跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃雅霏
研究生(外文):Ya-Fei Huang
論文名稱:依實際量測資料於建築結構層間勁度與阻尼之識別
論文名稱(外文):Story Stiffness and Damping Identification of Buildings Based on Real Measurements
指導教授:林其璋林其璋引用關係
口試委員:朱世禹盧煉元王哲夫
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:損壞指標系統識別損壞評估
外文關鍵詞:Damage indexsystem identificationstory stiffness and damping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本文為建築結構健康監測與損壞評估之實務應用研究,依結構實測動態反應紀錄經由積分器處理,推導力平衡方程式,識別出層間勁度。接著,由識別之層間勁度的變化作為結構損壞之指標,進而識別出層間阻尼,並以識別阻尼做為設定阻尼值效益之驗證。另外,考量量測之不足,設立一擬勁度值並探討擬勁度之便利性與局限。
首先依NCREE標竿結構建立一簡單三層樓鋼結構進行層間勁度、阻尼之識別,確定識別方法之適用性。接著介紹與三聯科技合作研究目標結構,位於台北之八層樓建築結構及其感應器裝設位置,並依多筆實測地震量測反應,輸出各樓層量測訊號經由積分器處理,應用運動方程式,識別出層間勁度。由於真實結構並無損壞,因此利用ETABS結構分析軟體依據結構圖與實測前三模態頻率,建立相應之有限元素分析模型,並依照建築物可能發生之破壞模式進行損壞評估。
研究方法為在ETABS進行動力歷時分析,輸出各層加速度反應,應用本方法識別結構參數,利用破壞前後之參數計算層間損壞指標,以評估結構損壞位置以及損壞程度,並驗證本法於實際應用時之準確性及實用性。
In this study, according to floor acceleration response measurements, the story drifts are obtained by the integrator. Force balance equation above the identified story is then introduced to identify the story stiffness. The change of the story stiffness is regarded as the index of structural damage. After this, the story damping coefficient is also identified from story force balance. The identified damping coefficient is used as the verification of the designated damping value and the performance of the damper equipped. In addition, with the consideration of limited number of measurements, the psudo stiffness is established and explored its workability.
To verify the applicability of the proposed method, the NCREE three-story benchmark steel building structure is employed for the identification of story stiffness and damping coefficients. Then, an eight-story RC building structure located in Taipei city is investigated. This building was built and fully instrumented with accelerometers by the Sanlien technology cooperation. According to several earthquake-induced acceleration response measurements, the inter-story drifts are calculated through the integrator processing and used in the force balance equations to identify the story stiffness. Because of the real structure is not damaged, the finite element model is generated and updated by the ETABS computer program based on structural configuration and measured modal frequencies.. The damage assessment is carried out based on the damage pattern that the building may occur.
First, the dynamic responses of floor accelerations calculated from the ETABS program are analyzed. The proposed method is then used to identify the story stiffness and damping coefficients. The damage indices are calculated by using the story stiffness before and after the failure to evaluate the damage location and the degree of damage. The accurate identified results show the applicability of the proposed method.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 系統識別理論 3
1.2.2 損壞指標 6
1.3 本文內容 9
第二章 層間勁度與阻尼識別之理論 10
2.1 狀態空間模型 10
2.1.1 連續時間狀態空間方程式 11
2.1.2 離散時間狀態空間方程式 13
2.1.3 馬可夫參數之唯一性 14
2.1.4 隨機狀態空間方程式 15
2.2 依量測數據識別層間勁度 17
2.2.1 積分器處理介紹 17
2.2.2 運動方程式推導識別層間勁度之方法 18
2.2.3 變異數介紹 19
2.3 依量測數據識別層間阻尼 20
第三章 以平面剪力模型驗證 21
3.1 NCREE三層標竿鋼結構之基本資料 21
3.2 層間勁度之識別 22
3.3 層間阻尼之識別 22
第四章 以ETABS三維模型驗證 23
4.1 量測資料座標轉換技巧 23
4.2 模擬NCREE模型之結果與比較 25
4.3 不同破壞模式之識別層間勁度與阻尼 26
第五章 以八層樓實際模型驗證 28
5.1 八層結構之基本資料 28
5.1.1 結構之基本架構與材料特性 28
5.1.2 量測技術及配置 28
5.2 依實際量測資料識別層間勁度 29
5.3 數值模擬破壞識別層間勁度 30
第六章 結論與建議 32
參考文獻 34
1.Zadeh, L. A., “On the Identification Problem”, IRE Transactions on CircuitTheory, Vol. 3, Issue 4, pp. 277-281, 1956.
2.Ljung, L., System Identification: Theory for the User, 1st Edition,
Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
3.Ljung, L., System Identification: Theory for the User, 2nd Edition,
Prentice-Hall, Upper Saddle River, New Jersey, 1999.
4.Juang, J. N., Applied System Identification, Prentice-Hall, Englewood Cliffs,New Jersey, 1994.
5.Eykhoff, P., System Identification: Parameter and State Estimation, John
Wiley & Sons, London, England, 1974.
6.Astrom, K. J., and Eykhoff, P., “System Identification - A Survey”,
Automatica, Vol. 7, No. 2, pp. 123-62, Mar. 1971.
7.Den Hartog, J. P., Mechanical Vibrations, 4th Edition, McGraw-Hill, NewYork, U.S.A., 1962.
8.Juang, J. N., and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”, Journal of Guidance,Control and Dynamics, Vol. 8, No. 5, pp. 620-627, 1985.
9.Ewins, D. J., Modal Testing: Theory and Practice, Research Studies PressLTD., 1st Edition, Hertfordshire, London, 1986.
10.Chopra, A. K., Dynamics of Structures: Theory and Applications to EarthquakeEngineering, Prentice-Hall, New Jersey, U.S.A., 2001.
11.Ho, B. L., and Kalman, R. E., “Effective Construction of Linear
State-Variable Modal from Input/Output Data”, Regelungstechnik 14, pp.545-648, 1966.
12.Zeiger, H.P., and McEwen, A. J., “Approximate Linear Realization of GivenDimension via Ho’s Algorithm”, IEEE Transactions Automatic Control, Vol.AC-19, No-2, pp. 53, 1974.
13.Kung, S. Y., “A New Identification and Modal Reduction Algorithm via Singular Value Decomposition”, the 12th Asilomar Conference on Circuits,Systems and Computers, pp. 705-714, Asilomar, California, U.S.A., 1974.
14.Juang, J. N., Cooper, J. E., and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations(ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1,pp. 5-14, 1988.
15.Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W.,“Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments”,Journal of Guidance, Control and Dynamics, Vol. 16, No. 2, pp. 320-329,1993.
16.Moonen, M., Demoor, B., Vandenberghe, L., and Vandewalle, J., “On- and Off-Line Identification of Linear State-Space Models”, International Journalof Control, Vol. 49, pp. 219-232, 1989.
17.Moonen, M., and Vandenberghe, L., “QSVD Approach to On- and Off-LineState-Space Identification”, International Journal of Control, Vol. 50, pp.1133-1146, 1990.
18.Verhaegen, M., “Subspace Model Identification: Part 1 - The Output-ErrorState-Space Model Identification Class of Algorithms”, InternationalJournal of Control, Vol. 56, No. 5, pp. 1187-1210, 1990.
19.Juang, J. N., “State-Space System Realization with Input- and Output-Data Correlation”, NASA Technical Paper 3622, 1997.
20.林其璋, 吳侑霖, 王傑兒, “應用地震記錄之建築結構系統識別”, 八十八年「電子計算機於土木水利工程應用」研討會, Vol. 1, pp.271-278, 臺中,2000.
21.Peeters, B., and De Roeck, G., “Stochastic System Identification forOperational Modal Analysis: A Review”, Journal of Dynamic Systems,Measurements, and Control, ASME, Vol. 123, pp. 659-667, 2001.
22.Brincker, R., Zhang, L., and Andersen, P., “Modal Identification of
Output-Only Systems Using Frequency Domain Decomposition”, Smart
Materials and Structures, Vol. 10, pp. 441-445, 2001.
23.Parloo, E., Guillaume, P., and Cauberghe, B., “Maximum Likelihood
Identification of Non-Stationary Operational Data”, Journal of Sound andVibration, Vol. 268, pp. 971-991, 2003.
24.Fonseca, J. R., Friswell, M. I., Mottershead, J. E., and Lees, A. W.,
“Uncertainy Identification by the Maximum Likehood Method”, Journal ofSound and Vibration, Vol. 288, pp. 587-599, 2005.
25.Ibrahim, S. R., and Mikulcik, E. C., “The Experimental Determination of
Vibration Test Parameters from Time Responses”, 46th Shock and VibrationBulletin, pp. 187-196, 1976.
26.Cole, H. A., “On-line Failure Detection and Damping Measurement of AerospaceStructures by Random Decrement Signatures”, NASA CR-2205, 1973.
27.Cole, H. A., Method and Apparatus for Measuring the Damping Characteristics of a Structure, United State Patent No. 3620069, 1971.
28.Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., and Cook, M. F., “AMathematical Basis for the Random Decrement Vibration SignatureAnalysis Technique”, Journal of Mechanical Design, Vol. 104, pp.307-313,1982.
29.James, G. H., Carne, T. G., Lauffer, J. P., and Nard, A. R., “Modal TestingUsing Natural Excitation”, In Proceedings of the 10th IMAC, San Diego,California, U.S.A., February 3-7 1992.
30.Van Overschee, P., and De Moor, B., Subspace Identification for Linear Systems: Theory-Implementation-Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
31.Peeters, B., and De Roeck, G., “Reference-Based Stochastic Subspace Identification for Output-Only Modal Analysis”, Mechanical Systems and Signal Processing, Vol.13, No.6, pp. 855-878, 1999.
32.Peeters, B., “System Identification and Damage Detection in Civil Engineering”,Ph.D. thesis, Department of Civil Engineering, Katholieke Universiteit Leuven, Belguim, 2000.
33.Lin, C. C., Wang, J. F., Ueng, J. M., “Vibration Control Identification of Seismically-Excited MDOF Structure-PTMD Systems”, Journal of Soundand Vibration, Vol. 240, No. 1, pp. 87-115, 2001.
34.Lin, C. C., Hong, L. L., Ueng, J. M., Wu, K. C., and Wang, C. E., “Parametric Identification of Asymmetric Buildings from Earthquake Response Records”, Smart Materials and Structures, Vol. 14, pp. 850-861,2005.
35.Zhang, L., Brincker, R., and Anderson, P., “An overview of operational modal Analysis: Major Development and Issues”, IOMAC, Copenhagen,
2005.
36.Van Overschee, P., and De Moor B., “Subspace Algorithm for the StochasticIdentification Problem”, In Proceedings of the 30th IEEE Conference onDecision and Control, pp. 1321-1326, 1991.
37.Van Overschee, P., and De Moor, B., “Subspace Algorithms for the Stochastic Identification Problem”, Automatic, Vol. 29, No. 3, pp. 649-660,1993.
38.Peeters, B., De Roeck, G., Pollet, T., and Schueremans, L., “Stochastic
Subspace Techniques Applied to Parameter Identification of Civil Engineering Structure”, In Proceedings of the International Conference MV2on New Advances in Modal Synthesis of Large Structures, Non-Linear,Damped and Non- Deterministic Cases, pp. 151-162, Lyon, France, October1995.
39.Kompalka, A. S., Reese, S., and Bruhns, O. T., “Experimental Investigationof Damage Evolution by Data-Driven Stochastic Subspace Identification andIterative Finite Element Model Updating”, Archive of Applied. Mechanics,Vol. 77, No. 8, pp. 559-573, Aug. 2007.
40.Mevel, L., Basseville, M., and Goursat, M., “Stochastic Subspace-Based Structural Identification and Damage Detection-Application to the Steel-Quake Benchmark”, Mechanical Systems and Signal Processing, Vol.17, No. 1, pp. 91-101, 2003.
41.Mevel, L., Basseville, M., and Goursat, M., “Stochastic Subspace-Based Structural Identification and Damage Detection-Application to the Z24 Bridge Benchmark”, Mechanical Systems and Signal Processing, Vol. 17, No.1, pp. 143-151, 2003.
42.Yu, D. J., and Ren, W. X., “EMD-Based Stochastic Subspace Identificationof Structures from Operational Vibration Measurements”, EngineeringStructures, Vol. 27, Issue 12, pp. 1741-1751, Oct. 2005.
43.Fan, K. Q., Ni, Y. Q., and Gao, Z. M., “Improved Stochastic System Identification Approach with Its Application in Bridge Condition Monitoring”, China Journal of Highway and Transport, Vol. 17, No. 4, pp.70-78, 2004.
44.Chang, J., Zhang, Q. W., and Sun, L. M., “Identified Method of Arch BridgeModal Parameters Based on Stochastic Subspace Combined with Stabilization Diagram”, China Journal of Architecture and Civil Engineering,Vol. 24, No. 1, Mar. 2007.
45.劉勛仁,”依唯結構反應量測之系統模態參數識別”, 國立中興大學土木工程研究所碩士論文, 2008.
46.Elenas, A., and Meskouris, K., “Correlation Study Between Seismic Acceleration Parameters and Damage Indices of Structures”, Engineering Structures, 23, 698-704, 2001.
47.Park, Y.J., Ang, A. H.S., “Mechanistic Seismic Damage Model for Reinforced Concrete”, Journal of Structural Engineering, ASCE, 111(4), 722-739, 1985.
48.Allemang, R.J., and Brown, D.L., “A Correlation Coefficient for Modal Vector Analysis”, Proceedings of the International Modal Analysis Conference & Exhibit, 110-116, 1982.
49.Lieven, N.A.J., and Ewins, D.J., “Spatial Correlation of Mode Shapes, the Coordinate Modal Assurance Criterion (COMAC)”, Proceedings of the Sixth International Modal Analysis Conference, 690-695, 1988.
50.Pandey, A.K., Biswas, M., and Samman, M.M., “Damage Detection from Changes in Curvature Mode Shapes”, Journal of Sound and Vibration, 145, 321-332, 1991.
51.Pandey, A. K., Biswas, M., “Damage Detection in Structures using Changes in Flexibility”, Journal of Sound and Vibration, 169(1), 3-17, 1994.
52.Farrar, C.R., and Jauregui, D.A., “Comparative Study of Damage Identification Algorithms Applied to a Bridge”, Smart Materials and Structures, 7, 704-731, 1998.
53.Ndambi, J.M., Vantomme, J., and Harri, K., “Damage Assessment in Reinforced Concrete Beams Using Eigenfrequencies and Mode Shapes Drivatives”, Engineering Structures, 24, 501-515, 2002.
54.Brasiliano, A., Doz, G.N., and Brito, J.L.V., “Damage Identification in Continuous Beams and Frame Structures Using the Residual Error Method in the Movement Equation”, Nuclear Engineering and Design, 227, 1-17, 2004.
55.Kim, H.S., and Chun, Y.S., “Structural Damage Assessment of Building Structures Using Dynamic Experimental Data”, the Structural Design of Tall and SpecialBuildings, 13, 1-8, 2004.
56.Kim, J.T., Ryu, Y.S., Cho, H.M., and Stubbs, N., “Damage Identification in Beam-Type Structures: Frequency-Based Method vs Mode-Shape-Based Method”, Engineering Structures, 25, 57-67, 2003.
57.Lin, C.C., Wang, C.E.,Wu, H.W., and Wang, J. F., “On-Line Building Damage Assessment Based on Earthquake Records”, Smart Materials and Structures, 14, 137-153, 2005.
58.Lin, C.C., Wang, J.F., and Yen, S.M., “Story Damage Index of Seismically-Excited Buildings Based on Modal Parameters”,18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China, 2005.
59.Lin, C.C., Wang, J.F., Yen, S.M.,”A Story Damage Index of Seismically – Excited Buildings Based on Modal Frequency and Mode Shapes”, Engineering Structure, Vol. 29, pp.2143-2157, 2007.
60.鍾立來,吳賴雲,林昭葳,黃國倫,曾建創,連冠華,“結構加裝圓棒型加勁阻尼器之動力分析及試驗驗證”,國家地震中心研究報告,報告編號:NCREE-05-024,2005.
61.顏士閔, “依識別模態參數之建築結構層間損壞指標”,國立中興大學土木工程研究所碩士論文, 2005.
62.楊淳皓, “扭轉耦合建築結構受震層間損壞指標”,國立中興大學土木工程研究所碩士論文, 2006.
63.陳昱如, “中層建築結構之損壞評估”,國立中興大學土木工程研究所碩士論文, 2016.
64.Lin, C.C., Wang, J.F., Lin, G.L., Yang, C.H.,”Story Damage Identification of Irregular Buildings Based on Earthquake Records”, Earthquake Spectra, Vol. 29, No. 3, pp. 963-985, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊