潘郁采,2013。 利用含碳二氧化鈦光催化去除微量氣態元素汞之研究 國立臺北科技大學環境工程與管理研究所碩士論文。賴瑞佳,2003。 腸內菌科不同菌屬間攜帶抗藥基因blaSHV或blaCTX-M的接合生殖質體之分析 國立嘉義大學生物科技研究所系碩士論文。羅瑋佑,2013。 利用自備鈀-碳摻雜二氧化鈦顆粒對水溶液中染料脫色之研究 義守大學土木與生態工程學系碩士論文。許惠然,2012。 摻氮比例及鍛燒溫度對氮摻雜二氧化之特性影響及其光催化反應動力模式探討 國立中興大學土壤環境科學系碩士論文。鍾文婷,2013。 克雷伯氏肺炎桿菌中操作子 (KPN_00353-00349) 參與細菌調控甘油代謝宇寧及現象之研究 慈濟大學醫學生物技術碩士班碩士論文。陳芳吟,2011。 探討碳含量及鍛燒溫度對碳摻雜二氧化之特性影響及其光催化反應動力模式 國立中興大學土壤環境科學系碩士論文。王興仁,2009。 黑麴菌內切型纖維素酵素B與外切型纖維素酵素A基因選殖與結構分析 大同大學生物工程研究所碩士論文。美國衛生及公眾服務部 (United States Department of Health and Human Services, HHS),2013。https://www.usa.gov/federal-agencies/u-s-department-of-health-and-human-services
日本國立感染症研究所 (National Institute of Health, NIH),2013。http://idsc.nih.go.jp/index.html
英國衛生局 (Department of Health , DH),2013。https://www.gov.uk/government/organisations/department-of-health
中央研究院生物多樣性中心台灣物種名錄,2017。http://taibnet.sinica.edu.tw/home.php
衛生福利部疾病管制署,2016。 臺灣院內感染監視資訊系統(TNIS)2016年第4季監視報告
Altin, I. and M. Sokmen. 2014. Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants. Applied Catalysis B: Environmental. 144: 694-701.
Alves, C.S., M.N. Melo, H.G. Franquelim, R. Ferre, M. Planas, L. Feliu, and M.X. Fernandes. 2010. Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR. Journal of Biological Chemistry. 285(36): 27536-27544.
Asahi R., T. Morikawa, T. Ohwaki, K. Aoki, and Y. Tang. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 293(5528): 269-271.
Bai, W., V. Krishna, J. Wang, B. Moudgil, and B. Koopman. 2012. Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene. Applied Catalysis B: Environmental. 125: 128-135.
Bekbölet, M. and C.V. Araz. 1996. Inactivation of Escherichia coli by photocatalytic oxidation. Chemosphere. 32(5): 959-965.
Benabbou, A.K., Z. Derriche, C. Felix, P. Lejeune, and C. Guillard. 2007. Photocatalytic inactivation of Escherichia coli - effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Applied Catalysis B: Environmental. 76(3-4): 257-263.
Bogdan, J., J. Zarzynska, and J. Plawinska-Czarnak. 2015. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Research Letters. 10.
Calzavara-Pinton, P., M. Venturini, and R. Sala. 2005. A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin. Journal of Photochemistry and Photobiology B: Biology. 78(1): 1-6.
Chai, Y.S., J.C. Lee, and B.W. Kim. 2000. Photocatalytic disinfection of E. coli in a suspended TiO2/UV reactor. Korean Journal of Chemical Engineering. 17(6): 633-637.
Caro, C., F. Gámez, M.J. Sayagues, R. Polvillo, and J.L. Royo. 2015. AgACTiO2 nanoparticles with microbiocide properties under visible light. Materials Research Express. 2(5): 055002.
Chen, D., Z. Jiang, J. Geng, Q. Wang, and D. Yang. 2007. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Industrial and Engineering Chemistry Research. 46(9): 2741-2746.
Chen, F.N., X.D. Yang, and Q. Wu. 2009a. Antifungal capability of TiO2 coated film on moist wood. Building and Environment. 44(5): 1088-1093.
Chen, F.N., X.D. Yang, and Q. Wu. 2009b. Photocatalytic Oxidation of Escherischia coli, Aspergillus niger, and Formaldehyde under Different Ultraviolet Irradiation Conditions. Environmental Science and Technology. 43(12): 4606-4611.
Chen, Y.L., Y.S. Chen, H. Chan., Y.H. Tseng, S.R. Yang, H.Y. Tsai, and H.H. Chang. 2012. The use of nanoscale visible light-responsive photocatalyst TiO2-Pt for the elimination of soil-borne pathogens. PLoS One. 7(2): e31212.
Cho, M., H. Chung, W. Choi, and J. Yoon. 2004. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research. 38: 1069-1077.
Chong, M.N., B. Jin, and C.P. Saint. 2011a. Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst. Chemical Engineering Journal. 171(1): 16-23.
Chong, M.N., B. Jin, and C.P. Saint. 2011b. Using H-titanate nanofiber catalysts for water disinfection: Understanding and modelling of the inactivation kinetics and mechanisms. Chemical Engineering Science. 66(24): 6525-6535.
Chuaybamroong, P., R. Chotigawin, S. Supothina, P. Sribenjalux, S. Larpkiattaworn, and C.Y. Wu. 2010. Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air. 20(3): 246-254.
Dadjour, M.F., C. Ogino, S. Matsumura, and N. Shimizu. 2005. Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO2. Biochemical Engineering Journal. 25: 243-248.
Dalrymple, O.K., E. Stefanakos, M.A. Trotz, and D.Y. Goswami. 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental. 98(1-2): 27-38.
Deng, W., J. Cheng, T. Li, and J. Kang. 2010. Determination of Intracellular Concentration of Acyl‐Coenzyme A Esters for Metabolic Profiling Clostridium acetobutylicum. Chinese Journal of Chemistry, 28(6): 988-992.
Douwes, J., P.L. Thorne, N. Pearce, and D. Heederik. 2003. Bioaerosol health effects and exposure assessment: progress and prospects. Annals of Occupational Hygiene. 47(3): 187-200.
Erakovic, S., A. Jankovic, C. Ristoscu, L. Duta, N. Serban, A. Visan, I.N. Mihailescu, G.E. Stan, M. Socol, O. Iordache, I. Dumitrescu, C.R. Luculescu, D. Janackovic, and V. Miskovic-Stankovic. 2014. Antifungal activity of Ag: hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates. Applied Surface Science. 293: 37-45.
Erkan, A., U. Bakir, and G. Karakas. 2006. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. Journal of Photochemistry and photobiology A: Chemistry. 184(3): 313-321.
Foster, H.A., D.W. Sheel, P. Evans, P. Sheel, S. Varghese, S.O. Elfakhri, and H.M. Yates. 2012. Antimicrobial Activity Against Hospital‐related Pathogens of Dual Layer CuO/TiO2 Coatings Prepared by CVD. Chemical Vapor Deposition. 18(4‐6): 140-146.
Fung, F. and W.G. Hughso. 2003. Health effects of indoor fungal bioaerosol exposure. Applied occupational and environmental hygiene. 18(7): 535-544.
Gao, M.H., T.C. An, G.Y. Li, X. Nie, H.Y. Yip, H.J. Zhao, and P.K. Wong. 2012. Genetic studies of the role of fatty acid and coenzyme A in photocatalytic inactivation of Escherichia coli. Water Research. 46: 3951-3957.
Guo, M.Z., T.C. Ling, and C.S. Poon. 2013. Nano-TiO2-based architectural mortar for no removal and bacteria inactivation: Influence of coating and weathering conditions. Cement and Concrete Composites. 36: 101-108.
Gyürék, L. and G. Finch. 1998. Modeling water treatment chemical disinfection kinetics. Journal of Environmental Engineering 124(9): 783-793.
Gerfin, T, M. Grätzel, and L. Walder. 1997. Molecular and Supramolecular Surface Modification of Nanocrystalline TiO2 Films: Charge‐Separating and Charge‐Injecting Devices. Progress in Inorganic Chemistry: Molecular Level Artificial Photosynthetic Materials Volume. 44: 345-393.
Hameed, A.S.H., C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, and G. Ravi. 2016. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Scientific reports. 6: 24312.
Hochmannova, L. and J. Vytrasova. 2010. Photocatalytic and antimicrobial effects of interior paints. Progress in Organic Coatings. 67(1): 1-5.
Hu, X.X., C. Hu, T.W. Peng, X.F. Zhou, and J.H. Qu. 2010. Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag-AgI/Alunder visible-light irradiation. Environmental Science and Technology. 44: 7058-7062.
Huang, X., X. Chen, Q. Chen, Q. Yu, D. Sun, and J. Liu. 2016. Investigation of functional selenium nanoparticles as potent antimicrobial. agents against superbugs. Acta biomaterialia. 30: 397-407.
Imase, M., Y. Ohko, M. Takeuchi, and S. Hanada. 2013. Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. International Biodeterioration and Biodegradation. 78: 1-6.
Irie, H., Y. Watanabe, and K. Hashimoto. 2003. Nitrogen-concentration dependence on photocatalytic activity of TiO2-N powders. The Journal of Physical Chemistry B. 107(23): 5483-5486.
Jaisai, M., S. Baruah, and J. Dutta. 2012. Paper modified with ZnO nanorods-antimicrobial studies. Beilstein Journal of Nanotechnology. 3: 684-691.
Jana, T.K., S.K. Maji, A. Pal, R.P. Maiti, T.K. Dolai, and K. Chatterjee. 2016. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. Journal of colloid and interface science. 480: 9-16.
Jaskova, V., L. Hochmannova, and J. Vytrasova. 2013. TiO2 and ZnO Nanoparticles in Photocatalytic and Hygienic Coatings. International Journal of Photoenergy.
Karthik, K., S. Dhanuskodi, C. Gobinath, and S. Sivaramakrishnan. 2015. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 139: 7-12.
Kedziora, A., K. Korzekwa, W. Strek, A. Pawlak, W. Doroszkiewicz, and G. Bugla-Ploskonska. 2016. Silver Nanoforms as a Therapeutic Agent for Killing Escherichia coli. Current Microbiology. 73(1): 139-147.
Kikuchi, Y., K. Sunada, T. Iyoda, K. Hashimoto, and A. Fujishima. 1997. Photocatalytic bactericidal effect of TiO2 thin film: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry 106: 51-56.
Kim, B., D. Kim, D. Cho, and S. Cho. 2003. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere. 52(1): 277-281.
Kosarsoy, G., E.H. Sen, N. Aksoz, S. Ide, and H. Aksoy. 2014. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties. Applied Surface Science. 318: 269-274.
Kuhn, D.M. and M.A. Ghannoum. 2003. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clinical microbiology reviews. 16(1): 144-172.
Lambert, R.J. and M.D Johnston. 2000. Disinfection kinetics: A new hypothesis and model for the tailing of log-survivor/time curves. Journal of Applied Microbiology. 88(5): 907-913.
Lin, Y.T., C.H. Weng, H.J. Hsu, Y.H. Lin, and C.C. Shiesh. 2013. The synergistic effect of nitrogen dopant and calcination temperature on the visible-light-induced photoactivity of n-doped TiO2. International Journal of Photoenergy. 2013: 13.
Lin, Y.T., C.H. Weng, and F.Y. Chen. 2014. Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation. Chemical engineering journal. 248: 175-183.
Leung, T.Y., C.Y. Chan, C. Hu, J.C. Yu, and P.K. Wong. 2008. Photocatalytic disinfection of marine bacteria using fiuorescent light. Water Research. 42: 4827-4837.
Malato, S., P. Fernández-Ibánez, M.I. Maldonado, J. Blanco, and W. Gernjak. 2009. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today. 147: 1-59.
Maness, P.C., S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, and W.A. Jacoby. 1999. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Applied Environmental Microbiology. 65: 4094-4098.
Marugán, J., V. Grieken, R. Sordo, C. Cruz, and Cristina. 2008. Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental. 82(1): 27-36.
Matsunaga, T., R. Tomoda, T. Nakajima, and H. Wake. 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters. 29(1-2): 211-214.
Markowska-Szczupak, A., K. Ulfig, and A. Morawski. 2011. The application of titanium dioxide for deactivation of bioparticulates: an overview. Catalysis Today. 169(1): 249-257.
Markowska-Szczupak, A., K. Wang, P. Rokicka, M. Endo, Z. Wei, B. Ohtani, A.W. Morawski, and Kowalska, E. 2015. The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. Journal of Photochemistry and Photobiology B: Biology. 151: 54-62.
Martins, N.C., C.S. Freire, C.P. Neto, A.J. Silvestre, J. Causio, G. Baldi, and T. Trindade. 2013. Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 417: 111-119.
Marugán, J., R. Grieken, C. Sordo, and C. Cruz. 2008. Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental. 82(1-2): 27-36.
Mitoraj, D., A. Janczyk, M. Strus, H. Kisch, G. Stochel, P.B. Heczko, and W. Macyk. 2007. Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochemical and Photobiological Sciences. 6(6): 642-648.
Naghibi, S., S. Vahed, O. Torabi, A. Jamshidi, and M.H. Golabgir. 2015. Exploring a new phenomenon in the bactericidal response of TiO2 thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination. Applied Surface Science. 327: 371-378.
Pablos, C., R. Grieken, J. Marugán, and B. Moreno. 2011. Photocatalytic inactivation of bacteria in a fixed-bed reactor: mechanistic insights by epifluorescence microscopy. Catalysis today. 161(1): 133-139.
Peng, C.C., M.H. Yang, W.T. Chiu, C.H. Chiu, C.S. Yang, Y.W. Chen, K.C. Chen, and R.Y. Peng. 2008. Composite Nano-Titanium Oxide–Chitosan Artificial Skin Exhibits Strong Wound-Healing Effect—An Approach with Anti-Inflammatory and Bactericidal Kinetics. Macromolecular Bioscience. 8: 316-327.
Pigeot-Remy, S., P. Real, F. Simonet, C. Hernandez, C. Vallet, J.C. Lazzaroni, S. Vacher, and C. Guillard. 2013. Inactivation of Aspergillus niger spores from indoor air by photocatalytic filters. Applied Catalysis B: Environmental. 134: 167-173.
Pinto, A.V., E.L. Deodato, J.S. Cardoso, E.F. Oliveira, S.L. Machado, H.K. Toma, A.C. Leitão, and M. Pádula. 2010. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 688: 3-11.
Pinto, R.J., A. Almeida, S.C. Fernandes, C.S. Freire, A.J. Silvestre, C.P. Neto, T. Trindade. 2013. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces. 103: 143-148.
Pottier, A., C. Chanéac, E. Tronc, L. Mazerolles, and J.P. Jolivet. 2001.Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. Journal of Materials Chemistry. 11(4): 1116-1121.
Quisenberry, L.R., L.H. Loetscher, and J.E. Boyd. 2009. Catalytic inactivation of bacteria using Pd-modified titania. Catalysis Communications. 10(10): 1417-1422.
Ram, A.F., M. Arentshorst, R.A. Damveld, F.M. Klis, and C.A. Hondel. 2004. The cell wall stress response in Aspergillus niger involves increased expression of the glutamine: fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology. 150(10): 3315-3326.
Raper, K.B. and D.I. Fennell. 1965. The genus Aspergillus. Williams and Wilkins.
Richardson, G., S. Eick, and R. Jones. 2005. How is the indoor environment related to asthma : literature review. Journal of advanced nursing. 52(3): 328-339.
Richardson, S.D. 2003. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry. 22(10): 666-684.
Rincón, A.G. and C. Pulgarin. 2004. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: Post-irradiation events in the dark and assessment of the effective disinfection time. Applied Catalysis B: Environmental. 49(2): 99-112.
Rizzo, L., D. Sannino, V. Vaiano, O. Sacco, A. Scarpa, and D. Pietrogiacomi. 2014. Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Applied Catalysis B: Environmental. 144: 369-378.
Saito, T., T. Iwase, and T. Morioka. 1992. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on Streptococci mutans. Journal of Photochem Photobiology B: Biology. 369-379.
Schuster, E., N.D. Coleman, J.C. Frisvad, and P.W.M. Dijck. 2002. On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol. 59(4-5): 426-435.
Seven, O., B. Dindar, S. Aydemir, D. Metin, M. Ozinel, and S. Icli. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. Journal of Photochemistry and photobiology A: Chemistry. 165(1): 103-107.
Sharma, N., S. Jandaik, S. Kumar, M. Chitkara, and I.S. Sandhu. 2016. Synthesis, characterisation and antimicrobial activity of manganese-and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience. 11(1): 54-71.
Shi, H.X., G.C. Huang, D.H. Xia, T.W. Ng, H.Y. Yip, G.Y. Li, T.C. An, H.J. Zhao, and P.K. Wong. 2015. Role of in Situ Resultant H2O2 in the Visible-Light-Driven Photocatalytic Inactivation of E-coli Using Natural Sphalerite: A Genetic Study. Journal of Physical Chemistry B. 119(7): 3104-3111.
Sichel, C., M. Cara, J. Tello, J. Blanco, and P. Fernández-Ibáñez. 2007. Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Applied Catalysis B: Environmental. 74: 152-160.
Silva, D.M., L.R. Batista, Rezende, F.F. Elisângela, H.P. Maria, Sartori, A. Daniele, and Eduardo. 2011. Identification of fungi of the genus Aspergillus section nigri using polyphasic taxonomy. Brazilian Journal of Microbiology. 42(2): 761-773.
Siyahi, V., Y. Habibi, L.N. Aziz, A. Saeid, and Asadollah. 2015. Microwave-assisted one-pot preparation of AgBr/ZnO nanocomposites as highly efficient visible-light photocatalyst for inactivation of Escherichia coli. Materials Express. 5(3): 201-210.
Simoni, M., E. Lombardi, G. Berti, F. Rusconi, S. Grutta, S. Piffer, M.G. Petronio, C. Galassi, F. Forastiere, and G. Viegi. 2005. Mould/dampness exposure at home is associated with respiratory disorders in Italian children and adolescents: the SIDRIA-2 Study. Occupational and environmental medicine. 62(9): 616-622.
Sontakke, S., J. Modak, and G. Madras. 2010. Photocatalytic inactivation of Escherischia coli and Pichia pastoris with combustion synthesized titanium dioxide. Chemical engineering journal. 165(1): 225-233.
Srinivasan C. and N. Somasundaram. 2003. Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO2. Current Science. 85: 1431-1438.
Subhan, M.A., N. Uddin, P. Sarker, A.K. Azad, and K. Begum. 2015. Photoluminescence, photocatalytic and antibacterial activities of CeO2·CuO·ZnO nanocomposite fabricated by coprecipitation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 149: 839-850.
Sun, H.W., G.Y. Li, X. Nie, H.X., Shi, P.K. Wong, H.J. Zhao, and T.C. An. 2014. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks. Environmental Science and Technology. 48: 9412-9419.
Sunada, K., T. Watanabe and K. Hashimoto. 2003. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A: Chemistry. 156: 227-233.
Sunada, K., K. Yoshihiko, K. Hashimoto, and A. Fujishima. 1998 Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science and Technology. 32: 726-728.
Sungkajuntranon, K., P. Sribenjalux, S. Supothina, and P. Chuaybamroong. 2014. Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps. Journal of Photochemistry and Photobiology B: Biology. 138: 160-171.
Suri, R.P., H.M. Thornton, and M. Muruganandham. 2012. Disinfection of water using Pt- and Ag-doped TiO2 photocatalysts. Environmental technology. 33(14): 1651-1659.
Tatlidil, I., E. Bacaksiz, C.K. Buruk, C. Breen, and M. Sokmen. 2012. A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi. Journal of Alloys and Compounds. 517: 80-86.
Thabet, S., M. Weiss-Gayet, F. Dappozze, P. Cotton, and C. Guillard. 2013. Photocatalysis on yeat cell: toeard targets and mechanisms. Applied Catalysis B: Environmental. 140-141: 169-178.
Venieri, D., A. Fraggedaki, M. Kostadima, E. Chatzisymeon, V. Binas, A. Zachopoulos, G. Kiriakidis, and D. Mantzavinos. 2014. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Applied Catalysis B: Environmental. 154: 93-101.
Venieri, D., A. Fraggedaki, V. Binas, A. Zachopoulos, G. Kiriakidis, and D. Mantzavinos. 2015. Study of the generated genetic polymorphisms during the photocatalytic elimination of Klebsiella pneumoniae in water. Photochemical and Photobiological Sciences. 14(3): 506-513.
Venkatasubbu, G.D., R. Baskar, T. Anusuya, C.A. Seshan, and R. Chelliah. 2016. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids and Surfaces B: Biointerfaces. 148: 600-606.
Vijay, M., K. Ramachandran, P. Ananthapadmanabhan, B. Nalini, B. Pillai, F. Bondioli, A. Manivannan, and R. Narendhirakannan, 2013. Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Current Applied Physics. 13(3): 510-516.
Vohra, A., D.Y. Goswami, D.A. Deshpande, and S.S. Block. 2006. Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B: Environmental. 64(1-2): 57-65.
Wamer, W.G., J.J. Yin, and R.R. Wei. 1997. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biology and Medicine. 23: 851-858.
Wang, X., J. Zhang, W. Sun, W. Yang, J. Cao, Q. Li, and J.K. Shang. 2015. Anti-algal activity of palladium oxide-modified nitrogen-doped titanium oxide photocatalyst on Anabaena sp. PCC 7120 and its photocatalytic degradation on Microcystin LR under visible light illumination. Chemical Engineering Journal. 264: 437-444.
Wolfrum, E.J., J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest, and W.A. Jacoby. 2002. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environmental science and technology 36(15): 3412-3419.
Wu, P., R. Xie, J.A. Imlay, and J.K. Shang. 2009. Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide. Applied Catalysis B: Environmental. 88(3): 576-581.
Wu, P., J.A. Imlay, and J.K. Shang. 2010. Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Biomaterials, 31(29): 7526-7533.
Xia, D.H., Z.R. Shen, G.C. Huang, W.J. Wang, J.C. Yu, and P.K. Wong. 2015. Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for Green Bacterial Inactivation under Visible Light. Environmental Science and Technology. 49(10): 6264-6273.
Xiao, G., X.D. Zhang, Y. Zhao, H.J. Su, and T.W. Tan. 2014. The behavior of active bactericidal and antifungal coating under visible light irradiation. Applied Surface Science. 292: 756-763.
Xu, W.R., W.J. Xie, X.Q. Huang, X. Chen, N. Huang, X. Wang, and J. Liu. 2017. The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chemistry. 221: 267-277.
Yang, Y., B. Velmurugan, X. Liu, and B. Xing. 2013. NIR photo responsive crosslinked up converting nanocarriers toward selective intracellular drug release. Small 9(17): 2937-2944.
Yao, Y.Y., T. Ochiai, H. Ishiguro, R. Nakano, and Y. Kubota. 2011. Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Applied Catalysis B: Environmental. 106(3-4): 592-599.
Yemmireddy, V.K. and Y.C Hung. 2015. Effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2). International journal of food microbiology. 204: 75-80.
Yousef, A., N.A.M. Barakat, T. Amna, S.S. Al-Deyab, M.S. Hassan. A. Abdel-hay, and H.Y. Kim. 2012. Inactivation of pathogenic Klebsiella pneumoniae by Cu/TiO2 nanofibers: A multifunctional nanomaterial via one-stop eletrospinning. Ceramic International. 38: 4525-4532.
Yousef, J.M. and E.N. Danial. 2012. In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. Journal of Health Sciences. 2(4): 38-42.
Zhang, X., X. Huang, Y. Ma, N. Lin, A. Fan, and B. Tang. 2012. Bactericidal behavior of Cu-containing stain less steel surfaces. Appliced Surface Science. 258: 10058-10063.
Zhang, J., Y. Liu. Q. Li, X. Zhang, and J.K. Shang. 2013. Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum. ACS applied materials and interfaces. 5(21): 10953-10959.
Zhang, X., G. Xiao, Y. Wang, Y. Zhao, H. Su, and T. Tan. 2017. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers. 169: 101-107.
Zhou, W., Y. Guan, D. Wang, X. Zhang, D. Liu, H. Jiang, and S. Chen. 2014. PdO/TiO2 and Pd/TiO2 heterostructured nanobelts with enhanced photocatalytic activity. Chemistry–An Asian Journal. 9(6): 1648-1654.