跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃雅甄
研究生(外文):Ya-Zhen Huang
論文名稱:可見光應答二氧化鈦對克雷伯氏肺炎桿菌與黑麴菌失活動力模擬與機制探討
論文名稱(外文):Photo-Inactivation kinetics and mechanisms of Klebsiella pneumoniae and Aspergillus niger using visible-light-responsive photocatalyst.
指導教授:林耀東林耀東引用關係
口試委員:申永順余國賓沈佛亭黃政華
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:360
中文關鍵詞:可見光應答二氧化鈦克雷伯氏肺炎桿菌黑麴菌動力模擬光催化消毒
外文關鍵詞:Visible light response Titanium dioxideKlebsiella pneumoniaeAspergillus nigerKinetic modelPhotocatalytic disinfection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織(WHO)和聯合國環境規劃署(UNEP)調查報告顯示,農村地區微生物數量約為139 CFU cm-2,而都市地區微生物數量約為72110 CFU cm-2。其中致病菌株如大腸桿菌(Escherichia coli)、金黃色葡萄球菌(Staphylococcus aureus)、克雷伯氏肺炎桿菌(Klebsiella pneumoniae)等易引起感染性疾病(Peng, et al. 2008) ; 麴菌類真菌如黑麴菌(Aspergillus niger)與黃麴菌(Aspergillus flavus)等則易引起食品及環境污染(Zhang, et al. 2012)。傳統消毒技術在殺菌/抑菌過程產生有毒物與致癌性物質,如碘化物、苯酚衍生物、鄰苯二甲酸二丁酯(Dibutyl phthalate)、三鹵甲烷(Trihalomethanes)和鹵乙酸(Haloacetic acids)等(Richardson, et al. 2003)。因此發展新興抗(真)菌綠色材料為當今全球抗菌課題之當務之急。
本研究使用自製光觸媒摻氮二氧化鈦 (N-TiO2)、摻氮與電氣石二氧化鈦 (N-T-TiO2)、摻碳二氧化鈦 (C-TiO2) 與摻鈀與碳二氧化鈦 (Pd-C-TiO2) 於可見光照射下進行光催化失活,失活反應參數如: 光觸媒劑量、初始菌數密度及光強度。研究指標菌種為克雷伯氏肺炎桿菌與黑麴菌。研究數據以失活動力學模型 (Chick-Waston model、Modified Hom model、Light Chick-Waston model與Light Modified Hom model) 模擬光催化綠色材料對上述指標菌種之失活效率。實驗結果顯示四種光觸媒綠色材料,其劑量1.0 g L-1和0.5 %、光強度7.32 mW cm-2、初始細菌濃度105 CFU mL-1和105 spore # mL-1條件下皆能有效使克雷伯氏肺炎桿菌 (1440分鐘) 與黑麴菌 (168小時) 達99.999%抗菌率 ; 各別材料抗克雷伯氏肺炎桿菌/黑麴菌效率依序為Pd-C-TiO2 > C-TiO2 > N-T-TiO2 > N-TiO2。不同菌種於光催化綠色材料其耐光催化失活能力克雷伯氏肺炎桿菌 (Pd-C-TiO2, 210分鐘) < 黑麴菌(Pd-C-TiO2, 96小時),根據前人文獻與本研究所拍攝的電顯圖得知黑麴菌的細胞壁比克雷伯氏肺炎桿菌厚,故在相同條件下失活效率比克雷伯氏肺炎桿菌低。Chick-Waston model、Modified Hom model、Light-Chick-Waston model和Light-Modified Hom model皆有符合實驗數據的潛力,且k值皆具有規律性,如使用Modified Hom model進行模擬,克雷伯氏肺炎桿菌與黑麴菌的模擬,顯示兩者光催化失活反應的三階段參數變化一致,皆是第一階段 (緩衝期) 失活速率常數 (k1) 值趨勢會往上升 ; 第二階段 (對數期) 失活速率常數 (k2) 值趨勢會往上升 ; 第三階段 (遲滯期) 失活速率常數 (k3) 值趨勢會往下降。透過SEM、TEM、TXM和AFM了解改質過的二氧化鈦對克雷伯氏肺炎桿菌和黑麴菌進行光催化失活反應過程中細胞表面與型態的變化,並藉由K+、CoA、MDA、DNA和蛋白質的釋出,探討進行光催化失活反應的機制。
本研究結果顯示自製光觸媒二氧化鈦具高效抗菌能力,對於環境中指標菌種如克雷伯氏肺炎桿菌與黑麴菌均可達99.999%抗菌率且無傳統耗能、產生具毒性之副產物等缺點,未來可廣泛應用於抗(真)菌材料與環境抗菌技術層面等並具高發展潛力。
According to the investigation report from World Health Organization (WHO) and the United Nations Environment Program (UNEP), with the number of bacteria being ∼139 CFU cm-2 in the countryside and 72,110 CFU cm-2 in an urban environment(Peng, et al. 2008). Among them, some pathogenic strains such as Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae were caused infectious diseases ; some fungus such as Aspergillus niger and Aspergillus flavus are easy to caused food and environmental pollution (Zhang, et al. 2012). Due to traditional disinfection techniques produce toxic and carcinogenic substances in sterilization and antibacterial processes, such as iodide, derivatives of phenol, dibutyl phthalate, trihalomethanes and haloacetic acids. Therefore, development of new anti-bacteria (fungus) green materials is the top priority issue for today.
In this research, homemade N-TiO2, N-T-TiO2, C-TiO2 and Pd-C-TiO2 were carried out photocatalytic deactivated under visible light irradiation. The inactivation reaction parameters including photocatalyst dose, the bacteria initial concentration and light intensity. The bioindicators were Klebsiella pneumoniae and Aspergillus niger. The experimental data were used to simulate the deactivation efficiency of the above-mentioned indicators strain by using the (Chick-Waston model, Modified Hom model, Light Chick-Waston model and Light Modified Hom model). The results showed that when the four photocatalytic materials were 1.0 g L-1 and 0.5%, the light intensity was 7.32 mW cm-2, and the initial bacterial concentrations were 105 CFU mL-1 and 105 spore # mL-1 can effectively make Klebsiella pneumoniae (1440 minutes) and Aspergillus niger (168 hours) reach 99.999% of the antibacterial rate. The antibacterial efficiency of each material on Klebsiella pneumoniae / Aspergillus niger was Pd-C-TiO2> C-TiO2> N-T-TiO2> N-TiO2. Effects of different microbial species on anti-photocatalytic deactivation with these four kinds of photocatalytic materials, Klebsiella pneumoniae (Pd-C-TiO2, 210 min) was lower than that of Aspergillus niger (Pd-C-TiO2, 96 hours). According to the electron micrograph of this study and predecessors studies, it was found that the cell wall of Aspergillus niger was thicker than Klebsiella pneumoniae, so the efficiency of inactivation was lower than that of Klebsiella pneumoniae under the same conditions. Chick-Waston model, Modified Hom model, Light-Chick-Waston model, and Light-Modified Hom model showed the potential to fit the experimental data and k values are regular, if the use of Modified Hom model for Klebsiella pneumoniae and Aspergillus niger simulation operation, showing the two photocatalytic deactivation reaction of the three-phase parameter changes are consistent. The trend of the first stage (buffer period) inactivation rate constant (k1) tends to rise; the second stage (logarithmic period) inactivation rate constant (k2) tends to rise; the third stage (lag phase) inactivation rate Constant (k3) value tends to decline. In this research, SEM, TEM, TXM and AFM were used to investigate the changes of cell surface and morphology in the photocatalytic deactivation of Klebsiella pneumoniae and Aspergillus niger during photocatalytic deactivation of modified titanium dioxide, and the mechanism of photocatalytic deactivation were explored by the release of K+, CoA, MDA, DNA and protein.
The results of this research show that the homemade photocatalyst titanium dioxide has a high efficiency of antibacterial activity with the bioindicators such as Klebsiella pneumoniae and Aspergillus niger can reach 99.999% antibacterial rate and no traditional energy consumption, resulting in toxic byproducts and other shortcomings. In the future, these four materials can be widely used in anti-(fungi) and environmental anti-bacterial technology level and a high potential for development.
致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 xiii
表目錄 xxiv
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 5
第二章 文獻回顧 6
2.1 微生物種類 6
2.1.1 細菌-克雷伯氏肺炎桿菌 6
2.1.2 真菌-黑麴菌 8
2.2 光催化劑材料介紹 10
2.2.1 傳統二氧化鈦 10
2.2.2 可見光應答二氧化鈦 13
2.2.3 二氧化鈦的光催化活 19
2.3 光催化失活參數影響 22
2.3.1 光催化劑劑量 22
2.3.2 微生物初始濃度 30
2.3.3 光強度 34
2.3.4 不同微生物類型 42
2.4 光催化失活機制 50
2.5 動力學模擬 53
2.5.1 Empirical model 53
2.5.2 Mechanistic model 58
第三章 材料與方法 61
3.1 實驗流程與條件 61
3.2 實驗材料與設備 64
3.2.1 材料與藥品 64
3.2.1.1 菌株 64
3.2.1.2 培養基 65
3.2.1.3 抗菌材料 65
3.2.1.4 藥品 65
3.2.2 實驗設備與器材 67
3.2.2.1 實驗設備 67
3.2.2.2 實驗器材 69
3.3 實驗方法 70
3.3.1 可見光催化劑製備 70
3.3.1.1 摻氮二氧化鈦 (N-TiO2) 合成 70
3.3.1.2 摻氮/電氣石二氧化鈦 (N-T-TiO2) 合成 70
3.3.1.3 摻碳二氧化鈦 (C-TiO2) 合成 70
3.3.1.4 摻鈀/碳二氧化鈦 (Pd-C-TiO2) 合成 71
3.3.2 微生物培養 71
3.3.2.1 細菌-克雷伯氏肺炎桿菌 71
3.3.2.2 真菌-黑麴菌 72
3.3.3 光催化失活 72
3.3.3.1 細菌-克雷伯氏肺炎桿菌 72
3.3.3.2 真菌-黑麴菌 73
3.3.4 光催化失活動力模擬 74
3.3.4.1 Chick-Watson model 74
3.3.4.2 Modified Hom model 75
3.3.4.3 Novel kinetic model-light intensity effect 76
3.3.5 微生物失活特性 76
3.3.5.1 Scanning Electron Microscope (SEM) 76
3.3.5.2 Transmission Electron Microscope (TEM) 76
3.3.5.3 Transmission X-Ray Microscope (TXM) 77
3.3.5.4 Atimic Force Microscope (AFM) 77
3.3.5.5 Fluorescence Microscope (FM) 78
3.3.5.6 Flow Cytomter (FCM) 78
3.3.5.7 鉀離子 (K+) 測定 79
3.3.5.8 CoA測定 79
3.3.5.9 MDA測定 79
3.3.5.10 DNA測定 79
3.3.5.11 Protein測定 80
第四章 結果與討論 81
4.1光催化失活 81
4.1.1 細菌-克雷伯氏肺炎桿菌 81
4.1.1.1 光催化劑劑量效應 81
4.1.1.2 初始菌數密度效應 92
4.1.1.3 光照強度效應 101
4.1.2 真菌-黑麴菌 106
4.1.2.1 光催化劑劑量效應 106
4.1.2.2 初始菌數密度效應 116
4.1.2.3 光照強度效應 125
4.1.3 材料效益 130
4.1.4 菌種效益 134
4.2光失活動力學模式 136
4.2.1 Chick-Watson model 137
4.2.1.1 細菌-克雷伯氏肺炎桿菌 138
4.2.1.2 真菌-黑麴菌 152
4.2.2 Modified Hom model 166
4.2.2.1 細菌-克雷伯氏肺炎桿菌 167
4.2.2.2 真菌-黑麴菌 185
4.2.3 Novel kinetic model-light intensity effect 200
4.2.3.1 Light-Chick-Watson model 200
4.2.3.2 Light-Modified Hom model 211
4.3細胞表面型態變異 224
4.3.1 SEM 影像 224
4.3.1.1 細菌-克雷伯氏肺炎桿菌 224
4.3.1.2 真菌-黑麴菌 228
4.3.2 TEM 影像 233
4.3.2.1 細菌-克雷伯氏肺炎桿菌 233
4.3.2.2 真菌-黑麴菌 236
4.3.3 TXM 影像 239
4.3.3.1 細菌-克雷伯氏肺炎桿菌 239
4.3.3.2 真菌-黑麴菌 241
4.3.4 AFM 測定 243
4.3.4.1 細菌-克雷伯氏肺炎桿菌 243
4.3.4.2 真菌-黑麴菌 245
4.4 細胞膜完整性 248
4.4.1 FM分析 248
4.4.1.1 細菌-克雷伯氏肺炎桿菌 248
4.4.1.2 真菌-黑麴菌 250
4.4.2 FCM 分析 250
4.4.2.1 細菌-克雷伯氏肺炎桿菌 250
4.4.2.2 真菌-黑麴菌 251
4.5 細胞胞內物破損與釋出 252
4.5.1 陽離子 (K+) 釋出 252
4.5.1.1 細菌-克雷伯氏肺炎桿菌 252
4.5.1.2 真菌-黑麴菌 255
4.5.2 CoA釋出 256
4.5.2.1 細菌-克雷伯氏肺炎桿菌 256
4.5.2.2 真菌-黑麴菌 257
4.5.3 MDA釋出 258
4.5.3.1 細菌-克雷伯氏肺炎桿菌 258
4.5.3.2 真菌-黑麴菌 259
4.5.4 DNA破損與釋出 261
4.5.4.1 細菌-克雷伯氏肺炎桿菌 261
4.5.4.2 真菌-黑麴菌 262
4.5.5 Protein釋出 263
4.5.5.1 細菌-克雷伯氏肺炎桿菌 263
4.5.5.2 真菌-黑麴菌 264
第五章 結論和建議 265
參考文獻 272
附件 286
Appendix I Experimental Raw Data Figures 286
I -1 N-TiO2 for killed K. pneumoniae 286
I -1-1 Dosage Effect 286
I -1-2 Light intensity Effect 286
I -1-3 Bacterial concentration Effect 287
I -2 N-TiO2 for killed A. niger 287
I -2-1 Dosage Effect 287
I-2-2 Light intensity Effect 288
I-2-3 Fungus concentration Effect 288
I -3 N-T-TiO2 for killed K. pneumoniae 289
I-3-1 Dosage Effect 289
I-3-2 Light intensity Effect 289
I -3-3 Bacterial concentration Effect 290
I -4 N-T-TiO2 for killed A. niger 290
I-4-1 Dosage Effect 290
I-4-2 Light intensity Effect 291
I-4-3 Fungus concentration Effect 291
I -5 C-TiO2 for killed K. pneumoniae 292
I-5-1 Dosage Effect 292
I-5-2 Light intensity Effect 292
I-5-3 Bacterial concentration Effect 293
I -6 C-TiO2 for killed A. niger 293
I-6-1 Dosage Effect 293
I-6-2 Light intensity Effect 294
I-6-3 Fungus concentration Effect 294
I-7 Pd-C-TiO2 for killed K. pneumoniae 295
I-7-1 Dosage Effect 295
I-7-2 Light intensity Effect 295
I-7-3 Bacterial concentration Effect 296
I -8 Pd-C-TiO2 for killed A. niger 296
I-8-1 Dosage Effect 296
I-8-2 Light intensity Effect 297
I-8-3 Fungus concentration Effect 297
I -9 The other figures of K. pneumoniae 298
I -10 The other figures of A. niger 302
I -11 Viable bacteria remaining in the NA-agar plates of K. pneumoniae 303
I -12 Viable bacteria remaining in the PDA-agar plates of A. niger 304
Appendix II Experimental Raw Data Tables 305
II-1 N-TiO2 for killed K. pneumoniae 305
II -1-1 Dosage Effect 305
II -1-2 Light intensity Effect 306
II-1-3 Bacterial concentration Effect 308
II -2 N-TiO2 for killed A. niger 309
II -2-1 Dosage Effect 309
II-2-2 Light intensity Effect 311
II-2-3 Fungus concentration Effect 312
II -3 N-T-TiO2 for killed K. pneumoniae 314
II-3-1 Dosage Effect 314
II-3-2 Light intensity Effect 315
II -3-3 Bacterial concentration Effect 317
II -4 N-T-TiO2 for killed A. niger 318
II-4-1 Dosage Effect 318
II-4-2 Light intensity Effect 320
II-4-3 Fungus concentration Effect 321
II -5 C-TiO2 for killed K. pneumoniae 323
II-5-1 Dosage Effect 323
II-5-2 Light intensity Effect 324
II-5-3 Bacterial concentration Effect 326
II -6 C-TiO2 for killed A. niger 327
II-6-1 Dosage Effect 327
II-6-2 Light intensity Effect 329
II-6-3 Fungus concentration Effect 330
II-7 Pd-C-TiO2 for killed K. pneumoniae 332
II-7-1 Dosage Effect 332
II-7-2 Light intensity Effect 333
II-7-3 Bacterial concentration Effect 335
II -8 Pd-C-TiO2 for killed A. niger 336
II-8-1 Dosage Effect 336
II-8-2 Light intensity Effect 338
II-8-3 Fungus concentration Effect 339
Appendix III Experimental Detection Limit and Calibration Curve 341
III -1 Potassium ion 341
III -1-1 Potassium detection limit 341
III -1-2 The calibration curve of potassium working standard 342
III -1-3 The concentration of potassium working standard (ppm) and instrument reading value 342
III -1-4 Potassium concentration (ppm cell-1) in K. pneumoniae 342
III -1-5 Potassium concentration (ppm cell-1) in A. niger 343
III -2 CoA 344
III -2-1 The calibration curve of CoA working standard 344
III -2-2 The concentration of CoA working standard (ppm) and instrument reading value 344
III -2-3 CoA concentration (ppm) in K. pneumoniae 345
III -2-4 CoA concentration (ppm) in A. niger 345
III -3 MDA 346
III -3-1 The calibration curve of MDA working standard 346
III -3-2 The concentration of MDA working standard (ppm) and instrument reading value 346
III -3-3 MDA concentration (ppm) in K. pneumoniae 347
III -3-4 MDA concentration (ppm) in A. niger 347
III -4 Filter test report 348
III -5 Light intensity conversion chart 349
III -6 Light intensity test 350
III -7 Model change chart 351
Appendix V Experimental Detection Limit and Calibration Curve 353
潘郁采,2013。 利用含碳二氧化鈦光催化去除微量氣態元素汞之研究 國立臺北科技大學環境工程與管理研究所碩士論文。
賴瑞佳,2003。 腸內菌科不同菌屬間攜帶抗藥基因blaSHV或blaCTX-M的接合生殖質體之分析 國立嘉義大學生物科技研究所系碩士論文。
羅瑋佑,2013。 利用自備鈀-碳摻雜二氧化鈦顆粒對水溶液中染料脫色之研究 義守大學土木與生態工程學系碩士論文。
許惠然,2012。 摻氮比例及鍛燒溫度對氮摻雜二氧化之特性影響及其光催化反應動力模式探討 國立中興大學土壤環境科學系碩士論文。
鍾文婷,2013。 克雷伯氏肺炎桿菌中操作子 (KPN_00353-00349) 參與細菌調控甘油代謝宇寧及現象之研究 慈濟大學醫學生物技術碩士班碩士論文。
陳芳吟,2011。 探討碳含量及鍛燒溫度對碳摻雜二氧化之特性影響及其光催化反應動力模式 國立中興大學土壤環境科學系碩士論文。
王興仁,2009。 黑麴菌內切型纖維素酵素B與外切型纖維素酵素A基因選殖與結構分析 大同大學生物工程研究所碩士論文。
美國衛生及公眾服務部 (United States Department of Health and Human Services, HHS),2013。https://www.usa.gov/federal-agencies/u-s-department-of-health-and-human-services
日本國立感染症研究所 (National Institute of Health, NIH),2013。http://idsc.nih.go.jp/index.html
英國衛生局 (Department of Health , DH),2013。https://www.gov.uk/government/organisations/department-of-health
中央研究院生物多樣性中心台灣物種名錄,2017。http://taibnet.sinica.edu.tw/home.php
衛生福利部疾病管制署,2016。 臺灣院內感染監視資訊系統(TNIS)2016年第4季監視報告
Altin, I. and M. Sokmen. 2014. Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants. Applied Catalysis B: Environmental. 144: 694-701.
Alves, C.S., M.N. Melo, H.G. Franquelim, R. Ferre, M. Planas, L. Feliu, and M.X. Fernandes. 2010. Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR. Journal of Biological Chemistry. 285(36): 27536-27544.
Asahi R., T. Morikawa, T. Ohwaki, K. Aoki, and Y. Tang. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 293(5528): 269-271.
Bai, W., V. Krishna, J. Wang, B. Moudgil, and B. Koopman. 2012. Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene. Applied Catalysis B: Environmental. 125: 128-135.
Bekbölet, M. and C.V. Araz. 1996. Inactivation of Escherichia coli by photocatalytic oxidation. Chemosphere. 32(5): 959-965.
Benabbou, A.K., Z. Derriche, C. Felix, P. Lejeune, and C. Guillard. 2007. Photocatalytic inactivation of Escherichia coli - effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Applied Catalysis B: Environmental. 76(3-4): 257-263.
Bogdan, J., J. Zarzynska, and J. Plawinska-Czarnak. 2015. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Research Letters. 10.
Calzavara-Pinton, P., M. Venturini, and R. Sala. 2005. A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin. Journal of Photochemistry and Photobiology B: Biology. 78(1): 1-6.
Chai, Y.S., J.C. Lee, and B.W. Kim. 2000. Photocatalytic disinfection of E. coli in a suspended TiO2/UV reactor. Korean Journal of Chemical Engineering. 17(6): 633-637.
Caro, C., F. Gámez, M.J. Sayagues, R. Polvillo, and J.L. Royo. 2015. AgACTiO2 nanoparticles with microbiocide properties under visible light. Materials Research Express. 2(5): 055002.
Chen, D., Z. Jiang, J. Geng, Q. Wang, and D. Yang. 2007. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Industrial and Engineering Chemistry Research. 46(9): 2741-2746.
Chen, F.N., X.D. Yang, and Q. Wu. 2009a. Antifungal capability of TiO2 coated film on moist wood. Building and Environment. 44(5): 1088-1093.
Chen, F.N., X.D. Yang, and Q. Wu. 2009b. Photocatalytic Oxidation of Escherischia coli, Aspergillus niger, and Formaldehyde under Different Ultraviolet Irradiation Conditions. Environmental Science and Technology. 43(12): 4606-4611.
Chen, Y.L., Y.S. Chen, H. Chan., Y.H. Tseng, S.R. Yang, H.Y. Tsai, and H.H. Chang. 2012. The use of nanoscale visible light-responsive photocatalyst TiO2-Pt for the elimination of soil-borne pathogens. PLoS One. 7(2): e31212.
Cho, M., H. Chung, W. Choi, and J. Yoon. 2004. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research. 38: 1069-1077.
Chong, M.N., B. Jin, and C.P. Saint. 2011a. Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst. Chemical Engineering Journal. 171(1): 16-23.
Chong, M.N., B. Jin, and C.P. Saint. 2011b. Using H-titanate nanofiber catalysts for water disinfection: Understanding and modelling of the inactivation kinetics and mechanisms. Chemical Engineering Science. 66(24): 6525-6535.
Chuaybamroong, P., R. Chotigawin, S. Supothina, P. Sribenjalux, S. Larpkiattaworn, and C.Y. Wu. 2010. Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air. 20(3): 246-254.
Dadjour, M.F., C. Ogino, S. Matsumura, and N. Shimizu. 2005. Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO2. Biochemical Engineering Journal. 25: 243-248.
Dalrymple, O.K., E. Stefanakos, M.A. Trotz, and D.Y. Goswami. 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental. 98(1-2): 27-38.
Deng, W., J. Cheng, T. Li, and J. Kang. 2010. Determination of Intracellular Concentration of Acyl‐Coenzyme A Esters for Metabolic Profiling Clostridium acetobutylicum. Chinese Journal of Chemistry, 28(6): 988-992.
Douwes, J., P.L. Thorne, N. Pearce, and D. Heederik. 2003. Bioaerosol health effects and exposure assessment: progress and prospects. Annals of Occupational Hygiene. 47(3): 187-200.
Erakovic, S., A. Jankovic, C. Ristoscu, L. Duta, N. Serban, A. Visan, I.N. Mihailescu, G.E. Stan, M. Socol, O. Iordache, I. Dumitrescu, C.R. Luculescu, D. Janackovic, and V. Miskovic-Stankovic. 2014. Antifungal activity of Ag: hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates. Applied Surface Science. 293: 37-45.
Erkan, A., U. Bakir, and G. Karakas. 2006. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. Journal of Photochemistry and photobiology A: Chemistry. 184(3): 313-321.
Foster, H.A., D.W. Sheel, P. Evans, P. Sheel, S. Varghese, S.O. Elfakhri, and H.M. Yates. 2012. Antimicrobial Activity Against Hospital‐related Pathogens of Dual Layer CuO/TiO2 Coatings Prepared by CVD. Chemical Vapor Deposition. 18(4‐6): 140-146.
Fung, F. and W.G. Hughso. 2003. Health effects of indoor fungal bioaerosol exposure. Applied occupational and environmental hygiene. 18(7): 535-544.
Gao, M.H., T.C. An, G.Y. Li, X. Nie, H.Y. Yip, H.J. Zhao, and P.K. Wong. 2012. Genetic studies of the role of fatty acid and coenzyme A in photocatalytic inactivation of Escherichia coli. Water Research. 46: 3951-3957.
Guo, M.Z., T.C. Ling, and C.S. Poon. 2013. Nano-TiO2-based architectural mortar for no removal and bacteria inactivation: Influence of coating and weathering conditions. Cement and Concrete Composites. 36: 101-108.
Gyürék, L. and G. Finch. 1998. Modeling water treatment chemical disinfection kinetics. Journal of Environmental Engineering 124(9): 783-793.
Gerfin, T, M. Grätzel, and L. Walder. 1997. Molecular and Supramolecular Surface Modification of Nanocrystalline TiO2 Films: Charge‐Separating and Charge‐Injecting Devices. Progress in Inorganic Chemistry: Molecular Level Artificial Photosynthetic Materials Volume. 44: 345-393.
Hameed, A.S.H., C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, and G. Ravi. 2016. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Scientific reports. 6: 24312.
Hochmannova, L. and J. Vytrasova. 2010. Photocatalytic and antimicrobial effects of interior paints. Progress in Organic Coatings. 67(1): 1-5.
Hu, X.X., C. Hu, T.W. Peng, X.F. Zhou, and J.H. Qu. 2010. Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag-AgI/Alunder visible-light irradiation. Environmental Science and Technology. 44: 7058-7062.
Huang, X., X. Chen, Q. Chen, Q. Yu, D. Sun, and J. Liu. 2016. Investigation of functional selenium nanoparticles as potent antimicrobial. agents against superbugs. Acta biomaterialia. 30: 397-407.
Imase, M., Y. Ohko, M. Takeuchi, and S. Hanada. 2013. Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. International Biodeterioration and Biodegradation. 78: 1-6.
Irie, H., Y. Watanabe, and K. Hashimoto. 2003. Nitrogen-concentration dependence on photocatalytic activity of TiO2-N powders. The Journal of Physical Chemistry B. 107(23): 5483-5486.
Jaisai, M., S. Baruah, and J. Dutta. 2012. Paper modified with ZnO nanorods-antimicrobial studies. Beilstein Journal of Nanotechnology. 3: 684-691.
Jana, T.K., S.K. Maji, A. Pal, R.P. Maiti, T.K. Dolai, and K. Chatterjee. 2016. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. Journal of colloid and interface science. 480: 9-16.
Jaskova, V., L. Hochmannova, and J. Vytrasova. 2013. TiO2 and ZnO Nanoparticles in Photocatalytic and Hygienic Coatings. International Journal of Photoenergy.
Karthik, K., S. Dhanuskodi, C. Gobinath, and S. Sivaramakrishnan. 2015. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 139: 7-12.
Kedziora, A., K. Korzekwa, W. Strek, A. Pawlak, W. Doroszkiewicz, and G. Bugla-Ploskonska. 2016. Silver Nanoforms as a Therapeutic Agent for Killing Escherichia coli. Current Microbiology. 73(1): 139-147.
Kikuchi, Y., K. Sunada, T. Iyoda, K. Hashimoto, and A. Fujishima. 1997. Photocatalytic bactericidal effect of TiO2 thin film: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry 106: 51-56.
Kim, B., D. Kim, D. Cho, and S. Cho. 2003. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere. 52(1): 277-281.
Kosarsoy, G., E.H. Sen, N. Aksoz, S. Ide, and H. Aksoy. 2014. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties. Applied Surface Science. 318: 269-274.
Kuhn, D.M. and M.A. Ghannoum. 2003. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clinical microbiology reviews. 16(1): 144-172.
Lambert, R.J. and M.D Johnston. 2000. Disinfection kinetics: A new hypothesis and model for the tailing of log-survivor/time curves. Journal of Applied Microbiology. 88(5): 907-913.
Lin, Y.T., C.H. Weng, H.J. Hsu, Y.H. Lin, and C.C. Shiesh. 2013. The synergistic effect of nitrogen dopant and calcination temperature on the visible-light-induced photoactivity of n-doped TiO2. International Journal of Photoenergy. 2013: 13.
Lin, Y.T., C.H. Weng, and F.Y. Chen. 2014. Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation. Chemical engineering journal. 248: 175-183.
Leung, T.Y., C.Y. Chan, C. Hu, J.C. Yu, and P.K. Wong. 2008. Photocatalytic disinfection of marine bacteria using fiuorescent light. Water Research. 42: 4827-4837.
Malato, S., P. Fernández-Ibánez, M.I. Maldonado, J. Blanco, and W. Gernjak. 2009. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today. 147: 1-59.
Maness, P.C., S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, and W.A. Jacoby. 1999. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Applied Environmental Microbiology. 65: 4094-4098.
Marugán, J., V. Grieken, R. Sordo, C. Cruz, and Cristina. 2008. Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental. 82(1): 27-36.
Matsunaga, T., R. Tomoda, T. Nakajima, and H. Wake. 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters. 29(1-2): 211-214.
Markowska-Szczupak, A., K. Ulfig, and A. Morawski. 2011. The application of titanium dioxide for deactivation of bioparticulates: an overview. Catalysis Today. 169(1): 249-257.
Markowska-Szczupak, A., K. Wang, P. Rokicka, M. Endo, Z. Wei, B. Ohtani, A.W. Morawski, and Kowalska, E. 2015. The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. Journal of Photochemistry and Photobiology B: Biology. 151: 54-62.
Martins, N.C., C.S. Freire, C.P. Neto, A.J. Silvestre, J. Causio, G. Baldi, and T. Trindade. 2013. Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 417: 111-119.
Marugán, J., R. Grieken, C. Sordo, and C. Cruz. 2008. Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental. 82(1-2): 27-36.
Mitoraj, D., A. Janczyk, M. Strus, H. Kisch, G. Stochel, P.B. Heczko, and W. Macyk. 2007. Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochemical and Photobiological Sciences. 6(6): 642-648.
Naghibi, S., S. Vahed, O. Torabi, A. Jamshidi, and M.H. Golabgir. 2015. Exploring a new phenomenon in the bactericidal response of TiO2 thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination. Applied Surface Science. 327: 371-378.
Pablos, C., R. Grieken, J. Marugán, and B. Moreno. 2011. Photocatalytic inactivation of bacteria in a fixed-bed reactor: mechanistic insights by epifluorescence microscopy. Catalysis today. 161(1): 133-139.
Peng, C.C., M.H. Yang, W.T. Chiu, C.H. Chiu, C.S. Yang, Y.W. Chen, K.C. Chen, and R.Y. Peng. 2008. Composite Nano-Titanium Oxide–Chitosan Artificial Skin Exhibits Strong Wound-Healing Effect—An Approach with Anti-Inflammatory and Bactericidal Kinetics. Macromolecular Bioscience. 8: 316-327.
Pigeot-Remy, S., P. Real, F. Simonet, C. Hernandez, C. Vallet, J.C. Lazzaroni, S. Vacher, and C. Guillard. 2013. Inactivation of Aspergillus niger spores from indoor air by photocatalytic filters. Applied Catalysis B: Environmental. 134: 167-173.
Pinto, A.V., E.L. Deodato, J.S. Cardoso, E.F. Oliveira, S.L. Machado, H.K. Toma, A.C. Leitão, and M. Pádula. 2010. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 688: 3-11.
Pinto, R.J., A. Almeida, S.C. Fernandes, C.S. Freire, A.J. Silvestre, C.P. Neto, T. Trindade. 2013. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces. 103: 143-148.
Pottier, A., C. Chanéac, E. Tronc, L. Mazerolles, and J.P. Jolivet. 2001.Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. Journal of Materials Chemistry. 11(4): 1116-1121.
Quisenberry, L.R., L.H. Loetscher, and J.E. Boyd. 2009. Catalytic inactivation of bacteria using Pd-modified titania. Catalysis Communications. 10(10): 1417-1422.
Ram, A.F., M. Arentshorst, R.A. Damveld, F.M. Klis, and C.A. Hondel. 2004. The cell wall stress response in Aspergillus niger involves increased expression of the glutamine: fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology. 150(10): 3315-3326.
Raper, K.B. and D.I. Fennell. 1965. The genus Aspergillus. Williams and Wilkins.
Richardson, G., S. Eick, and R. Jones. 2005. How is the indoor environment related to asthma : literature review. Journal of advanced nursing. 52(3): 328-339.
Richardson, S.D. 2003. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry. 22(10): 666-684.
Rincón, A.G. and C. Pulgarin. 2004. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: Post-irradiation events in the dark and assessment of the effective disinfection time. Applied Catalysis B: Environmental. 49(2): 99-112.
Rizzo, L., D. Sannino, V. Vaiano, O. Sacco, A. Scarpa, and D. Pietrogiacomi. 2014. Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Applied Catalysis B: Environmental. 144: 369-378.
Saito, T., T. Iwase, and T. Morioka. 1992. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on Streptococci mutans. Journal of Photochem Photobiology B: Biology. 369-379.
Schuster, E., N.D. Coleman, J.C. Frisvad, and P.W.M. Dijck. 2002. On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol. 59(4-5): 426-435.
Seven, O., B. Dindar, S. Aydemir, D. Metin, M. Ozinel, and S. Icli. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. Journal of Photochemistry and photobiology A: Chemistry. 165(1): 103-107.
Sharma, N., S. Jandaik, S. Kumar, M. Chitkara, and I.S. Sandhu. 2016. Synthesis, characterisation and antimicrobial activity of manganese-and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience. 11(1): 54-71.
Shi, H.X., G.C. Huang, D.H. Xia, T.W. Ng, H.Y. Yip, G.Y. Li, T.C. An, H.J. Zhao, and P.K. Wong. 2015. Role of in Situ Resultant H2O2 in the Visible-Light-Driven Photocatalytic Inactivation of E-coli Using Natural Sphalerite: A Genetic Study. Journal of Physical Chemistry B. 119(7): 3104-3111.
Sichel, C., M. Cara, J. Tello, J. Blanco, and P. Fernández-Ibáñez. 2007. Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Applied Catalysis B: Environmental. 74: 152-160.
Silva, D.M., L.R. Batista, Rezende, F.F. Elisângela, H.P. Maria, Sartori, A. Daniele, and Eduardo. 2011. Identification of fungi of the genus Aspergillus section nigri using polyphasic taxonomy. Brazilian Journal of Microbiology. 42(2): 761-773.
Siyahi, V., Y. Habibi, L.N. Aziz, A. Saeid, and Asadollah. 2015. Microwave-assisted one-pot preparation of AgBr/ZnO nanocomposites as highly efficient visible-light photocatalyst for inactivation of Escherichia coli. Materials Express. 5(3): 201-210.
Simoni, M., E. Lombardi, G. Berti, F. Rusconi, S. Grutta, S. Piffer, M.G. Petronio, C. Galassi, F. Forastiere, and G. Viegi. 2005. Mould/dampness exposure at home is associated with respiratory disorders in Italian children and adolescents: the SIDRIA-2 Study. Occupational and environmental medicine. 62(9): 616-622.
Sontakke, S., J. Modak, and G. Madras. 2010. Photocatalytic inactivation of Escherischia coli and Pichia pastoris with combustion synthesized titanium dioxide. Chemical engineering journal. 165(1): 225-233.
Srinivasan C. and N. Somasundaram. 2003. Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO2. Current Science. 85: 1431-1438.
Subhan, M.A., N. Uddin, P. Sarker, A.K. Azad, and K. Begum. 2015. Photoluminescence, photocatalytic and antibacterial activities of CeO2·CuO·ZnO nanocomposite fabricated by coprecipitation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 149: 839-850.
Sun, H.W., G.Y. Li, X. Nie, H.X., Shi, P.K. Wong, H.J. Zhao, and T.C. An. 2014. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks. Environmental Science and Technology. 48: 9412-9419.
Sunada, K., T. Watanabe and K. Hashimoto. 2003. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A: Chemistry. 156: 227-233.
Sunada, K., K. Yoshihiko, K. Hashimoto, and A. Fujishima. 1998 Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science and Technology. 32: 726-728.
Sungkajuntranon, K., P. Sribenjalux, S. Supothina, and P. Chuaybamroong. 2014. Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps. Journal of Photochemistry and Photobiology B: Biology. 138: 160-171.
Suri, R.P., H.M. Thornton, and M. Muruganandham. 2012. Disinfection of water using Pt- and Ag-doped TiO2 photocatalysts. Environmental technology. 33(14): 1651-1659.
Tatlidil, I., E. Bacaksiz, C.K. Buruk, C. Breen, and M. Sokmen. 2012. A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi. Journal of Alloys and Compounds. 517: 80-86.
Thabet, S., M. Weiss-Gayet, F. Dappozze, P. Cotton, and C. Guillard. 2013. Photocatalysis on yeat cell: toeard targets and mechanisms. Applied Catalysis B: Environmental. 140-141: 169-178.
Venieri, D., A. Fraggedaki, M. Kostadima, E. Chatzisymeon, V. Binas, A. Zachopoulos, G. Kiriakidis, and D. Mantzavinos. 2014. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Applied Catalysis B: Environmental. 154: 93-101.
Venieri, D., A. Fraggedaki, V. Binas, A. Zachopoulos, G. Kiriakidis, and D. Mantzavinos. 2015. Study of the generated genetic polymorphisms during the photocatalytic elimination of Klebsiella pneumoniae in water. Photochemical and Photobiological Sciences. 14(3): 506-513.
Venkatasubbu, G.D., R. Baskar, T. Anusuya, C.A. Seshan, and R. Chelliah. 2016. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids and Surfaces B: Biointerfaces. 148: 600-606.
Vijay, M., K. Ramachandran, P. Ananthapadmanabhan, B. Nalini, B. Pillai, F. Bondioli, A. Manivannan, and R. Narendhirakannan, 2013. Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Current Applied Physics. 13(3): 510-516.
Vohra, A., D.Y. Goswami, D.A. Deshpande, and S.S. Block. 2006. Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B: Environmental. 64(1-2): 57-65.
Wamer, W.G., J.J. Yin, and R.R. Wei. 1997. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biology and Medicine. 23: 851-858.
Wang, X., J. Zhang, W. Sun, W. Yang, J. Cao, Q. Li, and J.K. Shang. 2015. Anti-algal activity of palladium oxide-modified nitrogen-doped titanium oxide photocatalyst on Anabaena sp. PCC 7120 and its photocatalytic degradation on Microcystin LR under visible light illumination. Chemical Engineering Journal. 264: 437-444.
Wolfrum, E.J., J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest, and W.A. Jacoby. 2002. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environmental science and technology 36(15): 3412-3419.
Wu, P., R. Xie, J.A. Imlay, and J.K. Shang. 2009. Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide. Applied Catalysis B: Environmental. 88(3): 576-581.
Wu, P., J.A. Imlay, and J.K. Shang. 2010. Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Biomaterials, 31(29): 7526-7533.
Xia, D.H., Z.R. Shen, G.C. Huang, W.J. Wang, J.C. Yu, and P.K. Wong. 2015. Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for Green Bacterial Inactivation under Visible Light. Environmental Science and Technology. 49(10): 6264-6273.
Xiao, G., X.D. Zhang, Y. Zhao, H.J. Su, and T.W. Tan. 2014. The behavior of active bactericidal and antifungal coating under visible light irradiation. Applied Surface Science. 292: 756-763.
Xu, W.R., W.J. Xie, X.Q. Huang, X. Chen, N. Huang, X. Wang, and J. Liu. 2017. The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chemistry. 221: 267-277.
Yang, Y., B. Velmurugan, X. Liu, and B. Xing. 2013. NIR photo responsive crosslinked up converting nanocarriers toward selective intracellular drug release. Small 9(17): 2937-2944.
Yao, Y.Y., T. Ochiai, H. Ishiguro, R. Nakano, and Y. Kubota. 2011. Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Applied Catalysis B: Environmental. 106(3-4): 592-599.
Yemmireddy, V.K. and Y.C Hung. 2015. Effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2). International journal of food microbiology. 204: 75-80.
Yousef, A., N.A.M. Barakat, T. Amna, S.S. Al-Deyab, M.S. Hassan. A. Abdel-hay, and H.Y. Kim. 2012. Inactivation of pathogenic Klebsiella pneumoniae by Cu/TiO2 nanofibers: A multifunctional nanomaterial via one-stop eletrospinning. Ceramic International. 38: 4525-4532.
Yousef, J.M. and E.N. Danial. 2012. In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. Journal of Health Sciences. 2(4): 38-42.
Zhang, X., X. Huang, Y. Ma, N. Lin, A. Fan, and B. Tang. 2012. Bactericidal behavior of Cu-containing stain less steel surfaces. Appliced Surface Science. 258: 10058-10063.
Zhang, J., Y. Liu. Q. Li, X. Zhang, and J.K. Shang. 2013. Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum. ACS applied materials and interfaces. 5(21): 10953-10959.
Zhang, X., G. Xiao, Y. Wang, Y. Zhao, H. Su, and T. Tan. 2017. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers. 169: 101-107.
Zhou, W., Y. Guan, D. Wang, X. Zhang, D. Liu, H. Jiang, and S. Chen. 2014. PdO/TiO2 and Pd/TiO2 heterostructured nanobelts with enhanced photocatalytic activity. Chemistry–An Asian Journal. 9(6): 1648-1654.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊