]Whiffin, V. S., Lambert, J. W. M., Van Ree, C. C. D. (2005). Biogrout and biosealing—porespace engineering with bacteria. Geostrata – Geo Institute for ASCE 5 (5), 13–16, 36. [6]Van Meurs, G. A., Van der Zon, W. H., Lambert, J. W. M., Van Ree, C. C. D., Whiffin, V. S., Molendijk, W. O. (2006). The challenge to adapt soil properties. In: Thomas, H. R.(Ed.), Proceedings of the 5th International Congress on Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics. Thomas Telford Ltd., Cardiff,Wales, 1658. [7]Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Biotechnol, 7(2), 139-153. [8]DeJong, J., Mortensen, B., & Martinez, B. (2007). Bio-Soils Interdisciplinary Science and Engineering Initiative. NSF Final Report for Grant #CMS-0628782, 85. [9]Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microb. Technol., 28, 404-409. [10]Bachmeier, K. L., Williams, A. E., Warmington, J. R., & Bang, S. S. (2002). Urease activity in microbiologically-induced calcite precipitation. J. Biotech., 93, 171-181. [11]Day, J. L., Ramakrishnan, V., & Bang, S. S. (2003). Microbiologically induced sealant for concrete crack remediation. Proceedings of the 16th Engineering Mechanics Conference, Seattle, WA. [12]DeJong, J.T., Fritzges, M.B., & Nusslein, K. (2006). Microbial induced cementation to control sand response to undrained shear. ASCE J. Geotech. Geoenviron. Eng. 132(11), 1381–1392. [13]Fernandes, P. (2006). Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol. Biotechnol. 73, 291-296. [14]Perito, B., & Mastromei, G. (2003). Conservation of monumental stones by bacterial biomineralization. Microbiol, 30, 113–114. [15]De Muynck, W., Cox, K., & De Beli, N., et al. (2007). Bacterial carbonate precipitation as an alternative surface treatment for concrete [J]. Constr Build Mater, doi:10.1016/j.conbuildmat. 2006.12.011. [16]Stocks-fischer, S., Galinat, J. K., Bang, S. S. (1999). Microbiological precipitation of CaCO3 [J]. Soil Biol Biochem, 31(11): 1563–1571. [17]Nemati, M., Voordouw, G. (2003). Modification of porous media permeability using calcium carbonate produced enzymatically in situ. EnzymeMicrob. Tech. 33 (5), 635–642. [18]Rodriguez, N. C., Rodriguez, G. M., Ben C. K., et al. (2003). Conservation of ornamental stone by myxococcus xanthium-induced carbonate biomineralization [J]. Appl Environ Microbiol, 69(4): 2182–2193. [19]Dick, J., De Windt, W., De Graef, B., et al. (2006). Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species [J]. Biodegradation, 17(4), 357-367. [20]Tiano, P. (1995). Stone reinforcement by calcite crystals precipitation induced by organic mat rix macromolecules [J]. Studies in Conservation, 40 (3):171~176. [21]Ruixing, W., Chunxiang, Q., Jianyun, W. (2010). Study on Microbiological precipitation of CaCO3. 東南大學學報(自然科學版). [22]Ruixing, W., Chunxiang, Q. (2010). Restoration of Defects on the Surface of Cement-Based Materials by Microbiologically precipitated CaCO3. 東南大學學報(矽酸鹽). [23]Kitamura, M., Konno, H. (2002). Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions [J]. Journal of Crystal Growth, 236, 323-332. [24]Zeshan, H., Yulin, D. (2003). Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants [J]. Journal of Colloid and Interface Science, (266): 359-365. [25]Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Material Journal, 98(1), 3-9. [26]Ramakrishnan, V., Ramesh, K. P., Bang. S. S. (2001). Bacterial Concrete [C]. Proceedings of SPIE, 4234, Smart Materials, Alan R. Wilson, Hiroshi Asanuma, Editors, 168~176. [44]Lirong Zhong, M. R. Islam. (2010). 一種新型微生物封堵裂縫的試驗研究. 國外油田工程. [27]Liang Cheng, Ralf Cord-Ruwisch,” In situ soil cementation with ureolytic bacteria by surface percolation”, Ecological Engineering 64– 72,2012. [28]Zeshan, H., Yulin, D. (2004). Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate [J]. Powder Technology, (140):10-16. [29]Liang, C., Chun-Xiang, Q., Rui-Xing, W., & Jian-Yun, W. Study on the Mechanism of Calcium Carbonate Formation Inducedby Carbonate-mineralization Microbe. 東南大學學報(化學). [30]J.Y. Wanga,b,c, D. Snoeck a,c,d, S. Van Vlierberghe d, W. Verstraete b, N. De Belie a, Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete, Construction and Building Materials, 2014, 68, 110-119. [31]Virginie Wiktor, Henk M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete, Cement & Concrete Composites, 2011, 33,763-770. [32]M. Guadalupe Sierra-Beltran, H.M. Jonkers, E. Schlangen, Characterization of sustainable bio-based mortar for concrete repair, Construction and Building Materials, 2014, 67, 344-352.
|