跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳國和
研究生(外文):Kuo-Ho Chen
論文名稱:鋁合金替代不銹鋼作為水工閘門材料可行性評估
論文名稱(外文):Feasibility Assessment of Substituting Stainless Steel with Aluminum Alloy for Hydraulic Gate
指導教授:黃添坤黃添坤引用關係
口試委員:翁文凱陳佳萬蘇苗彬陳肇成
口試日期:2017-04-20
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:鋁合金5083水工閘門不銹鋼SUS 304L
外文關鍵詞:aluminum alloy5083hydraulic gatestainless steel SUS 304L
相關次數:
  • 被引用被引用:1
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
近年來全球受暖化氣候之改變,造成極端洪水事件,連帶使得人民傷亡與經濟損失不斷擴大,因而排水及防洪等水利工程顯得更為重要,而這些水利工程設施之控制樞紐為閘門設備。目前運用在水利工程之水工閘門材質大多採用碳鋼系列及不銹鋼系列二種系列,另外尚有特殊閘門為橡皮壩是由合成橡膠系列所製成,惟這三種閘門材料系列各有其缺點,例如重量太重、防蝕性不良,耐磨性不佳、價格昂貴等,而其中又以重量太重之因素最為嚴重,因為這項因素影響閘門操作、維護及緊急處理措施,也因而造成多次災害。因此如何選擇一種閘門新材料,既能減少閘門重量又能有足夠的安全結構強度,即成為一項值得研析以及思考之課題。
本論文是藉由5083鋁合金及SUS 304L不銹鋼二種材料多項特性的比較,評估5083鋁合金替代作SUS 304L不銹鋼為水工閘門材料之可行性。並利用PLAXIS 3D Foundation有限元素分析程式探討常用5組水工閘門規格與8種不同設計水頭,共計40個組合案例,於符合容許應力與彎曲變形之設計要求下,比較二種不同材料之閘門所需材料重量及工程經費。經由研析成果得知5083鋁合金閘門所需材料重量為SUS 304L不銹鋼閘門之37.6%~45.9%,因為使用5083鋁合金較輕之原因,使得其建造成本為SUS 304L不銹鋼閘門之49.5%~60.4%,操作營運成本也比SUS 304L不銹鋼閘門減少18%,由於5083鋁合金材料具良好之焊接性、適切強度、海水高抗腐蝕性等因此適合作為水工閘門之構件,進而替代SUS 304L不銹鋼材料作為水工閘門之使用。
In recent decades, global warming induced climate change has caused extreme flood events and associated human casualties and economy losses exhibit in a rapid upward trend. Hence hydro-projects such as drainage and flood control; have become essential. The controlled pivots of those hydraulic facilities are the gate equipments. The majority of the current hydraulic gates are made by either carbon steel or stainless steel. There are other special gates such as rubber dams with industrial synthetic rubber. The weakness of three existing hydraulic gates includes heavy weight; worse corrosion resistance, poor abrasion resistance and high cost while the last is even more serious. The heavy weight causes more difficulties in operation, maintenance and emergency handling, thus resulting in multiple disasters. Therefore the study to explore the hydraulic gate with suitable materials to reduce the weight of hydraulic gate and assure safe structural strength is a worthwhile topic.
In this paper, the feasibility of aluminum alloy 5083 as a substitute for currently used stainless steel SUS 304L on hydraulic gate is evaluated through the characteristic comparison between these two materials for hydraulic gates. Forty common cases of hydraulic gates including five sets of dimensions and eight different water heads were illustrated and analyzed using the finite element program PLAXIS 3D Foundation with the required allowable stress and flexural deformation. It shows the amount of weight for the hydraulic gates with aluminum alloy 5083 is in the range of 37.6%~45.9 % that of stainless steel SUS 304L. The main advantage in light weight using aluminum alloy 5083 brings about that the construction cost of hydraulic gates is about 49.5%~60.4% that of stainless steel SUS 304L and the operation cost can be reduced at least by 18%. Futhermore, the aluminum alloy 5083 with good welding, moderate strength and high resistance to marine corrosion is supposed to be suitable as the structural members of hydraulic gates and may become the better alternative material to replace the commonly used stainless steel SUS 304L.
中文摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
照片目錄 viii
符號說明 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法 3
1.4 研究內容 5
1.5 預期成果 6
第二章 文獻回顧 7
2.1 閘門種類 8
2.2 閘門結構 22
2.3 水工閘門材料 24
2.4 閘門結構分析模式之探討 28
2.5 台灣水工閘門之近期演變 33
第三章 研究分析方法 35
3.1 閘門材料選擇之考慮因素 35
3.2 PLAXIS 3D Foundation有限元素分析程式 40
第四章 適用性鋁合金材料之探討 43
4.1 鋁合金材料 43
4.2 鋁合金系列之選擇及評估 45
4.3 鋁合金系列適用水工閘門之優選評估 49
4.4 5083鋁合金水工閘門應用之關鍵問題探討 51
第五章 鋁合金與不銹鋼閘門材料之比較 55
5.1 材料特性之影響因子比較 55
5.2 材料使用數量比較 58
5.2.1 閘門結構配置 58
5.2.2 應力與撓度比分析 60
5.2.3 材料數量比較 74
5.3 二種閘門經濟性比較 78
5.3.1 初建成本 78
5.3.2 營運成本 79
5.4 節能減碳效果 79
第六章 結論與建議 81
6.1 結論 81
6.2 建議事項 83
參考文獻 84
1.李毓傑,「灌溉排水工程設計-閘門篇」,台灣省水利局,(1981)。
2.周春禧、羅守枝,「高壓滑動閘門門體結構之有限元素分析」,台灣水利季刊,第45卷,第4期,第73~81頁,(1997)。
3.第十河川局,「淡水河閘門資訊」,經濟部水利署,(2016)。
4.國家災害防救科技中心,「IPCC特別報告:促進氣候變遷調適之風險管理-針對極端事件及災害-給決策者摘要」,20頁,(2013)。
5.唐霸工程顧問有限公司,「閘門機電工程設計步驟及要點」,臺中,(1991)。
6.陳伸賢,「氣候變遷對水利工程挑戰與調適」,水利會訊,第13期,第22~33頁,(2010)。
7.陳奕安,「基因演算法於FRP水門結構之最佳化設計」,碩士論文,國立臺灣海洋大學輪機工程研究所,(2006)。
8.陳國和,「閘門應用於建築擋水之研究」,碩士論文,國立臺灣海洋大學河海工程研究所,(2002)。
9.黃武雄,「台北市抽水站閘門組之結構安全分析研究」,碩士論文,國立台北科技大學機電整合工程研究所,(2004)。
10.黃識錩,「混凝土材料應用於自動水門扇工程性質之研究」,碩士論文,國立嘉義大學土木與水資源工程學系研究所,(2013)。
11.羅守枝,「水庫高壓滑動閘門結構及流場分析」,碩士論文,屏東科技大學,(2000)。
12.ASM International, “Handbook Committee, & ASM International. Alloy Phase Diagram Committee. Metals Handbook: Properties and Selection (Vol. 2)”, ASM International, (1990).
13.Brian, E. P., “General Corrosion Resistance Comparisons of Medium and High-Strength Aluminum Alloys for DOD Systems Using Laboratory-Based Accelerated Corrosion Methods”, Army Research Laboratory Aberdeen Proving Ground, MD 21005-5066, (2009).
14.Bureau of Reclamation, “Design Standards No. 7: Valves, Gates, and Steel Conduits”, United States Department of the Interior, Denver, USA, (1956).
15.Dalton, J. C. “Design of Hydraulic Steel Structures” Department of The U.S. Army Corps of Engineers, (2014).
16.Electric Power Civil Engineering Association, “Sluice Gate and Iron Pipe”, Technology Reference (Fifth Edition). Japan, (2015).
17.Global International Futures Market (2016). Retrieved August 3, 2016 from https://www.cnyes.com/futures/steelchart/SSPI.html.
18.Hobart Brothers Company, “Guide for Aluminum Welding”, Troy, Turkey, (2013).
19.Kaufman, J. G. “Properties of Aluminum Alloys-Tensile Creep and Fatigue Data at High and Low Temperatures”, The Aluminum Association, (2006).
20.Li, D. Q. and Chang X. L., “Development of Reliability Anaysis for Hydraulic Steel Gates”, Journal of Yangtze River Scientific Research Institute, Vol. 24, No. 2, (2007).
21.McCarthy, J. J., “Climate Change Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change”, Cambridge University, Cambridge, United Kingdom, (2001).
22.Plaxis bv, “PLAXIS 3D User Manual, Version 2”, P. O. Box 572, 2600 AN DELFT, Netherlands, (2007).
23.Polmear, I. J., “Light Alloys Arnold”, London, UK, (1995).
24.Qi, D., Li, J., Dong, L. and Yu, J. “Comparison of Corrosion Resistance of Nickel Saving Stainless Steels,” Corrosion & Protection, Vol. 31, No. 10, (2010).
25.Ren, Y. S., “Study on Estimation of Remaining Life of Members of Existing Hydraulic Steel Gate ” , Engineering Journal of Wuhan University, Vol. 38, No. 6, pp. 62-65, (2005).
26.The Aluminum Association,“International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys”, Arlington, Virginia, USA, (2015).
27.U.S. Army Corps of Engineers, “Design of Hydraulic Steel Structures”, Washington, D.C., USA, (2014).
28.Vasuderan, A. K. and Doherty, R. D. “Aluminum Alloys -Contemporary Research and Applications”, Treatise on Materials Science and Technology Vol. 31, (1989).
29.Wang, S., Chen, L. and Y. Zhao , “Study on Galvanic Corrosion Behaviors of TA2 titanium alloy & 5083 aluminum alloys and connection technology”, Journal of Jiangsu University of Science and Technology (Natural Science Edition), 26, 2, (2012).
30.Wholesale Procurement 1688 (2016). Retrieved August 3, 2016 from https://www.1688.com/chanpin/-35303833C2C1BACFBDF0.html.
31.Wikipedia, the free encyclopedia (2016). Aluminum Alloy Retrieved August 3, 2016 from https://en.wikipedia.org/wiki/Aluminium_alloy.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top