跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜瑟娜
研究生(外文):Johane Dorcena
論文名稱:人行橋動態行為暨多元調諧質量阻尼器之減振
論文名稱(外文):Vibration Reduction of Footbridges Using Multiple Tuned Mass Dampers
指導教授:林其璋林其璋引用關係
指導教授(外文):Chi - Chang Lin
口試委員:朱世禹張長菁王哲夫
口試委員(外文):Joseph ChuChang-Ching ChangJer-Fu Wang
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:104
中文關鍵詞:人行橋減振固定荷載移動荷載均佈荷載多重調諧質量阻尼器動態反應.
外文關鍵詞:Pedestrian BridgeVibration reductionStationary loadsMoving loadsUniform loadsMultiple Tuned Mass DampersDynamic response.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
As the pedestrian bridge conception, from now, expands more in the length span whereas the cross section becomes slender and simple, multi-mode coupled vibrations occur frequently. The footbridge, a slim structure, becomes more sensitive to vibration effect. It is clearly understood that the vibration could be a problem. The users of this public facility should be comfortable while using it. Some endeavors have been done to lessen the vibration that is additional stiffness to the given devices. The most optimistic method to reduce vibration and improve the footbridge dynamic characteristics is Multiple Tuned Mass Dampers (MTMD).
This study covers vibration reduction of footbridge using Multiple Tuned Mass dampers. The Footbridge is modeled and simulated numerically using the commercial structural analysis and design software (SAP2000) to perform dynamic responses due to pulsating stationary, moving and uniform loadings. A comprehensive Optimization method is introduced to determine the optimal design parameters of MTMD system. The objective is to minimize footbridge responses and remove unacceptable requirements, such as peak and root mean square (RMS) acceleration. Numerical analysis shows that the proposed MTMD designed by the annealing optimization procedure is effective in reducing dynamic response during crowd–footbridge resonance.
ACKNOWLEDGEMENTS i
ABSTRACT ii
Table of Contents iii
List of Tables vi
List of Figures vii
Chapter 1 1
Introduction 1
1.1 Background 1
1.1.1 Pedestrian traffic on footbridges 1
1.1.2 Tuned mass dampers (TMDs) in footbridge 4
1.2 Thesis objectives 5
1.3 Organization of the thesis 6
Chapter 2 8
Theoretical Background of Footbridge Vibration Control using Multiple Tuned Mass Damper (MTMD) 8
2.1 Equation of Motion of Footbridge Vibration Control led by MTMD 8
2.2 Modal Transfer Function 13
2.3 Modal Mean Square Response versus Mean Square Response Ratio 15
2.4 Optimal Design of Multiple Tuned Mass Damper 16
2.5 Summary 18
Chapter 3 19
Vibration Serviceability of Footbridges 19
3.1 Serviceability Design Procedures 19
3.1.1 Modeling pedestrian as source of excitation 20
3.1.2 Characterization of the dynamic behavior of the footbridge 24
3.1.3 Evaluation of the vibration levels 27
3.1.4 Comparison of design guidelines 28
3.1.5 Eurocode SS-EN 1990/A1 29
3.1.5.1 Serviceability criteria regarding deformation and vibration for footbridges 29
3.1.5.2 Pedestrian comfort criteria for serviceability 29
3.2 Summary 30
Chapter 4 31
Modal Analysis and Dynamic Response of Dayuan Footbridge 31
4.1 Footbridge Description 31
4.2 SAP2000 Model of Dayuan Footbridge 33
4.2.1 Vibration Modes of Dayuan Footbridge 33
4.3 Pedestrian Loading 37
4.3.1 Harmonic Loading 37
4.3.1.1 Vertical Loading (Z) and Lateral Loading (Y) 37
4.3.2 Moving Loads 41
4.3.3 Uniform loading induced by pedestrians 46
4.3.3.1 Pedestrian modelling 48
4.3.3.2 Pedestrian modelling in SAP2000 49
4.4 Dynamic Responses of Dayuan Footbridge 52
4.4.1 Harmonic Loading 52
4.4.2 Moving Loading 56
4.4.3 Dynamic response of uniform loading induced by pedestrians 63
4.4.4 Summary 65
Chapter 5 66
Design and Analysis of the MTMD System for the Dayuan Footbridge 66
5.1 Optimum Multiple Tuned Mass dampers Parameters 66
5.1.1 Layout of MTMD 66
5.1.2 Design parameters of MTMD 68
5.2 Procedures of Setting a MTMD System in the SAP2000 Model 80
5.3 MTMD Efficiency and Serviceability Check for Vibration Level 80
5.3.1 Stationary Loads 80
5.3.2 Uniform loading 93
5.3.2.1 Optimal MTMD System Parameters 95
5.3.2.2 Control Performance of MTMD for a uniformly distributed load 96
Chapter 6 98
Summary 98
6.1 Summary 98
6.2 Conclusions 99
6.3 Recommendations for future Research 99
References 100
Abe, M., and Igusa, T. 1995. Tuned mass dampers for structures with closely spaced natural frequencies, Earthquake Engineering and Structural Dynamics, Vol. 24, pp. 247-261.
Bachmann, H.1998. Vibration Problems in Structures, Practical Guideline. Birkhäuser Verlag, Basel.
Brownjohn JMW, Pavic A. 2007. Experimental methods for estimating modal mass in footbridges using human-induced dynamic excitation. Engineering Structures 29: 283–2843.
Caetano E, Cunha Á, Magalhães F, Moutinho C.2010a. Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 1: Assessment of dynamic behavior. Engineering Structures 32: 1069–1081.
Caetano, E.; Cunha, A.; Moutinho, C.; Magalhães, F. 2010b. Studies for Controlling Human-induced Vibration at the Pedro e Inés Footbridge. Portugal. Part 2: Implementation of tuned mass dampers. Engineering Structures, 32(4), 1082-1091.
Carpineto N, Lacarbonara W, Vestroni F.2010. Mitigation of Pedestrian-induced Vibrations in Suspension Footbridges via Multiple Tuned Mass Dampers. Journal of Vibration and Control 16: 749–776.
Chen SR, Wu J .2008. Performance enhancement of bridge infrastructure systems: Long-span Bridge, moving trucks and wind with tuned mass dampers. Engineering Structures 30: 3316–3324.
Chopra A.K...2011. Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition. Upper Saddle River, NJ, Pearson Prentice Hall, pp. 992, ISBN-10: 0132858037, ISBN-13: 978-0132858038.
CSI, Computer and Structure, Inc. 2016. SAP2000 Manual.
Dallard, P., Fitzpatrick, T., Flint, A., Low, A., Ridsdill Smith, R., Willford, M.and Roche, and M. November-December 2001. London Millennium Bridge: Pedestrian-Induced Lateral Vibration. ASCE Journal of Bridge Engineering, pp. 412-41.
Danbon, F., and Grillaud, G. (2005). “Dynamic behavior of a steel footbridge. Characterization and modeling of the dynamic loading induced by a moving crowd on the Solférino Footbridge in Paris.” Proc., 2nd Int. Conf. Footbridge, Dept. of Architectural Construction, Iuav Univ. of Venice, Venice, Italy, and Office Technique pour l’Utilisation de l’Acier, Courbevoie, France.
Den Hartog JP .1956. Mechanical Vibrations, New York.
Eurocode, Annex A2. EN1990. 2002 .Basis of Structural Design - PR. European Committee for Standardization, Brussels, Belgium.
Fitzpatrick, T., Dallard, P., Le Bourva, S., Low, A., Ridsdill Smith, R. and Willford, M.Linking. June 2001. London: The Millennium Bridge. The Royal Academy of Engineering.
Frahm, H.1911. "Device for Damping Vibrations of Bodies." U.S.Patent, No. 989, 958.
Gu, M., Chen, S.R., Chang, C.C., 2001. Parametric study on multiple tuned mass dampers for buffeting control of Yangpu Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 89 (11-12):9871000.
Heinemeyer, C., & Feldman, M. 2008. European Design Guide for Footbridge Vibration. Proceedings from the Third International Footbridge Conference.
HIVOSS. 2007. Human Induced Vibration of Steel Structures. RFS2-CT-2007-00033.
Iemke Roos. May 2009.Human induced vibrations on footbridge, application and comparison of pedestrian load models. Master thesis study in civil engineering at Delft University of technology in the Netherlands.
Igusa, T., Xu, K.1994. Vibration control using multiple tuned dampers. Journal of Sound and Vibration, 175(4):491-503.
ISO. 2005. Bases for design of structures Serviceability of buildings and pedestrian Walkways against vibration, ISO/CD 10137, International Standardization Organization, Geneva, Switzerland.
Kwon, H. C., Kim, M. C. and Lee, I. W. 1998. Vibration Control of Bridges under Moving Loads, Computers & Structures, Vol. 66, pp. 473-480.
Kalny O. 2010. Modal Analysis [Online]. CSi Knowledge Base, Available: https://wiki.csiamerica.com/display/kb/Modal+analysis.
Lai, Yuan-Tian. July 2016. Control Strategy of Floor Vibration Due to Human Activities. Master thesis, National Chung Hsing University.
Lengvarsky P., Bocko J., 2013. Theoretical Basis of Modal Analysis. American J. of Mechan. Engng. 1, pp.173-179.
Li Q, Fan J, Nie J, Li Q, Chen Y .2010.Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers. Journal of Sound and Vibration 329: 4068–4092.
Liao, Wei-Ru. July. 2016. The Vibration Serviceability of Footbridge and Tuned Mass Dampers for Vibration Control of Experiment Validation. Master thesis, National Taiwan University.
Lin, C.C.2000. Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration, Earthquake Engineering and Structural Dynamics, Vol. 29, pp. 1405-1421.
Lin, C. C., Wang, J. F. and Chen, B. L.2005. Train-Induced Vibration Control of High-Speed Railway Bridges Equipped with Multiple Tuned Mass Dampers, Journal of Bridge Engineering. Vol. 10, No. 4, pp. 398-414.
Lin, C. C., Wang, J. F., Lien, C. H., Chiang, H. W. and Lin, C. S. 2010. Optimum Design and Experimental Study of Multiple Tuned Mass Dampers with Limited Stroke, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 14, pp. 1631-1651.
Lin, C. C. and Wang, J. F. 2012. Optimal Design and Practical Considerations of Tuned Mass Dampers for Structural Control, Chapter 6 of book on Design optimization of Active and Passive Structural Systems, Edited by Nikos D. Lagaros, V. Plevris, and Chara C. Mitropoulos, IGI Global Publisher.
Poovarodom, N., Kanchanosot, S., and Warnitchai, P., 2003, Application of non-linear multiple tuned mass dampers to suppress man-induced vibrations of a pedestrian bridge. Earthquake Engineering and Structural Dynamics 32, 1117-1131.
Roberts, T.M. December 2003. Synchronized pedestrian excitation of footbridges. Proceedings of the Institution of Civil Engineers. Bridge Engineering 156, pp.155-160.
Sétra, 2006. Footbridges - Assessment of vibration behavior of footbridges under pedestrian loading, Paris - France: Sétra (Service d’études techniques des routes et autoroutes).
SYNPEX Guidelines. 2007. European Project on Advanced Load Models for synchronous Pedestrian excitation and Optimized Guidelines for Design of Steel Footbridges.
Van Nimmen, K., Lombaert, G., De Roeck, G., and Van den Broeck, P. 2014. Vibration serviceability of footbridges: Evaluation of the current codes of practice. Eng. Struct. 59, pp.448–461.
Zivanovic, S., Pavic, A., and Reynolds, P.2005. Vibration serviceability of footbridges under human-induced excitation: a literature review. Journal of Sound and Vibration 279.
Zivanovic, S., Pavic, A., & Reynolds, P. 2007. Finite Element Modeling and Updating of a Lively Footbridge: the Complete Process. Journal of Sound and Vibration (301), pp. 126-145.
Zivanovic, S. 2012. Benchmark footbridge for vibration serviceability assessment under the vertical component of pedestrian load. J. Struct. Eng., 10.1061/ (ASCE) ST.1943-541X.0000571, pp.1193–1202.
Wheeler, J. E. 1982. Prediction and control of pedestrian induced vibration in footbridges. ASCE J. Strict. Div., 108: 2045–2065.
www.arup.com/milleniumbridge. The Millennium Bridge. 2005-03-18.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top