跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石嵩碩
研究生(外文):Sung-Shuo Shih
論文名稱:細菌在水泥材料中之礦化反應研究
論文名稱(外文):Mineralization Reaction of Bacteria in Cement Materials
指導教授:陳豪吉陳豪吉引用關係
口試委員:黃玉麟李明君
口試日期:2017-07-03
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:微生物Bacillus pasteurii微生物誘導碳酸鈣沉積(MICP)水灰比水泥砂漿強度
外文關鍵詞:Bacillus pasteuriimicrobial induced calcium precipitation (MICP)water-cement ratiocement mortar strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
混凝土材料的利用在台灣是十分普遍,但因混凝土材料本身水化作用過程中產生的孔隙和微小裂縫或因施工不當所造成裂縫,將使得混凝土耐久性降低。本文利用自然界存在的微生物Bacillus pasteurii自身代謝作用所產生的微生物誘導碳酸鈣沉積(microbial induce calcium participation,MICP),在水化作用的過程中由混凝土內部自行填補孔隙及裂縫,以增加混凝土強度進而提高耐久性之可行性探討。
本研究主要想了解水化作用中微生物MICP的成效,以水泥砂漿在0.3、0.4、0.5、0.6不同水灰比下分別設計不同水泥砂漿配比,在其中添加微生物Bacillus pasteurii、尿素及不同劑量的硝酸鈣,並分別取得3天、7天、14天、28天的水泥砂漿抗壓強度比較之,研究結果顯示,除了水灰比0.3組水泥砂漿強度明顯提升外,其餘組別並無強度明顯提升情形,另外添加額外硝酸鈣作為鈣源時,並無提升效益,反而因為添加量過多時有造成強度降低之情形,由以上實驗可知微生物Bacillus pasteurii基本是可以提升水泥砂漿的強度,但會因為的配比差異性,而無法發揮其效益。
Cement-based materials are prevalently used in Taiwan. However, voids and micro-cracks generated during hydration of concrete and cracks caused by poor construction quality may all reduce the durability of concrete. This study used the microbial induced calcium precipitation (MICP) generated from metabolism of a microorganism, Bacillus pasteurii, to drive concrete’s self-sealing and healing of voids and cracks during hydration, as a means to increase the strength and durability of the concrete.
The purpose of this study was to investigate the effect of Bacillus pasteurii on concrete hydration. In the experiment, coarse aggregates in the concrete were filtered out. Cement mortar samples with varied water-cement ratios, including 0.3, 0.4, 0.5, and 0.6, were prepared and added with Bacillus pasteurii, urea, and varied volumes of calcium nitrite. The compressive strength of each cement mortar sample was measured on Day 3, Day 7, Day 14, and Day 28. Results indicated that no significant improvement in compressive strength was found in all the samples, except the sample prepared with a 0.3 water-cement ratio. Besides, for samples additionally added with calcium nitrite as a source of calcium, the addition did not lead to higher strength, and an excessive amount of calcium nitrite would contrarily result in lower strength. The experimental results confirmed that basically, Bacillus pasteurii can promote the strength of cement mortar, but its effect varies by water-cement ratio.
目次
誌謝 i
摘要 ii
Abstract iii
目次 iv
表目錄 vii
圖目錄 viii
照片目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機及目的 3
1.3研究內容及方法 4
1.4研究流程圖 5
第二章 文獻回顧 6
2.1卜特蘭水泥 6
2.1.1卜特蘭水泥之製造與組成 6
2.1.2卜特蘭水泥之水化反應與產物 6
2.2卜作嵐材料 8
2.2.1卜作嵐材料之定義與分類 8
2.2.2飛灰 8
2.2.3爐石 9
2.3混凝土仿生礦化(Concrete Biomimetic mineralization) 10
2.3.1仿生礦化定義及介紹 10
2.3.2混凝土仿生礦化 11
2.3.3碳酸鈣 11
2.4微生物誘導碳酸鈣結晶(microbial induce carbonate precipitation) 12
2.5微生物Bacillus pasteurii菌 12
2.6微生物應用水泥基材料的修復 13
2.7微生物作用之機理 14
2.8外界條件對微生物沉積碳酸鈣的影響 15
2.8.1pH值的影響 15
2.8.2環境溫度的影響 16
2.8.3細胞濃度的影響 17
2.9微生物性誘導碳酸鈣沉澱之應用 18
2.9.1降低材料之滲透性 18
2.9.2混凝土裂縫之修補 18
2.9.3砂柱之膠結 19
第三章 試驗規劃 34
3.1試驗目的 34
3.2試驗材料的與基本性質 34
3.3試驗設備及儀器 35
3.4生物水泥砂漿的配比設計 35
3.5微生物水泥砂漿的試體製作 35
第四章 結果與討論 45
4.1微生物水泥砂漿抗壓強度 45
4.2水灰比0.3抗壓強度 45
4.3水灰比0.4抗壓強度 47
4.3水灰比0.5及0.6抗壓強度分析 48
第五章 結論與建議 54
5.1結論 54
5.1建議 55
參考文獻 56
[1]S. Mindess, J. F. Young, and D. Darwin. "Concrete. 2nd edition", Upper Saddle River, NJ: Prentice Hall, 2003.
[2]塗耕業,“水泥漿體添加卜作嵐材料之水化特性研究”,國立中興大學土木工程系碩士論文,2007。
[3]S. H. Kosmatka, B. Kerkhoff, and W. C. Panarese, Design and Control of Concrete Mixtures, 14th Edition, EB001.14T, Portland Cement Association, Skokie, IL, 2002.
[4]黃兆龍,“混凝土性質與行為”,詹氏書局,2003.
[5]CNS 61,“卜特蘭水泥”,1996年12月。
[6]行政院公共工程委員會,“公共工程施工綱要規範”,2000年8月。
[7]行政院公共工程委員會,公共工程飛灰混凝土使用手冊
[8]黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,民國75年12月。
[9]沈得縣,“高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影響之研究”,國立台灣工業技術學院博士論文,pp.13~18,民國80年。
[10]中國國家標準CNS9661 新拌混凝土空氣含量檢驗法、CNS12223 水淬高爐爐渣。
[11]ACI Committee 226, "Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete", ACI Materials Journal, pp 327-342, July-August, 1987.
[12]林炳炎,“飛灰、矽灰、高爐爐石用在混凝土中”,1993。
[13]K. Naka, Y. Chujo, Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates, Chem. Mater. 13 (2001) 3245
[14]D. C. Park, Carbonation of concrete in relation to CO2 permeability and degradation of coatings, Constr. Build. Mater. 22 (2008) 2260
[15]H. Nebel, M. Neumann, C. Mayer and M. Epple,On the Structure of Amorphous Calcium CarbonateA Detailed Study by Solid-State NMR Spectroscopy,Inorganic Chemistry 47(2008) 7874
[16]E.T. Sundquist, K. Visser,The Geologic History of the Carbon Cycle, Treatise on Geochemistry 8(2004) 425
[17]Y. Chen, X. Ji, G. Zhao, X. Wang, Facile preparation of cubic calcium carbonate nanoparticles with hydrophobic properties via a carbonation route, Powder Technol. 200 (2010)144
[18]D. –K. Keum, K. –M. Kim, K. Naka, Y. Chujo, Preparation of hydrophobic CaCO3 composite particles by mineralization with sodium trisilanolate in a methanol solution, J. Mater. Chem. 12 (2002) 2449
[19]Bang, S. S., Galinat, J. K., and Ramakrishnan, V. (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microb. Technol. 28, 404-409.
[20]Bachmeier, K. L., Williams, A. E., Warmington, J. R., and Bang, S. S. (2002) Urease activity in microbiologically-induced calcite
[21]Day, J. L., Ramakrishnan, V., and Bang, S. S. (2003) Microbiologically induced sealant for concrete crack remediation. Proceedings of the 16th Engineering Mechanics Conference, Seattle, WA.
[22]DeJong, J. T., Fritzges, M. B., and Nüsslein, K. (2006) Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenv. Eng. 132, 1381-1392.
[23]Fernandes, P. (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol. Biotechnol. 73, 291–296.
[24]Perito, B., and Mastromei, G (2003) Conservation of monumental stones by bacterial biomineralization. Microbiol. Today 30, 113–114.
[25]Mitchell, J. K., and Santamarina, J. C. (2005). “Biological considerations in geotechnical engineering.” ASCE Geotechnical Engineering Journal, 131(10), 1222-1233.
[26]De Muynck, W., Cox, K., De Beli, N., et al. (2007) Bacterial carbonate precipitation as an alternative surface treatment for concrete [J]. Constr Build Mater, doi:10.1016/j.conbuildmat. 2006.12.011.
[27]Nemati, M., Voordouw, G. (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically76 [J]. Enzyme Microb Technol, 33(5): 635–642.
[28]Stocks-fischer, S., Galinat, J K., Bang, S. S. Microbiological precipitation of CaCO3 [J]. Soil Biol Biochem, 1999, 31(11): 1 563–1 571.
[29]Rodriguez, N. C., Rodriguez, G. M., Ben C. K., et al. (2003) Conservation of ornamental stone by myxococcus xanthium-induced carbonate biomineralization [J]. Appl Environ Microbiol, 69(4): 2 182–2 193.
[30]Dick, J., De Windt, W., De Graef, B., et al. (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species [J]. Biodegradation, 17(4): 357–367.
[31]Tiano, P. (1995) Stone reinforcement by calcite crystals precipitation induced by organic mat rix macromolecules [J]. Studies in Conservation, 40 (3):171~176.
[32]Ruixing, W. Chunxiang, Q. Jianyun, W. Study on Microbiological precipitation of CaCO3. 東南大學學報(自然科學版)
[33]Kitamura, M., Konno, H. (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions [J]. Journal of Crystal Growth, (236): 323-332.
[34]Zeshan, H., Yulin, D. (2003) Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants [J]. Journal of Colloid and Interface Science, (266): 359-365.
[35]Ramakrishnan, V., Ramesh, K. P., Bang. S. S. (2001) Bacterial Concrete [C]. Proceedings of SPIE, 4234, Smart Material s, Alan R. Wilson, Hiroshi Asanuma, Editors, 168~176.
[36]Lirong Zhong, M.R. Islam. 一種新型微生物封堵裂縫的試驗研究. 國外油田工程.
[37]Zeshan, H., Yulin, D. (2004) Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate [J]. Powder Technology, (140):10-16.
[38]Liang, C., Chun-Xiang, Q., Rui-Xing, W. and Jian-Yun, W. Study on the Mechanism of Calcium Carbonate Formation Inducedby Carbonate-mineralization Microbe. 東南大學學報(化學)
[39]Ruixing, W., Chunxiang, Q. Restoration of Defects on the Surface of Cement-Based Materials by Microbiologically precipitated CaCO3. 東南大學學報(矽酸鹽).
[40]Hill, D. D. (2002) Sleep B. E. Effects of biofilm growth on flow and transport through a glass parallel plate f racture[J]. Journal of Contaminant Hydrology, 56, 227~246.
[41]LI Pei-hao,QU Wen-jun. State of Art in Application of Bioremedying and Bioreinforceing Materials in Civil Engineering. Vol.26, No5. 材料科學與工程學報.
[42]陳貽瑱,“生物基材自癒混凝土”,國立中興大學土木工程系碩士論文,2016。
[43]郭義浩,“奈米生物學技術應用在混凝土材料可行性之評估”國立中興大學土木工程系博士論文,2015。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top