跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈廷軒
研究生(外文):Ting-Shiuan Shen
論文名稱:建立非線性黏彈塑性與溫度耦合之力學模型
論文名稱(外文):The Development of Nonlinear Viscoelastic-Viscoplastic Mechanic Model Coupling with Temperature Effect.
指導教授:黃建維黃建維引用關係
口試委員:黃添坤蘇育民
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:黏彈塑性瀝青溫度
外文關鍵詞:nonlinear viscoelasticviscoplasticasphalttemperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
瀝青材料的黏彈塑性過去有許多學者進行相關研究,過去之研究透過使用動態模數試驗求取瀝青材料之黏彈性質,而黏塑性質則使用不同應力路徑下之重複荷重潛變試驗對瀝青混凝土試體施加規律性之加載與卸載求得。但過去之研究僅針對高溫條件下施加不同應力探討黏塑性應變與應力之關係,然而不同溫度對於瀝青材料黏塑性質之影響缺乏深入之探討。
因此本研究根據現地狀況設計四種不同應力與四種不同溫度進行相關試驗,本研究首先由動態模數試驗獲得瀝青混凝土之黏彈性質,而黏塑性質則藉由單一重複荷重潛變試驗在四種不同溫度下分別施加四種相異應力來求得各溫度下瀝青混凝土之黏塑性參數,透過這四組黏塑性參數進一步分析溫度對於瀝青材料黏塑性質之影響。
透過分析結果得知,瀝青混凝土之黏彈與黏塑應變皆會隨著溫度升高而增加,其中溫度對於非線性黏彈參數g_1之影響較不顯著,而g_2會隨著溫度增加而上升,此線相說明隨著溫度增加,瀝青混凝土具有較明顯之非線性黏彈性行為。此外,溫度對於黏塑參數亦有顯著之影響,其中硬化參數κ_1、κ_2會隨著溫度升高而下降,參數Γ則會隨著溫度上升而增加。
There are many researchers to investigate the viscoelastic and viscoplastic behavior of asphalt materials. The dynamic modulus test is widely employed to calibrate the viscoelasticity of asphalt materials; while the viscoplastic deformation is measured using repeated creep-recovery test under different loading paths. However, those researches studied the viscoplastic behavior only at high temperature. Lake of studies discuss the effect of temperature on the viscoplastic properties and nonlinear viscoelastic parameters for asphalt materials.
This research conducts dynamic modulus test to calibrate the viscoelastic behavior; while the viscoplastic properties are obtained by analyzing the measurements of repeated creep-recovery test. In order to represent the actual field pavement conditions, this research conducts repeated creep-recovery test at four different stress levels with four different temperatures. The effect of temperature on the nonlinear viscoelasticity and viscoplasticity can be evaluated by the comparison of analyzed parameters at different temperature conditions.
The results show that the viscoelastic and viscoplastic strain increases with increasing temperature. In terms of the effect of temperature on nonlinear viscoelasticity, increasing temperature increases the nonlinearity of viscoelasticity. Moreover, the hardening parameters κ_1 and κ_2 decrease with increasing temperatures; while the viscosity parameter Γ increases with increasing temperature. The results in this research can have significant contributions to develop the nonlinear-viscoelastic-viscoplastic mechanic model coupling with temperature effect.
目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
1. 第一章 緒論 1
1.1 研究背景 1
1.2 研究流程 2
2. 第二章 文獻回顧 6
2.1瀝青混凝土之非線性黏彈與黏塑之行為與力學模式 6
2.2 Schapery非線性黏彈性模型 9
2.3 Perzyna黏塑性模型 10
2.4 動態模數試驗 13
2.5 重複荷重潛變試驗 13
3. 第三章 試驗與分析流程 15
3.1 材料性質 15
3.2 試驗 16
3.2.1 試體製作 16
3.2.2 動態模數試驗(Dynamic Modulus Test) 17
3.2.3 重複荷重潛變試驗(Repeated Creep-Recovery test,RCRT) 20
3.3 分析 21
3.3.1 動態模數試驗分析流程 21
3.2.3 重複荷重潛變試驗分析 26
4. 第四章 分析結果與討論 41
4.1動態模數試驗分析結果 41
4.2重複荷重潛變試驗分析結果 42
5. 第五章 結論與建議 56
6. 參考文獻 58
Abu Al-Rub RK, Masad EA, and Huang CW (2009). “Improving the sustainability of asphalt pavements through developing a predictive model with fundamental material properties.” Final Report Submitted to Southwest University Transpor-tation Center, Report # SWUTC/08/476660-0007-1; 1–45.
Christensen, R.M. (1968). “On obtaining solutions in nonlinear viscoelasticity.” Journal of Applied Mechanics, 35, 129–133.
Collop, A.C., Scarpas, A. T., Kasbergen, C., and de Bondt, A. (2003). “Development and finite element implementation of stress-dependent elastoviscoplastic constitutive model with damage for asphalt.” Transportation Research Record 1832, Transportation Research Board, Washington, DC, 96-104.
Darabi MK, Abu Al-Rub RK, Masad EA, Huang CW, and Little DN. (2012) “A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures.” Int J Plast; 35:100–34.
Darabi MK, Abu Al-Rub RK, Masad EA, Huang CW, and Little DN. (2011) “A thermo-viscoelastic-viscoplastic-visco-damage constitutive model for asphaltic materials.” International Journal of Solids and Structures; 48:191–207.
Dessouky, S., (2005). “Multiscale approach for modeling hot mix asphalt.” Ph.D. dissertation, Texas A&M University, College Station, TX.
Gibson NH, Kutay ME, Keramat D, and Youchef J. (2009) “Multiaxial strain response of asphalt concrete measured during flow number performance test.” J Assoc Asphalt Paving Technol; 78:25–66.
H. U. Bahia, D. L. Hanson, M. Zeng, H. Zhai, M. Khatri, and R. M. Anderson. (2001) “Characterization of modified asphalt binders in Superpave mix design”, Report No. 459, National Cooperative Highway Research Program, National Academy Press, Washington, D.C.
Haj‐Ali, R.M. and Muliana, A.H. (2004). “Numerical finite element formulation of the Schapery non‐linear viscoelastic material model.” International Journal for Numerical Methods in Engineering, 59, 25–45.
Huang CW, Abu Al-Rub RK, Masad EA, and Little DN. (2011) “Three-dimensionalsimulations of asphalt pavement permanent deformation using a nonlinearviscoelastic and viscoplastic model.” J Mater Civil Eng; 23(1):56–68.
Huang CW. (2008) “Development and numerical implement-tation of nonlinear viscoelastic-viscoplastic model for asphalt materials.” Ph.D. dissertation, Texas A&M University, College Station, TX.
Huang, C.W., Masad, E., Muliana, A., and Bahia, H. (2007). “Nonlinear viscoelastic analysis of asphalt mixes subjected to shear loading.” Mechanics of Time Dependent Materials, 11, 91‐110.
J. D’Angelo, R. Kluttz, R. Dongre, K. Stephens, and L. Zanzotto (2007) “Revision of the Superpave high temperature binder specification: The multiple stress creep recovery test.” Journal of the Association of Asphalt Paving Techno-logists, 76, pp. 293-331.
Kachanov LM. (1958) “On time to rupture in creep conditions (in Russian).” Izviestia Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk; 8:26–31.
Kim, Y. Allen, D. H., and Little D. N., (2007). “Computational constitutive model for predicting nonlinear viscoelastic damage and fracture failure of asphalt concrete mixtures.” International Journal of Geomechanics, 7, 102‐110.
Kose, S., Guler, M., Bahia, H., and Masad, E. (2000). “Distribution of strains within hot‐mix asphalt binders.” Transportation Research Record 1728, Transportation Research Board, Washington, DC, 21–27.
Lee, H. J. and Kim, Y. R. (1998). “A uniaxial viscoelastic constitutive model for asphalt concrete under cyclic loading.” Journal of Engineering Mechanics, 124, 32‐40.
Lemaitre, J. and Chaboche, J.‐L. (1990). Mechanics of Solid Materials, Cambridge University Press, London.
Lu, Y. and Wright, P. J. (1998). “Numerical approach of visco‐elastoplastic analysis for asphalt mixtures.” Journal of Computers and Structures, 69, 139‐157.
Masad E, Huang CW, Airey G, Muliana A. (2008) “Nonlinear viscoelastic analysis of unaged and aged asphalt binders.” Construction and Building Materials; 22:2170–2179.
Masad EA. (2009) “Characterization of asphalt binder resistance to permanent deformation based on nonlinear viscoelastic analysis of multiple stress creep recovery (MSCR) Test-Proceedings.” Association of Asphalt Paving Technologists, Technical Sessions.
Masad, E., and Somadevan, N. (2002). “Microstructural finite‐element analysis of influence of localized strain distribution of asphalt mix properties.” Journal of Engineering Mechanics, 128, 1105–1114.
Masad, E., Tashman, L., Little D., and Zbib, H. (2005). “Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage, and aggregate characteristics.” Journal of Mechanics of Materials, 37, 1242-1256.
Odqvist FKG, and Hult J. (1961) “Some aspects of creep rupture.” Arkiv for Fysik; 19:379–382.
Perl, M. Uzan, J., and Sides, A. (1983). “Visco-elasto-plastic constitutive law for bituminous mixture under repeated loading.” Transportation Research Record 911, Transpor-tation Research Board, Washington, DC, 20-26.
Perzyna, P. (1971) “Thermodynamic theory of viscoplastcity,” Advances in Applied Mechanics, 11, 313‐354.
Rabotnov IUN. (1969) “Creep Problems in Structural Members.” North-Holland Pub. Co.: Amsterdam, London.
Saadeh, S., Masad, E., and Little, D. (2007). “Characterization of hot mix asphalt using anisotropic damage viscoelastic‐viscoplastic model and repeated loading.” Journal of Materials in Civil Engineering, 19 (10), 912‐924.
Sadd, M.H., Parameswaran, D.Q., and Shukla, A. (2004). “Simulation of asphalt materials using finite element micromechanical model with damage mechanics.” Transportation Research Record 1832, Transportation Research Board, Washington, DC, 86–95.
Schapery RA. (1999) “Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage.” Inter-national Journal of Fracture; 97:33–66.
Schapery, R. A. (1991). “Simplifications in the behavior of viscoelastic composites with growing damage.” In Proc., IUTAM Symposium on Inelastic Deformation of Composite Materials, Springer Verlag, Berlin.
Schapery, R.A. (1969). “On the characterization of nonlinear viscoelastic materials.” Polymer Engineering and Science, 9, 295–310.
Schapery, R.A. (2000). “Nonlinear viscoelastic solids.” International Journal of Solids and Structures, 37, 359–366.
Seibi, A. C., Sharma, M. G., Ali, G. A., and Kenis, W. J. (2001). “Constitutive relations for asphalt concrete under high rates of loading.” Transportation Research Record 1767, Transportation Research Board, Washington, DC, 111‐119.
Sides, A., Uzan, J., and Perl, M. (1985). “A comprehensive visco-elastoplastic characterization of sand-asphalt under compression and tension cyclic loading.” Journal of Testing and Evaluation, 13, 49-59.
Tashman, L. Masad E., Zbib, H., Little D., and Kaloush, K. (2005). “Microstructural viscoplastic continuum model for asphalt pavements.” Journal of Engineering Mechanic, 131 (1), 48‐57.
Uzan J. (2005) “Viscoelastic-viscoplastic model with damage for asphalt concrete.” Journal of Materials in Civil Engineering; 17:528–534.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top