跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏名沂
研究生(外文):Ming-Yi Yen
論文名稱:耐酸根瘤菌與敏豆 (Phaseolus vulgaris L.) 在酸性土壤的共生效益
論文名稱(外文):Symbitoic effectiveness of acid-tolerant rhizobia with common bean (Phaseolus vulgaris L.) in acid soil
指導教授:黃政華黃政華引用關係
口試委員:黃裕銘沈佛亭簡宣裕張明暉
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:133
中文關鍵詞:敏豆耐酸性根瘤菌酸性土壤共生效益
外文關鍵詞:Common bean (Phaseolus vulgaris L.)acid-tolerant rhizobiumacid soilSymbitoic effectiveness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於全球的農業而言,豆科根瘤菌生物性固氮作用是很重要的氮肥來源。敏豆是全世界產量僅次於黃豆的豆類作物,也是台灣夏季常見蔬菜。土壤酸化是豆科植物生長的限制因子,影響根瘤菌與植物根的共生效益及宿主植物的生長,降低豆科作物的產量。根瘤菌菌種的不同,對酸性的耐受性有相當大的差異。篩選出耐酸性根瘤菌,對於豆科作物根圈的固氮共生效益,將會有提升的作用。我們假設在實驗室酸性條件培養下,存活率較高的菌株在酸性土壤中可獲得更高的存活力。本研究從敏豆根瘤篩選出16株Rhizobium spp. 以及一株耐酸參考菌株CIAT899,利用homopipes調整培養基的酸鹼值 (pH = 4、5、及6)、以Al2(SO4)3 調整不同的鋁離子濃度 (1, 2及3 mmol L-1),並以砂耕環境下 (pH 5) 評估固氮活性和共生效益,篩選耐酸性根瘤菌。本研究篩選出耐酸耐鋁菌株B412,耐酸不耐鋁菌株B379、耐鋁不耐酸菌株B378和不耐鋁不耐酸菌株B374進行酸性土壤盆栽試驗。本實驗使用兩種酸性土壤 (pH 5.1),分別是仁愛土壤 ([Al3+] = 2.01 mg kg -1) 及通霄土壤 ([Al3+] = 3.72 mg kg -1)。酸性土壤盆栽試驗下,在仁愛土壤中種植敏豆,以接種B379菌株獲得最高的固氮活性,在鋁含量較高的通霄土壤中,耐鋁毒性菌株B378獲得最高之結瘤數,而耐酸耐鋁菌株B412則是在兩種土壤中皆獲得高的豆莢乾重,特別是在仁愛土壤中接種B412菌株之產量較化肥處理者顯著增加50 % 。本研究之篩選方法可篩選出耐酸耐鋁的根瘤菌,促進豆科作物在酸性土壤中的生長,並增加根部結瘤數、共生效益和產量。除了提升敏豆在酸性土壤中的產量,也可降低化學氮肥之施用量,節省生產成本,並有利於永續農業之發展。
Biological nitrogen fixation mediated by the legume-rhizobia symbioses is important for world agriculture. The yield of common bean (Phaseolus vulgaris L.) ranks second only to soybeans, and it is a common summer vegetable in Taiwan. Soil acidity is a limiting factor for legume growth because it affects the symbiotic efficiency of Rhizobium, host plant growth, and the legume production. Species of rhizobia vary significantly in their tolerance to low pH. Selecting acid-tolerant rhizobia may increase their symbiotic efficiency in acid soil. This study aimed to examine whether strains of Rhizobium spp. selected for growth on acid culture in vitro would also survive and grow better in acid soils. Sixteen Rhizobium spp. were isolated from commom bean nodules, and one commercial strain CIAT899 known for its acid-tolerance was included as a standard. Selective media with different pH levels (4, 5, and 6) and Al3+ concentrations (1, 2, and 3 mmol L-1) were used for selecting acid-tolerant rhizobia, and the nitrogen fixation and symbiotic efficiency of these rhizobia with common bean were evaluated in sandy medium with pH5. Four Rhizobium strains were selected for pot experiments including the acid- and Al3+-tolerant strain B412, acid-tolerant and Al3+-sensitive strain B379, acid-sensitive and Al3+-tolerant strain B378, and acid- and Al3+-sensitive strain B374. In addition, two soils with various Al3+ concentrations were used for pot experiments. B379 showed the highest nitrogenase activity in Renai soil with low Al3+ concentration (2.01 mg kg -1), but B378 resulted in the best nodule numbers in Tongxiao soil with is high Al3+ concentration (3.72 mg kg -1). However, B412 consistently showed a significant increase in bean yields in the two soils. Interestingly, the strain significantly increased the yield of bean by 50 % compared to that of the chemical fertilization treatment in Renai soil. Our study provides a strategy to select acid- and Al3+-tolerant rhizobia for increasing the yield of common bean grown in acid soils, increasing the nodulation and symbiotic effectiveness by Rhizobium. As a result, inoculation of common bean with acid-tolerant rhizobia may considerably reduce the use of chemical fertilizers for acid soils.
摘要 i
Abstract ii
目錄 iii
表次 iv
圖次 v
壹、前言 1
貳、前人研究 3
一、共生型固氮根瘤菌 3
二、敏豆生長特性 11
三、酸性土壤 17
參、材料與方法 22
一、研究架構 23
二、試驗根瘤菌之來源、分離與保存 24
三、根瘤菌之鑑定 26
四、生理特性測試 30
五、胞外酵素活性測試 33
六、耐酸、耐鋁毒性性測試 36
七、菌株固氮共生效益盆栽試驗 37
八、酸性土壤盆栽試驗 43
九、統計方法 49
肆、結果與討論 50
一、菌株來源及鑑定結果 50
二、菌株生理特性結果 55
三、菌株耐酸性結果 60
四、菌株耐鋁毒性結果 66
五、菌株固氮共生效益結果 71
六、酸性土壤盆栽試驗結果 79
伍、結論 92
陸、參考文獻 93
柒、附錄 105
王慰劬。1981。種子石灰包粒對酸性土壤的補救。科學農業。29:170-171。
朱雅玲、賴榮茂、侯秉賦。2012。菜豆栽培管理及病蟲害防治技術。高雄區農技報導。p. 3-31。
吳振記。2007。強酸性土壤石灰需要量空間分佈之推估與應用。國立中興大學土壤環境科學系博士論文。
杉山直儀。1981。野菜ソ營養生理シ施肥技術。誠文堂新光社。p. 274-352。日本。
谷婉萍。2016。不同敷蓋資材對菜豆 (Phaseolus vulgaris L.) 生育與產量之影響。國立中興大學土壤環境科學系碩士論文。
周瑞興。2009。含羞草屬植物之β-根瘤菌Burkholderia 與Cupriavidus 間結瘤的競爭作用。國立中興大學土壤環境科學系博士論文。
林良平。1982。豆科作物固氮的生理、機能及在台灣栽培上之應用。30:258-266科學農業。
林良平。1987。土壤微生物學。天然書出版社。
林稚蘭、黃秀梨。2000。現代微生物學與實驗技術。北京科學出版社。北京。
星川清親。1996。ユ⑦ヴ⑦сф。新編食用作物。23 : p. 482-490。日本。
洪美華。2002。台灣本土豆科植物根瘤菌分離及特性研究。國立中興大學土壤環境科學系碩士論文。
洪麗蓉。1995。綠肥溶磷根瘤菌的分離及其特性之研究。國立中興大學土壤環境科學系碩士論文。
胡懋麟、蔡文福。1994。菜豆。財團法人台灣區雜糧發展基金會。p. 1269-1281。
高雄區農業改良場。1999。省躬、安全的矮性菜豆。第0094號。
連深。1991。酸性土壤之利用與改良。土壤管理手冊。中興大學土壤調查試驗中心出版。p. 263-276。
連深和鍾仁賜。1995。土壤分析手冊。中華土壤肥料學會。
郭孚耀。2006。菜豆栽培技術。台中區農業技術專刊。p. 28-45。
陳仁炫、林正錺、郭惠千。1993。土壤肥力因子之分級標準彙集。國立中興大學土壤環境科學系。
陳仁炫、郭惠千、林正錺。1993。作物養分需求及植體分析之分級標準彙集。國立中興大學土壤研究所。
陳仁炫、鄒裕民。2008。土壤與肥料分析手册:土壤化學性質分析。中華土壤肥料學會。
陳韋玲、楊宏瑛、蔡本原、郭雅紋、賴文龍、陳鴻堂、林大淵、劉興隆、沈原民。2013。菜豆綜合管理技術及生產成本分析。台中區農業技術專刊。186 : p. 2-13,26-30。
曾文聖。1997。台灣地區本土性快生型大豆根瘤菌之數值分類。國立台灣大學農業化學研究所碩士論文。
曾國珍,2009。增進台灣農地旱作生產力-土壤內部排水、壓實、強酸性的問題診斷和改良系統的建立。國立中興大學土壤環境科學系博士論文。
黃國鑫。2012。根瘤菌胞外多醣體產量優化及其功能與特性之研究。國立中興大學土壤環境科學系博士論文。
楊秋忠。生物肥料簡介。國立中興大學土壤環境科學系。
葉茂生。2009。食用作物學。國立中興大學農藝學系。
潘佳辰。2013。豇豆根瘤菌篩選、固氮能力評估培養基比較及對豇豆生長影響之研究。國立中興大學土壤環境科學系碩士論文。
鄭永寧。1991。大豆根瘤固氮模式。國立中興大學土壤學研究所碩士論文。
蕭千祐、王璟茹。2009。食物安全實用手冊。萬里機構得利書局。p. 162。香港。
蘇新、李璟端、林良平。1985。臺灣酸性土壤中大豆根瘤菌之研究(III):石灰及鉬之共同使用對大豆有效性根瘤之形成及大豆產量之關係。國立臺灣大學農學院研究報告。
Allison, S., and J. Prosser. 1993. Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil Biol. Biochem. 25: 935-941.
Atlas, R.M., and R. Bartha. 1993. Microbial Ecology. The Benjamin / Cumings pub. Comp. California.
Baes, C.F. and R.E. Mesmer. 1976. Hydrolysis of cations .Wiley.
Ballard, R.A., N. Charman, A. McInnes, and J.A. Davidson. 2004. Size, symbiotic effectiveness and genetic diversity of field pea rhizobia (Rhizobium leguminosarum bv. viciae) populations in South Australian soils. Soil Biol. Biochem. 36: 1347-1355.
Bambara, S., and P.A. Ndakidemi. 2010. Changes in selected soil chemical properties in the rhizosphere of Phaseolus vulgaris L. supplied with Rhizobium inoculants, molybdenum and lime. Sci. Res. Essays. 5: 679-684.
Bothe, H., M. Yates, and F. Cannon. 1983. Physiology, biochemistry and genetics of dinitrogen fixation. Inorganic Plant Nutrition. Springer. p. 241-285.
Brady, N.C. 1984. The nature and properties of soils. Macmillan. New York.
Bray, R.H., and L. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59: 39-46.
Bremner, J. M., and C.S. Mulvancy. 1982. Method of Soil Analysis.
Bryan, C. 1938. Identification of Phytomons, Azotobacter, and Rhizobium or Achromobacter upon initial isolation. Soil Sci. 45: 185-188.
Burton, S.A., and J.I. Prosser. 2001. Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl. Environ. Microb. 67: 2952-2957.
Bushby, H., and K. Marshall. 1977. Some factors affecting the survival of root-nodule bacteria on desiccation. Soil Biol. Biochem. 9: 143-147.
Buttery, B., S. Park, and W. Findlay. 1987. Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium. Plant Sci. 67: 425-432.
Campo, R.J. 1995. Residual effects of aluminium on Bradyrhizobium japonicum in defined medium and soil solutions. University of Reading.
Chatel, D., and C. Parker. 1973. Survival of field-grown rhizobia over the dry summer period in Western Australia. Soil Biol. Biochem. 5: 415-423.
Che, J., X.Q. Zhao, X. Zhou, Z.J. Jia, and R.F. Shen. 2015. High pH - enhanced soil nitrification was associated with ammonia - oxidizing bacteria rather than archaea in acidic soils. Appl. Soil Ecol: 21-29.
Chen, H., A.E. Richardson, and B.G. Rolfe. 1993. Studies of the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microb. 59: 1798-1804.
Chen, W.M., T.M. Lee, C.C. Lan, and C.P. Cheng. 2000. Characterization of halotolerant rhizobia isolated from root nodules of Canavalia rosea from seaside areas. Fems. Microbiol. Ecol. 34: 9-16.
Cheng, Q. 2008. Perspectives in biological nitrogen fixation research. J. Integr. Plant Biol. 50: 786-798.
Clark, M.S. 1997. Plant molecular biology. Springer Science & Business Media, UK.
Correa, O., and A. Barneix. 1997. Cellular mechanisms of pH tolerance in Rhizobium loti. World. J. Microb. Biot. 13: 153-157.
Cotter, P.D., and C. Hill. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. R. 67: 429-453.
Cunningham, S.D., and D.N. Munns. 1984. The correlation between extracellular polysaccharide production and acid tolerance in Rhizobium. Soil Sci. Soc. Am. J. 48: 1273-1276.
Dart, P. 1974. Development of root-nodule symbioses. The infection process. Biology of Nitrogen Fixation. A. Quispel, ed.
Dazzo, F., G. Truchet, J. Sherwood, E. Hrabak, M. Abe, and S. Pankratz. 1984. Specific phases of root hair attachment in the Rhizobium trifolii - clover symbiosis. Appl. Environ. Microb. 48: 1140-1150.
Dazzo, F.B., C.A. Napoli, and D.H. Hubbell. 1976. Adsorption of bacteria to roots as related to host specificity in the Rhizobium - clover symbiosis. Appl. Environ. Microb. 32: 166-171.
Denton, M., D. Coventry, W. Bellotti, and J. Howieson. 2000. Distribution, abundance and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii from alkaline pasture soils in South Australia. Anim. Prod. Sci. 40: 25-35.
Draghi, W.O., M.F. Del Papa, M. Pistorio, M. Lozano, M.D.L. Giusti, and G.A.T. Tejerizo. 2010. Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH. Fems. Microbiol. Ecol. 302: 123-130.
Eardly, B., J. Young, and R. Selander. 1992. Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl. Environ. Microb. 58: 1809-1815.
Fellows, R.J., R.P. Patterson, C.D. Raper, and D. Harris. 1987. Nodule activity and allocation of photosynthate of soybean during recovery from water stress. Plant Physiol. 84: 456-460.
Ferreira, P.A.A., C.A. Bomfeti, B.L. Soares, and F.M. de Souza Moreira. 2012. Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium. World. J. Microb. Biot. 28: 1947-1959.
Franssen, H.J., I. Vijn, W.C. Yang, and T. Bisseling. 1992. Developmental aspects of the Rhizobium legume symbiosis. Plant Mol. Biol. 19: 89-107.
Frings, J.F.J. 1976. The Rhizobium pea symbiosis as affected by high temperatures. Proefschrift van J. F. J. Frings. Wageningen.
Fukuhara, H., Y. Minakawa, S. Akao, and K. Minamisawa. 1994. The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol. 35: 1261-1265.
Gage, D.J. 2004. Infection and invasion of roots by symbiotic, nitrogen fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. R. 68: 280-300.
Gaind, S., and A. Gaur. 1991. Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant Soil. 133: 141-149.
Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. Madison, WI.
Gibson, A. 1976. Recovery and compensation by nodulated legumes to environmental stress. International Biological Programme.
Gibson, A., and P. Nutman. 1960. Studies on the physiology of nodule formation. Ann Bot-London. 24: 420-433.
Giltner, W. 1916. Laboratory manual in general microbiology. Wiley.
Gordon, S.A., and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26:192-195.
Graham, P. 1981. Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crop Res 4: 93-112.
Graham, P., G. Ocampo, L. Ruiz, and A. Duque. 1980. Survival of Rhizobium phaseoli in contact with chemical seed protectants. Agron. J. 72: 625-627.
Graham, P.H., K.J. Draeger, M.L. Ferrey, M.J. Conroy, B.E. Hammer, and E. Martinez. 1994. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 40: 198-207.
Gubry-Rangin, C., G.W. Nicol, and J.I. Prosser. 2010. Archaea rather than bacteria control nitrification in two agricultural acidic soils. Fems. Microbiol. Ecol. 74: 566-574.
Guérin, V., D. Pladys, J.C. Trinchant, and J. Rigaud. 1991. Proteolysis and nitrogen fixation in faba-bean (Vicia faba) nodules under water stress. Physiol Plantarum. 82: 360-366.
Hadri, A.-E., H.P. Spaink, T. Bisseling, and N.J. Brewin. 1998. Diversity of root nodulation and rhizobial infection processes. The Rhizobiaceae. Springer. p. 347-360.
Hankin, L., and S. Anagnostakis. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia: 597-607.
Hardy, R. W. F. 1993. Ecology and agriculture applications of nitrogen-fixation system. In Agriculture and environment challenges. p.109-117, World Bank, USA.
Hartel, P.G., and M. Alexander. 1984. Temperature and desiccation tolerance of cowpea rhizobia. Can. J. Microbiol. 30: 820-823.
Herridge, D., R. Roughley, and J. Brockwell. 1984. Effect of rhizobia and soil nitrate on the establishment and functioning of the soybean symbiosis in the field. Crop Pasture. Sci. 35: 149-161.
Horst, W. 1982. Quick screening of cowpea genotypes for manganese tolerance during vegetative and reproductive growth. J. Plant Nutr. Soil Sci. 145: 423-435.
Horst, W. 1987. Aluminium tolerance and calcium efficiency of cowpea genotypes. J. Plant Nutr. 10: 1121-1129.
Hungria, M., D. de S Andrade, L.M. de O Chueire, A. Probanza, F.J. Guttierrez-Mañero, and M. Megı́as. 2000. Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem. 32: 1515-1528.
Hunter, W.J. 1989. Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plantarum 76: 31-36.
Indrasumunar, A., N.W. Menzies, and P.J. Dart. 2012. Calcium affects the competitiveness of acid-sensitive and acid-tolerant strains of Bradyrhizobium japonicum in nodulating and fixing nitrogen with two soybean cultivars in acid soil. Soil Biol. Biochem. 46: 115-122.
Indrasumunar, A., N.W. Menzies, and P.J. Dart. 2012. Laboratory prescreening of Bradyrhizobium japonicum for low pH, Al and Mn tolerance can be used to predict their survival in acid soils. Soil Biol. Biochem. 48: 135-141.
Indrasumunar, A., P.J. Dart, and N.W. Menzies. 2011. Symbiotic effectiveness of Bradyrhizobium japonicum in acid soils can be predicted from their sensitivity to acid soil stress factors in acidic agar media. Soil Biol. Biochem. 43: 2046-2052.
Jiao, Y.S., H. Yan, Z.J. Ji, Y.H. Liu, X.H. Sui, and E.T. Wang. 2015. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int. J. Syst. Evol. Microbiol. 65: 497-503.
Jones, J. B., Jr. 1964. Plant analysis-A method of detecting micronutrient deficiencies. Ohio Agr. Exp. Sta. Agron. Series 176 : p. 9.
Jordan, D. C., and N. Allen. 1974. Bergey's manual of determinative bacteriology. The Williams & Wilkins Co., Baltimore: 261-264.
Jordan, D.C. 1984. Bergy's Manual of Systematic Bacteriology: 235-244.
Kao, T., and C. Wang. 1981. Studies on the effect of herbicides on growth of rhizobia and development of root nodules. Mem. Coll. Agric. Natl. Taiwan Univ 21.
Kausar, H., M. Sariah, H.M. Saud, M.Z. Alam, and M.R. Ismail. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22: 367-375.
Keeney, D., D. Nelson, and A. Page. 1982. Methods of soil analysis.. Eds. CA Black. 711-733.
Kleczkowska, J., P. Nutman, F. Skinner, and J. Vincent. 1968. The identification and classification of Rhizobium. Academic Press, London.
Klein, S., C. Lorenzo, S. Hoffmann, J.M. Walther, S. Storbeck, and T. Piekarski. 2009. Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol. Microbiol. 71: 551-565.
Kumar, P., I. Mehrotra, and T. Viraraghavan. 1998. Temperature response of biological phosphorus-removing activated sludge. J. Environ. Eng. 124: 192-196.
Laguerre, G., S.M. Nour, V. Macheret, J. Sanjuan, P. Drouin, and N. Amarger. 2001. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology. 147: 981-993.
Lei, Z., G. Jian-ping, W. Shi-qing, Z. Ze-yang, Z. Chao, and Y. Yongxiong. 2011. Mechanism of acid tolerance in a rhizobium strain isolated from Pueraria lobata (Willd.) Ohwi. Can. J. Microbiol. 57: 514-524.
Leidi, E.O., and D.N. Rodriguez-Navarro. 2000. Nitrogen and phosphorus availability limit N2 fixation in bean. New. Phytol. 147: 337-346.
Lie, T.A. 1974. The biology of nitrogen fixation. North-Holland Publishing Co.
Lodeiro, A.b.R., and G. Favelukes. 1999. Early interactions of Bradyrhizobium japonicum and soybean roots: specificity in the process of adsorption. Soil Biol. Biochem. 31: 1405-1411.
Maas, E., and J. Poss. 1989. Salt sensitivity of cowpea at various growth stages. Irrigation. Sci. 10: 313-320.
Marshall, K. 1964. Survival of root-nodule bacteria in dry soils exposed to high temperatures. Crop Pasture. Sci. 15: 273-281.
Mensah, J., F. Esumeh, M. Iyamu, and C. Omoifo. 2006. Effects of different salt concentrations and pH on growth of Rhizobium sp. and a cowpea-rhizobium association. American-Eurasian Journal of Agricultural & Environmental Sciences 3: 198-202.
Mora, Y., R. Díaz, C. Vargas-Lagunas, H. Peralta, G. Guerrero, and A. Aguilar. 2014. Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl. Environ. Microb. 80: 5644-5654.
Munns, D. 1986. Acid soil tolerance in legumes and rhizobia. Advances in plant nutrition ,USA.
Munns, D., R. Fox, and B. Koch. 1977. Influence of lime on nitrogen fixation by tropical and temperate legumes. Plant Soil. 46: 591-601.
Mylona, P., K. Pawlowski, and T. Bisseling. 1995. Symbiotic nitrogen fixation. The Plant Cell. 7: 869.
Nelson, D. W., and L. E. Sommers. 1982. Methods of soil analysis. ASA. and SSSA. Madison, WI.
Noel, K. D. 2009. Encyclopedia of Microbiology. Academic Press.
Nutman, P. 1981. Hereditary host factors affecting nodulation and nitrogen fixation. Current perspectives in nitrogen fixation: 194-204.
Ohyama, T., M. Ito, K. Kobayashi, S. Araki, S. Yasuyoshi, and O. Sasaki. 1991. Analytical procedures of N, P, K contents in plant and manure materials using H2SO4-H2O2 Kjeldahl digestion method. Bulletin of the Faculty of Agriculture-Niigata University (Japan).
Paul, E. A., and F. E. Clark. 1989. Soil Microbiology and Biochemistry, Academic Press, Inc.
Pérez-Miranda, S., N. Cabirol, R. George-Téllez, L. Zamudio-Rivera, and F. Fernández. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Meth. 70: 127-131.
Piha, M., and D. Munns. 1987. Nitrogen fixation potential of beans (Phaseolus vulgaris L.) compared with other grain legumes under controlled conditions. Plant Soil. 98: 169-182.
Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya. 17:362-370.
Postgate, J.R. 1982. Biology nitrogen fixation. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 296: 375-385.
Rachie, K., and L. Roberts. 1974. Grain legumes of the lowland tropics. Adv. Agron. 26: 1-132.
Rai, R. 1983. The salt tolerance of Rhizobium strains and lentil genotypes and the effect of salinity on aspects of symbiotic N-fixation. J. Agr. Sci. 100: 81-86.
Rao, N.S.S. 1988. Biological nitrogen fixation: recent developmentsCRC Press.
Reeve, W.G., L. Bräu, J. Castelli, G. Garau, C. Sohlenkamp, and O. Geiger. 2006. The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions. Microbiology. 152: 3049-3059.
Schwyn, B., and J. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.
Segovia, L., J.P.W. Young, and E. Martínez-Romero. 1993. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43: 374-377.
Serraj, R., V. Vadez, L. Purcell, and T. Sinclair. 1999. Recent advances in the physiology of drought stress effects on symbiotic N2 fixation in soybean. Highlights of Nitrogen Fixation Research. Springer. p. 49-55.
Slattery, W., M. Conyers, and R. Aitken. 1999. Soil pH, aluminium, manganese and lime requirement. Soil analysis: an interpretation manual: 103-125.
Smith, D. C., and A. E. Doulias. 1987. The biology of symbiosis. Edward Arnold Ltd, New York.
Soares, B.L., P.A.A. Ferreira, S.M.d. Oliveira-Longatti, L.M. Marra, M. Rufini, and M.J.B.d. Andrade. 2014. Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria. Sci. Agric. 71: 171-180.
Staudt, A.K., L.G. Wolfe, and J.D. Shrout. 2012. Variations in exopolysaccharide production by Rhizobium tropici. Arch. Microbiol. 194: 197-206.
Talibart, R., M. Jebbar, G. Gouesbet, S. Himdi-Kabbab, H. Wroblewski, and C. Blanco. 1994. Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J. Bacteriol. 176: 5210-5217.
Van Berkum, P., R.B. Navarro, and A. Vargas. 1994. Classification of the uptake hydrogenase-positive (Hup+) bean rhizobia as Rhizobium tropici. Appl. Environ. Microb. 60: 554-561.
Vincent, J., A. Whitney, and J. Bose. 1977. Exploiting the legume rhizobium symbiosis in tropical agriculture. University of Hawai.
Vincent, J.M. 1970. A manual for the pratical study of root nodule bacteria. Black well Sci., Oxford, Great Britian.
Vinuesa, P., F. Neumann-Silkow, C. Pacios-Bras, H.P. Spaink, E. Martínez-Romero, and D. Werner. 2003. Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol. Plant Microbe. In. 16: 159-168.
Wall, L.G., and G. Favelukes. 1991. Early recognition in the Rhizobium meliloti-alfalfa symbiosis: root exudate factor stimulates root adsorption of homologous rhizobia. J. Bacteriol. 173: 3492-3499.
Walsh, K. 1995. Physiology of the legume nodule and its response to stress. Soil Biol. Biochem. 27: 637-655.
Weaver, R. W., and L. R. Frederick. 1982. Methods of Soil Analysis. ASA, New York, USA.
Weir, B. S. 2012. The current taxonomy of rhizobia. at New Zealand rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia.html (2017/4/30).
Wests, D., and L. Francois. 1982. Effects of salinity on germination, growth and yield of cowpea. Irrigation. Sci. 3: 169-175.
Wong, M., and A. Bradshaw. 1982. A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New. Phytol. 91: 255-261.
Wood, M. 1995. A mechanism of aluminium toxicity to soil bacteria and possible ecological implications. Plant Soil. 171: 63-69.
Young, J., L. Kuykendall, E. Martinez-Romero, A. Kerr, and H. Sawada. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 51: 89-103.
Zakhia, F., and P. de Lajudie. 2001. Taxonomy of rhizobia. Agronomie. 21: 569-576.
Zarucchi, J. L. 1989. Advances in legume biology. Edited by stirton, C.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top