(44.192.112.123) 您好!臺灣時間:2021/03/01 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖政彥
研究生(外文):Cheng-Yen Liao
論文名稱:鋼構接頭受偏心載重之改善分析與設計
論文名稱(外文):Improved Analysis and Design of Steel Connections under Eccentric Loads
指導教授:呂東苗
口試委員:宋文沛徐耀賜楊錫麟蕭博謙
口試日期:2017-06-29
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:114
中文關鍵詞:瞬時旋轉中心偏心載重焊接接頭螺栓接頭
外文關鍵詞:Instantaneous center of rotationeccentric loadweld connectionbolt connection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
鋼構造接頭中廣泛存在承受偏心載重的銲接接頭與螺栓接頭,諸如樑柱接合、梁與梁接合及托架等即為典型的承受偏心載重接頭。美國鋼結構協會(AISC)設計手冊使用彈性方法與瞬時旋轉中心法加以分析此類型接頭的設計強度。彈性方法較簡易,但通常得出過度保守的結果,而瞬時旋轉中心法雖可得到精確的結果,但其計算過程則顯得冗長繁瑣。目前的AISC設計手冊採用係數C值來評估接頭的設計強度,並提供了設計表格供使用者直接查閱各式螺栓群或銲接型態的接頭設計強度。但設計手冊只提供了六個特定角度的C值(0°, 15°, 30°, 45°, 60°, 75°),對於其他的角度,依設計手冊的建議,避免使用直線內插法,必須採用直接分析的方法或在相鄰的特定角度之間採用較低的C值。對於其他的螺栓群配置或銲接型態,則必須採用直接分析的方法。遂此,本研究依據瞬時旋轉中心法的理論發展了一套直接分析流程,可普遍的應用在各種型態的螺栓群配置或銲接型態,並嘗試簡化繁瑣的直接分析,提出可評估任意角度偏心載重下接頭強度的非線性內插分析模式。應用此內插模式不僅計算快速簡單,而且相當精確。不僅避免冗長的計算,也無須在相鄰的特定角度之間採用較低的C值而犧牲分析的精確度。本研究克服了現行AISC設計手冊上的缺陷,在鋼結構承受偏心載重接頭的分析上,提供了快速且可靠的改善設計方法。
Fillet welded joints and bolted joints are widely used in steel construction. Eccentric loading of connections is often unavoidable. Eccentric connections occur in beam-to-column connections, web splice connections of beam, and bracket supports attached to column flanges. The American Institute of Steel Construction (AISC) permits the use of elastic and instantaneous center of rotation (IC) methods to analyze eccentric loaded connections. The elastic method normally yields relatively conservative designs and the IC method, which provides more realistic analyses, is rather complex and tedious. The current AISC manual provides tables for determining coefficient C, which are used to obtain the design strength of bolt group or weld patterns. However, the tables provide values for only six angles of inclination (θ  0°, 15°, 30°, 45°, 60°, and 75°). For other angles, either a direct analysis must be performed or the values for the next lower angle increment in the tables should be used for design is recommended in the manual except straight-line interpolation. This work develops an iterative algorithm to implement a direct analysis, and proposes a rational interpolation method between C values for loads at various angles not tabulated in manual tables without the tediousness of the IC method. The proposed method is easy to implement but reasonably accurate instead of using the C values for the next lower angle increment in the tables or direct analysis. This work eliminates the current limitations on AISC design manuals. It provides a quick but reliable improvement for the analysis and design of bolted or welded groups under eccentric loads in plane.
摘 要 i
Abstract ii
Contents iii
List of Figures v
List of Tables viii
Chapter 1 Introduction 1
1.1 General 1
1.2 Objectives and Scope 5
Chapter 2 Literature Review 7
2.1 Load-Deformation Relationship of a Bolt under Eccentric Loads 9
2.2 Available Studies on Bolted Groups under Eccentric Loads in Plane 10
2.3 Load-Deformation Relationship of Fillet Welds under Eccentric Load 14
2.4 Available Studies on Welded Groups under Eccentric Loads in Plane 18
2.5 Existing Iterative Algorithm for Locating the IC 20
2.6 Available Studies on Eccentrically Loaded Weld Joints Out-of-Plane 26
Chapter 3 Methods of Strength Evaluation 29
3.1 Instantaneous Center of Rotation Method 29
3.1.1 Determination for Instantaneous Center of Rotation 31
3.1.2 Optimum Algorithm of Step Size 41
3.2 Proposed New Model 46
3.3 Existing Strength Evaluation Models on Eccentrically Loaded Bolted Joints 51
3.4 Existing Strength Evaluation Models of Eccentrically Loaded Weld Joints 54
Chapter 4 Comparisons of Various Methods on Bolt Groups 58
4.1 Example of Bolt Groups 58
4.2 Discussions 62
Chapter 5 Comparisons of Various Methods on Fillet Welds 71
5.1 Example of C-shaped Welds 71
5.2 Example of Inverted L-shaped Welds 92
5.3 Example of Welds under Eccentric Loads Normal to the Plane of the Faying Surface 98
Chapter 6 Conclusions and Further Studies 105
Nomenclature 108
References 111
Abolitz, A. L. (1966), “Plastic design of eccentrically loaded fasteners”, Engineering Journal, American Institute of Steel Construction, 3 (3), 122–131.
AISC (1989), “Manual of steel construction: allowable stress design”, 9th edition, Chicago, IL. American Institute of Steel Construction.
AISC (1986), “Manual of steel construction: load and resistance factor design”, 1st edition Chicago, IL. American Institute of Steel Construction.
AISC (1993), “Manual of steel construction: load and resistance factor design”, 2nd edition, Chicago, IL. American Institute of Steel Construction.
AISC (1999), “Manual of steel construction: load and resistance factor design”, 3rd edition, Chicago, IL. American Institute of Steel Construction.
AISC (2005), “Steel construction manual”, 13th edition, Chicago, IL. American Institute of Steel Construction.
AISC (2010), “Steel construction manual”, 14th edition, Chicago, IL. American Institute of Steel Construction.
Brandt, G.D. (1982), “A General Solution for Eccentric Loads on Weld Groups.” Engineering Journal, AISC, 19 (3), 150-159.
Brandt, G.D., (1982), “Rapid Determination of Ultimate Strength of Eccentrically Loaded Bolt Groups”, Engineering Journal, AISC, 19 (2), 94-100.
Butler, L.J. and G.L. Kulak, (1971), “Strength of Fillet Welds as a Function of Direction of Load”, Welding Journal, Welding Research Supplement, 36(5):231-34
Butler, L.J., Pal, S., and G.L. Kulak, (1972), “Eccentrically Loaded Welded Connections”, Journal of the Structural Division, ASCE, 98 (5), 989-1005.
Clark, P.J. (1971), “Basis of Design for Fillet-Welded Joints under Static Loading”, Proceedings of Conference on Improving Welded Product Design, The Welding Institute, Cambridge, England, Vol. 1, 85-96.
Crawford, S.H. and G.L. Kulak, (1971), “Eccentrically Loaded Bolted Connections”, Journal of the Structural Division, ASCE, 97 (3), 765-783.
Dawe, J.L. and G.L. Kulak, (1972), “Behavior of Welded Connections under Combined Shear and Moment”, Structural Engineering Report 40, Department of Civil Engineering, University of Alberta, Edmonton, AB.
Fisher, J.W. and G.L. Kulak, (1967), “Discussion on Plastic Design of Eccentrically Loaded Fasteners”, Engineering Journal, AISC, 4(2), 88-89.
Higgins, T.R. (1964), “New Formula for Fasteners Loaded Off Center”, Engineering News Record, published on May 21.
Higgins, T.R. and F.R. Preece, (1969), “Proposed Working Stresses for Fillet Welds in Building Construction”, Engineering Journal, AISC, Vol. 6(1), 16-20.
Higgins, T.R. (1971), “Treatment of Eccentrically Loaded Connections in the AISC Manual”, Engineering Journal, AISC, Vol. 8(2),52-54.
Iwankiw, N.R. (1987), “Design for eccentric and inclined loads on bolt and weld groups”, Engineering Journal, AISC, 24 (4), 164-171.
Kamtekar, A.G. and W.H. Wittrick, (1984), “Limit Analysis of Fastener Groups under Eccentric Load”, International Journal for Numerical Methods in Engineering, Vol. 20(6), 1131-1151.
Kiefer, J. (1953), “Sequential minimax search for a maximum”, Proceeding of the American Mathematical Society, 4(3), 502-506, doi:10.2307/2032161.
Kulak, G.L. and P.A. Timmler, (1984), “Tests on Eccentrically Loaded Fillet Welds”, Structural engineering Report 124, Department of Civil Engineering, University of Alberta, Edmonton, Alberta, Canada.
Kulak, G.L., J.W. Fisher and J.H.A. Struik, (1987), “Guide to design criteria for bolted and riveted joints”, 2nd edition, John Wiley & Sons.
Kwan, Y.K. and G.Y. Grondin, (2008), “Strength of Welded Joints under Combined Shear and Out-of-plane Bending”, Structural Engineering Report 280, Department of Civil Engineering, University of Alberta, Edmonton, AB, Canada.
Lesik, D.F. and D.J.L. Kennedy, (1990), “Ultimate Strength of Fillet Welded Connections Loaded in Plane”. Canadian Journal of Civil Engineering, 17 (1), 55-67.
Ligtenberg, F.K. (1968), International Test Series Final Report, IIW Doc. XV-242-68, International Institute of Welding.
Lue, D.M., C.Y. Liao, C.C. Chang and W.T. Hsu, (2017), “Improved Analysis of Bolted Shear Connection under Eccentric Loads”, Journal of Marine Science and Technology. (in press)
Miazga, G.S. and D. J. L. Kennedy, (1989), “Behaviour of Fillet Welds as a Function of the Angle of Loading”, Canadian Journal of Civil Engineering, 16(4), 583-599.
Nocedal, J. and J.W. Stephen, (1999), Numerical optimization, 1st edition, New York: Springer.
Orr, D.M.F. (1982), “The strength of eccentrically loaded shear connections”, Journal of Constructional Steel Research, 2(1), 3-9.
Sisam, C.H. and W.F. Atchison, (1955). Analytic Geometry, 3rd edition, New York: Holt, Rinehart and Winston, Inc.
Su, R.K.L. and W.H. Siu, (2007), “Nonlinear response of bolt groups under in-plane loading”, Engineering Structures, 29, 626-634.
Tide, R.H.R (1980), “Eccentrically loaded weld groups – AISC Design Tables”, Engineering Journal, AISC, 17(4), 90-95.
Yarimci, E. and R.G. Slutter, (1963), “Results of Tests on Riveted Connections”, Fritz Engineering Laboratory, Report 200.63.401.1, Bethlehem, Pennsylvania, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔