跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭晏宜
研究生(外文):Yen-I Cheng
論文名稱:1.下痢仔豬病原大腸桿菌之鑑定 2.大腸桿菌素相對應之免疫蛋白在大腸桿菌中的角色
論文名稱(外文):1.Identification of pathogenic Escherichia coli from diarrheal piglets in Taiwan 2.The role of immunity protein of colicin Ib in Escherichia coli
指導教授:陳建華陳建華引用關係
口試委員:胡小婷許萬枝胡念仁賴建成
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:124
中文關鍵詞:離乳豬下痢症腸毒性大腸桿菌大腸桿菌素免疫蛋白
外文關鍵詞:piglets with postweaning diarrhea (PWD)enterotoxigenic E. coli (ETEC)Colicinimmunity protein
相關次數:
  • 被引用被引用:2
  • 點閱點閱:440
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1.下痢仔豬病原大腸桿菌之鑑定
離乳豬在離乳後一至三週內,常發生急性或慢性下痢,並且逐漸脫水,嚴重甚至死亡。而存活下來的離乳猪,雖因其腸道黏膜的免疫系統逐漸建立而不會再下痢,但生長緩慢,其飼料利用率(Gain/Food intake)低,稱為離乳猪下痢症(postweaning diarrhea,PWD)。PWD導致的猪隻死亡、醫藥費用及存活的猪隻生長減緩等隊全球養猪產業重大經濟損失。PWD最主要的病因為動物來源的腸毒性大腸桿菌(ETEC),ETEC產生的腸毒素有LT (heat labile enterotoxin)、STa (heat stable enterotoxin type A)、STb (heat stable enterotoxin type B)和EAST1(enteroaggregative E. coli heat-stable enterotoxin 1)。少數的PWD是由STEAEC (產生滋賀毒素(Stx)腸聚集大腸桿菌;Shiga Toxin (Stx) producing Enteroaggregative E. coli)所引起的。因此本研究分析從2013年陸續收集,並分離的5次健康和下痢離乳豬糞便檢體中的細菌,並以生化八管鑑定到68株E. coli,後做STI、STII、 LTI、astA和stx2e的PCR,以確定所以分離到的68株E. coli是何種腸病原性大腸桿菌。本實驗發現有20株E. coli有F18纖毛基因,且會分泌LT和ST,並且不攜帶產生EAST1毒素的基因。這20株E. coli應是可能引起該牧場離乳豬下痢症(PWD)的ETEC類的致病菌。

從大腸桿菌對DH5α和pACYC184-imm/DH5α抑菌效果顯示,如果此菌均不會殺DH5α和pACYC184-imm/DH5α,表示此菌不會產生毒性;如果此菌只會殺DH5α,不殺pACYC184-imm/DH5α,表示此菌會產生Col Ib;如果此菌均會殺DH5α和pACYC184-imm/DH5α,表示此菌會產生其他Colicins。顯示分離到的健康離乳豬分離菌株17株和下痢離乳豬分離菌株51株,共68株菌株中有41.2%健康離乳豬分離菌株和29.4%下痢離乳豬分離菌株會產生Col Ib;17.6%健康離乳分離豬菌株和54.9%下痢離乳豬分離菌株會產生其他Colicins或其他毒素。這54.9%會產生其他Colicins的菌株可能是導致離乳豬下痢的原因之一。

從68株E. coli對純化Col Ib的敏感性結果可知,10 μg/mL的Col Ib可以抑制51%的下痢離乳豬分離菌株,只會抑制35.3%的健康離乳豬分離菌株。將來我們將測試是否可以將Col Ib加到離乳豬飼料中以防治台灣豬場的離乳猪下痢。會選用10 μg/mL的濃度,此濃度可以達到抑制下痢菌株生長,同時較不會影響健康菌株生長。

本研究發現攜帶有F18纖毛基因,且會分泌LT和ST,並且不攜帶產生EAST1毒素的基因的ETEC(39.2%)和會產生其他Colicins的菌株(54.9%)是引起台灣牧場離乳豬下痢症(PWD)的主因。

2.大腸桿菌素相對應之免疫蛋白在大腸桿菌中的角色

由於目前已知所有產生大腸桿菌素的菌株,皆還會產生一種與大腸桿菌素相對應稱為免疫蛋白小分子。一般認為免疫蛋白的角色是與菌體內的大腸桿菌素結合,使大腸桿菌素對菌株本身不產生毒害。但是我們實驗室卻構築出只產生大腸桿菌素colicin Ib (簡稱Col Ib),不產生其免疫蛋白 (簡稱imm)的大腸桿菌,並且該菌株生長正常。因此本研究探討免疫蛋白在菌中所扮演的功能。

具有ColIb-C-his質體(Col Ib的C端帶有 his tag)的BW25113、ColIb-C-his質體的W3110和ColIb-N-his質體(Col Ib的N端帶有 his tag)的BW25113,三菌養在20 mL培養基中,經mitomycin C誘導後和ColIb-C-his-T5質體(Col Ib的C端帶有 his tag)的W3110養在20 mL培養基中,經IPTG誘導後均與未經誘導後的菌生長沒有差別。

ColIb-C-his質體的BW25113養在20 mL培養基中和ColIb-N-his質體的BW25113養在20 mL及250mL培養基中,三菌經mitomycin C誘導後其上清液有少量的ColIb-C-his或ColIb-N-his蛋白存在,但是沒有細胞質蛋白DnaK的存在。顯示ColIb-C-his或ColIb-N-his蛋白二蛋白為菌主動分泌,而非由少數菌因死亡而裂解出的。但是ColIb-C-his質體的BW25113養在250 mL培養基中經誘導後,雖然其上清液也有少量的ColIb-C-his蛋白存在,但是也有DnaK的存在,表示250 mL菌液中因少數菌死亡而使ColIb-C-his蛋白釋出至上清液中。

ColIb-C-his質體或ColIb-N-his質體的BW25113養在20 mL和250mL培養基中,誘導後以Col Ib-C-his質體的BW25113有最佳的his tag 雜配訊號和抑菌活性。ColIb-C-his質體的W3110以mitomycin C誘導後較ColIb-C-his-T5質體的W3110以IPTG誘導後其his tag 雜配訊號和抑菌活性高。因此之後實驗將以ColIb-C-his質體或ColIb-C-his-T5質體的W3110,養在20 mL培養基中以mitomycin C或IPTG誘導來進行。

具有imm-C-His質體 (imm的C端帶有his tag)轉型至BW25113、W3110和DH5α,比較三菌經mitomycin C誘導後的菌數及西方雜配的結果。顯示imm-C-his在W3110和DH5α中會引起菌的quasilysis現象,但是在BW25113中則沒有此現象。西方雜配結果顯示在BW25113和W3110中,imm-C-His蛋白的量皆隨誘導時間增加而增強。

具有ColIb-C-his-T5質體和imm-C-his質體的W3110和具有ColIb質體和imm-C-his質體的W3110,經mitomycin C或(和)IPTG誘導後,二菌均沒有quasilysis現象。

具有ColIb-C-his-T5質體和imm-C-his質體的W3110未經IPTG誘導,以mitomycin C誘導產生imm-C-his蛋白其抑菌活性較未經mitomycin C誘導的W3110高。具有ColIb質體和imm-C-his質體的W3110經mitomycin C誘導,以IPTG誘導產生imm-C-his蛋白其抑菌活性較未經IPTG誘導的W3110高。顯示imm-C-his蛋白會幫助提高菌中Col Ib蛋白或ColIb-C-his蛋白的抑菌活性。

具有Col Ib質體和pACYC184-imm質體的W3110經mitomycin C誘導後,其上清液抑菌活性較具有ColIb質體和pACYC184質體的W3110經誘導後高。顯示imm蛋白會幫助Col Ib釋出。
1.Identification of pathogenic Escherichia coli from diarrheal piglets in Taiwan

Piglets after weaning for 1 to 3 weeks, often acute or chronic diarrhea, and gradually dehydration, serious or even death. The survival of piglets, although the intestinal mucosa because of its immune system gradually established without diarrhea, so this piglet slow growth, its feed utilization (Gain/Food intake) is low, known as the postweaning diarrhea (PWD). PWD induced piglet death, medical expenses and survival of the pig's growth slowdown in the global pig industry, major economic losses. PWD is the most important cause of animal origin of enterotoxigenic E. coli (ETEC), which produce heat labile enterotoxin (LT), heat stable enterotoxin type A (STa), heat stable enterotoxin type B (STb) and enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1). Small number of PWDs were caused by STEAEC (producing Shiga Toxin (Stx) Enteroaggregative E. coli). Therefore, this study analyzes the bacteria collected from the samples of the healthy and diarrhea piglets from 2013, and identified 68 strains of E. coli by biochemical eight tubes. Then use PCR to check this 68 isolates strains have STI, STII, LTI, astA and Stx2e or not, then identified this 68 isolates strains were which pathogen of E. coli. This study found that 20 E. coli has F18 flagellum gene, and also have LT and ST genes, but not have EAST1 gene. The 20 strains of E. coli should be ETECs, which maybe cause PWD.

The 68 isolates strains inhibition activities of DH5α and the plasmid for expression of imm was transformed into DH5α. If isolates strains do not kill two host, is mean this isolates strains do not produce toxin; if it can only kill DH5α host, is mean this isolates strains can produce Col Ib protein; if it can kill two host, is mean this isolates strains can produce other Colicin protein. The result shows, we have 41.2% healthy and 29.4% diarrhea piglets isolates strains can produce Col Ib protein; 17.6% healthy and 54.9% diarrhea piglets isolates strains can produce other Colicin protein. This 54.9% diarrhea piglets isolates strains maybe cause PWD.

From the sensitivity of 68 E. coli to purified Col Ib, show that 10 μg/mL of Col Ib can inhibit 51% diarrhea piglets isolates strains, but just inhibit 35.3% healthy piglets isolates strains. In the future, we will test whether Col Ib can be added to the suckling pig feed to prevent Taiwan pig farms from diarrhea. We will use 10 μg/mL concentration, this concentration can be achieved to inhibit the growth of diarrhea piglets isolates strains, while not affecting the growth of healthy piglets isolates strains.
In this study, we found ETEC (39.2%) of the gene carrying the F18 cilia gene and secreting LT and ST, and not carrying the EAST1 gene, and the strain (54.9%) that produced other Colicins, maybe cause PWD.

2.The role of immunity protein of colicin Ib in Escherichia coli

So far, all E. coli strains in nature that produce colicins also produce a small protein called immune protein specific to the colicin. It is generally believed that the immune protein binds the corresponding colicin in vivo, thus has no toxicity to the bacteria producing the colicin. However, our laboratory has constructed an E. coli strain that produces colicin Ib (Col Ib) but not the corresponding immunity protein (Imm), and the strain grew normally. The purpose of this study is to understand the role of Imm in E. coli.

At first, it was demonstrated that BW25113 or W3110 carrying plasmid with genes for ColIb-C-his (his tag at C terminus of Col Ib) or ColIb-N-his (his tag at N terminus of Col Ib) showed no harm and no difference on bacterial growth after induction of either protein. Induction by mytomycin C or IPTC showed no difference on bacterial growth.

BW25113 carrying plasmid responsible for production of ColIb-N-his through mytomycin C induction was grown in 20 mL or 250 mL medium. After induction, ColIb-N-his could be detected in the cell-free supernatant, but not the cytoplasmic protein DnaK, indicating ColIb-N-his could be secreted into medium by bacteria. So was BW25113 carrying plasmid responsible for production of ColIb-C-his grown in 20 mL medium. But for BW25113 carrying the same plasmid grown in 250 mL medium, both both DnaK and ColIb-C-his could be detected in the supernatant, indicating bacterial lysis occurred under this particular growth condition.

The His-tag hybridization signal and the bacteriocidal activity of the bacterial cell extract was determined with BW25113 carrying ColIb-C-his or ColIb-N-his plasmid and grown in 20 mL or 250 mL medium. After induction by mytomycin C, BW25113 carrying ColIb-C-his plasmid grown in 20 mL medium showed the best activity. The his-tag hybridization signal and the bacteriocidal activity of bacterial cell extract was also checked with W3110 carrying ColIb-C-his plasmid with which ColIb-C-his production was induced by mytomycin C or IPTC. Induction by mytomycin C had higher hybridization signal and the bacteriocidal activity than induction by IPTG.

Quasilysis on bacterial growth was found with W3110 and DH5α, but not BW25113, carrying plasmid with genes for imm-C-his (his tag at C terminus of Imm) after mytomycin C induction. The His tag hybridization signal of the protein extract increased as the induction time increased. However, W3110 carrying the same imm-C-his plasmid but plus Col Ib plasmid (Col Ib without his tag) did not show quasilysis on growth.

By using W3110 carrying both Col Ib-C-his plasmid and Imm-C-his plasmid which either induction by mytomycin C or IPTG, it is demonstrated that the bacteriocidal activity of the cell extract increased by induction of Imm-C-his. Thus, Imm-C-his increased the bacteriocidal activity of Col Ib-C-his in the bacteria.

The bacteriocidal activities of supernatants from W3110 carrying both Col Ib plasmid (Col Ib without his tag) and pACYC184-imm plasmid (Imm without his tag), as well as W3110 carrying both Col Ib plasmid and pACYC184 plasmid, were determined after induction by mytomycin C. The former had higher activity than the later, indicating that Imm could facilitate the secretion of Col Ib from bacteria.
1.目錄
前言 1
一、離乳豬下痢症(piglets with postweaning diarrhea; PWD) 1
二、腸病原性大腸桿菌(enterovirulent E. coli;EEC) 1
三、腸毒素 (Enterotoxin) : 2
四、EMB培養基 (Levine Eosin-Methylene Blue Agar Medium) 3
五、以GNB-14電腦密碼鑑定系統之菌種鑑定與判讀 3
六、大腸桿菌素(Colicins) 7
七、實驗動機目的 7
實驗材料 8
一、菌種、質體、引子及菌的培養 8
二、 儀器 8
三、 藥品 8
實驗方法 10
一、菌種的分離和鑑定 10
二、 E. coli的F18纖毛及腸毒素基因分析 10
三、菌株分泌ST蛋白之檢測 11
四、菌株分泌LT蛋白之檢測 12
五、收取菌體蛋白以供SDS-PAGE分析 13
六、收取蛋白液以供SDS-PAGE分析 13
七、10 % SDS-PAGE 13
八、Coomassie blue 染色 13
九、以 mitomycin C 誘導Col Ib-C-his蛋白表現 14
十、Col Ib-C-his蛋白純化 14
十一、蛋白定量 15
十二、分離菌株對Col Ib-C-his的敏感性測試 15
十三、分離菌株對DH5α和pACYC184-imm/DH5α的抑菌活性測試 16
結果 17
一、健康離乳豬糞便和下痢離乳豬直腸拭子檢體分菌及菌種鑑定 17
二、大腸桿菌的F18纖毛及腸毒素基因分析 17
三、純化Col Ib-C-his蛋白 18
四、純化Col Ib對大腸桿菌的抑菌活性 18
五、大腸桿菌對DH5α和pACYC184-imm/DH5α抑菌效果 18
討論 19
參考文獻 20
表 25
圖 38
附表 39
附圖 41
附錄一:培養基與實驗藥劑 48

2.目錄
前言 1
一、大腸桿菌素 (Colicin) 介紹 1
二、大腸桿菌素的結構 1
三、SOS反應(SOS response) 2
四、免疫蛋白 (immunity protein) 2
五、溶菌蛋白 (lysis protein) 2
六、Colicin Ib 基因及其相對應之免疫蛋白基因 3
七、實驗室之前的研究 3
八、研究動機與目的 3
實驗材料 4
一、菌種、質體、引子及菌的培養 4
二、儀器 4
三、 藥品 4
實驗方法 5
一、抽取質體DNA 5
二、DNA黏接反應 5
三、製備勝任細胞 5
四、轉型作用 5
五、DNA 限制酶反應 5
六、質體 DNA的PCR反應 5
七、DNA純化回收 5
八、pQE70-ColIb-c-his-T5質體構築 6
九、pQE70-ColIb-T5質體構築 6
十、收取菌體蛋白以進行SDS-PAGE 7
十一、10 %或15 % SDS-PAGE 7
十二、Coomassie blue 染色 7
十三、蛋白質轉漬 7
十四、西方雜配 (Western blot) 7
十五、以image J軟體將西方雜配結果量化 8
十六、以 mitomycin C 或IPTG誘導Col Ib或imm蛋白表現 8
十七、定量菌液上清液與破菌液的抑菌活性 8
十八、製備菌液上清液的TCA 沉澱以進行SDS-PAGE 9
結果 10
一、菌中ColIb-C-his蛋白與ColIb-N-his蛋白的比較 10
1. pQE70-ColIb-C-his-ok/BW25113、pQE70-ColIb-N-his-ok/BW25113和pQE70-ColIb-C-his-ok/W3110養在20 mL培養基中,經mitomycin C誘導後和pQE70-ColIb-C-his-T5/W3110養在20 mL培養基中,經IPTG誘導後,菌的生長均與未經誘導後沒有顯著差別。 10
2. 以pQE70-ColIb-C-his-ok/BW25113養在20 mL培養基中和pQE70-ColIb-N-his-ok/BW25113養在20 mL和250 mL培養基中,經誘導後ColIb-C-his蛋白和ColIb-N-his蛋白為主動分泌到菌體外。但以pQE70-ColIb-C-his-ok/BW25113養在250 mL培養基中,經誘導後會有少數的菌死亡導致ColIb-C-his蛋白釋出。 10
3. pQE70-ColIb-C-his-ok/BW25113和pQE70-ColIb-N-his-ok/BW25113養在20 mL和250mL培養基中,誘導後以pQE70-ColIb-C-his/BW25113養在20 m培養基中有最佳的his tag 雜配訊號和抑菌活性。pQE70-ColIb-C-his/W3110以mitomycin C誘導後較pQE70-ColIb-C-his-T5/W3110以IPTG誘導後其his tag 雜配訊號和抑菌活性高。 11
二、Imm-C-his蛋白與ColIb-C-his蛋白或Col Ib蛋白的關係 11
1. pACYC184-imm-His/W3110菌的imm-C-his蛋白可經 mitomycin C誘導產生,並且菌經誘導後,有quasilysis現象。 11
2. 以pQE70-ColIb-C-his-T5/pACYC184-imm-His/W3110和pACYC184-colIb-CT/pT5-imm/W3110經mitomycin C或(和)IPTG誘導後,二菌均沒有quasilysis現象。且菌中的Imm蛋白會提高ColIb-C-his蛋白及Col Ib蛋白的抑菌活性。 12
3. 以pQE70-ColIb-ok/pACYC184-imm-His/W3110、pQE70-ColIb-T5/pACYC184-imm-His/W3110和pACYC184-colIb-CT/pT5-imm/W3110三菌經mitomycin C或(和)IPTG誘導後,會多出65 kDa或130 kDa的his tag雜配訊號。 12
三、Imm蛋白與Col Ib蛋白的關係 13
1. pACYC184-imm/W3110菌經 mitomycin C誘導後,沒有quasilysis現象。 13
2. 以pQE70-ColIb-ok/pACYC184-imm/W3110經mitomycin C誘導後,菌中的Imm蛋白會幫助Col Ib蛋白的釋出。 13
討論 14
參考文獻 16
表 19
附表 52
附圖 57
附錄一:培養基與實驗藥劑 64
1.
蔡文城和何梅純 (2006) GNB-14電腦密碼鑑定系統

MICROBIAL IDENTIFICATION USING THE BIOMÉRIEUX VITEK® 2 SYSTEM (Pincus DH, 2007)

Ray CG, Ryan KJ, Sherris JC. (2004) Sherris Medical Microbiology: An Introduction to Infectious Diseases.

Sambrook JF & Russell DW. (2001) Molecular Cloning 3rd Edition

Sara Anne Cutler Iowa State University (2007) Colicin E1 addition to the swine diet prevents post weaning diarrhea. Retrospective Theses and Dissertations.
Bae WK, Lee YK, Cho MS, Ma SK, Kim SW, Kim NH, Choi KC. (2006) A Case of Hemolytic Uremic Syndrome Caused by Escherichia coli O104:H4. Yonsei Med J. 30; 47(3): 437–439.

Beutin L, Krüger U, Krause G, Miko A, Martin A, Strauch E. (2008) Evaluation of major types of Shiga toxin 2E-producing Escherichia coli bacteria present in food, pigs, and the environment as potential pathogens for humans. Appl Environ Microbiol. 74(15):4806-16.

Asano, K. and K. Mizobuchi. (1998). Copy number control of IncIalpha plasmid ColIb-P9 by competition between pseudoknot formation and antisense RNA binding at a specific RNA site. EMBO Journal, 17, 5201-5213.
Beatty ME, Adcock PM, Smith SW, Quinlan K, Kamimoto LA, Rowe SY. (2006) Epidemic diarrhea due to enterotoxigenic Escherichia coli. Clin Infect Dis.42:329–334.

Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, and Cavard D. (2007) Colicin biology. Microbiol Mol Biol Rev. 71:158-229.

Clements A, Young JC, Constantinou N, Frankel G. (2012) Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes. 3(2):71-87.

Croxen MA & Finlay BB. (2010) Molecular mechanisms of Escherichia coli pathogenicity.Nature Reviews Microbiology 8, 26–38

Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 26(4):822-80.

Dubreuil JD, Isaacson RE, Schifferli DM. (2016) Animal Enterotoxigenic Escherichia coli. EcoSal Plus. 7(1).

Farfan MJ, Torres AG. (2012) Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun.80:903–913.

Flores J, Okhuysen PC.(2009) Enteroaggregative Escherichia coli infection.Curr Opin Gastroenterol.; 25:8–11

Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. (2013) Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl). Apr;97(2):207-37.

Huang C, Song P, Fan P, Hou C, Thacker P, Ma X. (2015) Dietary Sodium Butyrate Decreases Postweaning Diarrhea by Modulating Intestinal Permeability and Changing the Bacterial Communities in Weaned Piglets. J Nutr. 145(12):2774-80.

Kim YC, Tarr AW, Penfold CN.(2014) Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Biochim Biophys Acta. 1843(8):1717-31.

Kalita A, Hu J, Torres AG. (2014) Recent advances in adherence and invasion of pathogenic Escherichia coli. Curr Opin Infect Dis. 27(5):459-64.

Kamenšek, S., Z. Podlesek, O. Gillor and D. Žgur-Bertok. (2010). Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiology, 10, 1471-2180.

Kaper JB, Nataro JP, Mobley HL.(2004) Pathogenic Escherichia coli. Nat Rev Microbiol.2(2):123-40.

Kim YC, Tarr AW, Penfold CN. (2014) Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Biochim Biophys Acta. 1843(8):1717-31.

Leimbach A, Hacker J, Dobrindt U.(2013) E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol.358:3-32.

Obata F, Tohyama K, Bonev AD, Kolling GL, Keepers TR, Gross LK, Nelson MT, Sato S, Obrig TG.(2008) Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J Infect Dis. 198(9):1398-406.

Ochoa TJ and Contreras CA. (2011) Enteropathogenic E. coli (EPEC) infection in children. Curr Opin Infect Dis. 24(5): 478–483.

Pass MA, Odedra R, Batt RM. (2000) Multiplex PCRs for identification of Escherichia coli virulence genes.J Clin Microbiol. 38(5):2001-4.

Pincus DH.(2007) New Vitek 2 colorimetric GN Card for identification of gram-negative nonfermentative bacilli.J Clin Microbiol. 45(12):4094.

Read LT, Hahn RW, Thompson CC, Bauer DL, Norton EB, Clements JD. (2014)
Simultaneous exposure to Escherichia coli heat-labile and heat-stable enterotoxins increases fluid secretion and alters cyclic nucleotide and cytokine production by intestinal epithelial cells. Infect Immun. 82(12):5308-16.

Rezaee MA, Rezaee A, Moazzeni SM, Salmanian AH, Yasuda Y, Tochikubo K, Pirayeh SN, Arzanlou M. (2005) Expression of Escherichia coli heat-labile enterotoxin B subunit (LTB) in Saccharomyces cerevisiae. J Microbiol. 43(4):354-60.

Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L.(2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature. 450(7170):670-5.

Sato T, Shimonishi Y. (2004) Structural features of Escherichia coli heat-stable enterotoxin that activates membrane-associated guanylyl cyclase. J Pept Res.
63(3):200-6.

Stahl CH, Callaway TR, Lincoln LM, et al. (2004) . Inhibitory activities of colicins against Escherichia coli strains responsible for postweaning diarrhea and edema disease in swine. Antimicrob Agents Chemother 48:3119–3121.

Sukumar M, Rizo J, Wall M, Dreyfus LA, Kupersztoch YM, Gierasch LM.(1995) The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism. Protein Sci. 4(9):1718-29.

Thacker PA. (2013) Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol.14;4(1):35.

Veilleux S, Dubreuil JD. (2006) Presence of Escherichia coli carrying the EAST1 toxin gene in farm animals. Vet Res. 37(1):3-13.

Vondruskova H, Slamova R, Trckova M, Zraly Z, Pavlik I. (2010) Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet Med-Czech. 55:199–224.

2.Angèle Nardi, Yves Corda, Daniel Baty, and Denis Duché. (2001) Colicin A Immunity Protein Interacts with the Hydrophobic Helical Hairpin of the Colicin A Channel Domain in the Escherichia coli Inner Membrane. J Bacteriol. 183(22): 6721–6725.

Asano K, and Mizobuchi K.(1998) Copy number control of IncIalpha plasmid ColIb-P9 by competition between pseudoknot formation and antisense RNA binding at a specific RNA site. EMBO Journal.17, 5201-5213.

Bano S, Vankemmelbeke M, Penfold CN, James R.(2013) Pattern of induction of colicin E9 synthesis by sub MIC of Norfloxacin antibiotic. Microbiol Res. 14;168(10):661-6.

Barnéoud-Arnoulet A, Gavioli M, Lloubès R, Cascales E.(2010) Interaction of the colicin K bactericidal toxin with components of its import machinery in the periplasm of Escherichia coli. Journal of Bacteriology. 192, 5934.

Baty D, Lloubès R, Geli V, Lazdunski C, Howard SP.(1987) Extracellular release of colicin A is non-specific. EMBO J. 6(8):2463-8.

Braun V, Patzer SI, and Hantke K. 2002) Ton-dependent colicins and microcins: modular design and evolution. Biochimie. 84, 365-380.

Butala M, Sonjak S ,Kamenšek S, Hodošček M, Browning DF, Žgur-Bertok D and Busby SJW. (2012) Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Molecular Microbiology. 86, 129-139.

Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, and Cavard D.(2007) Colicin biology. Microbiol Mol Biol Rev. 71:158-229.

Courcelle J, Khodursky A, Peter B, Brown PO and Hanawalt PC.(2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics.158, 41-64.

Duché D.(2002) The pore-forming domain of colicin A fused to a signal peptide: a tool for studying
pore-formation and inhibition. Biochimie.84: 455–464.


Ghequire MG, Kemland L, De Mot R.(2017) Novel Immunity Proteins Associated with Colicin M-like Bacteriocins Exhibit Promiscuous Protection in Pseudomonas. Front Microbiol.30;8:93.

Gratia JP.(2000) André Gratia: a forerunner in microbial and viral genetics.Genetics. Oct;156(2):471-6.

Howard SP, Leduc M, Van Heijenoort J, Lazdunski C.(1987) Lysis and release of colicin A in
colicinogenic autolytic deficient Escherichia coli mutants.FEMS Microbiol Lett. 42: 147–151.

Jakes KS.(2017) The Colicin E1 TolC Box: Identification of a Domain Required for Colicin E1 Cytotoxicity and TolC Binding. J Bacteriol. 13;199(1).

Jakes KS, and Finkelstein A.(2010) The colicin Ia receptor, Cir, is also the translocator for colicin Ia. Molecular Microbiology.75, 567–578.

Jakes KS and Model P.(1979) Mechanism of export of colicin E1 and colicin E3. J Bacteriol. 138:770-778.

Jamet A. and Nassif X. (2015) New players in the toxin field: polymorphic toxin systems in bacteria. mBio, 6, e00285-00215.

Kamenšek S, Podlesek Z, Gillor O, and Zgur-Bertok D.(2010) Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiology. 10, 1471-2180.

Kim, YC , Tarr AW and Penfold CN.(2014) Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Biochimica et Biophysica Acta. 1843, 1717–1731.

Kleanthous C.(2010) Swimming against the tide: progress and chal lenges in our understanding of colicin translocation. Nat Rev Microbiol. 8(12):843-8.

Leyton DL, Sloan J, Hill RE, Doughty S, Hartl and EL. (2003) Transfer region of pO113 from enterohemorrhagic Escherichia coli: similarity with R64 and identification of a novel plasmid-encoded autotransporter, EpeA. Infect Immun. 71(11):6307-19.

Li C, Zhang Y, Vankemmelbeke M, Hecht O, Aleanizy FS, Macdonald C, Moore GR, James R, and Penfold CN.(2012) Structural evidence that colicin a protein binds to a novel binding site of TolA protein in Escherichia coli periplasm.Journal of Biological Chemistry. 287, 19048–19057.
Lloubes R, Baty D, and Lazdunski C.(1986) The promoters of the genes for colicin production, release and immunity in the ColA plasmid: effects of convergent transcription and Lex A protein. Nucleic Acids Res. 25;14(6):2621-36.


Mankovich JA, Hsu CH, and Konisky J.(1986) DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and Ib. Journal of Bacteriology 168, 228-236.

Papadakos G, Wojdyla JA, and Kleanthous C.(2012) Nuclease colicins and their immunity proteins. Quarterly Reviews of Biophysics. 45, 57–103.

Penfold CN, Li C, Zhang Y, Vankemmelbeke M, and James R.(2012) Colicin A binds to a novel binding site of TolA in the Escherichia coli periplasm. Biochemical Society Transactions. 40, 1469-1474.

Pugsley AP, and Schwartz M.(1984) Colicin E2 release: lysis, leakage or secretion? Possible role of a
phospholipase. EMBO J. 3: 2393–2397.

Pulagam LP, and Steinhoff HJ.(2013) Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. Journal of Molecular Biology, 425, 1782–1794.

Rendueles O, Beloin C, Latour-Lambert P, and Ghigo JM.(2014) A new biofilm-associated colicin with increased efficiency against biofilm bacteria. International Society for Microbial Ecology Journal. 8, 1275-1288.

Sanchez-Alberola N, Campoy S, Emerson D, Barbé J and Erill I.(2015) A SOS regulon under control of a non-canonical LexA-binding motif in the Betaproteobacteria. Journal of Bacteriology, 197, 2622-2630.

Touzé T, Barreteau H, E Ghachi M, Bouhss A, Barnéoud-Arnoulet A, Patin D, Sacco E, Blanot D, Arthur M, Duché D, Lloubès R, Mengin-Lecreulx D.(2012) Colicin M, a peptidoglycan lipid-II-degrading enzyme: potential use for antibacterial means? Biochem Soc Trans.1;40(6):1522-7.

van der Wal FJ, Luirink J, and Oudega B.(1995) Bacteriocin release proteins: mode of action, structure, and biotechnological application. FEMS Microbiol Rev. 17(4): 381-399.

Wiener M, Freymann D, Ghosh P, Stroud RM.(1997) Crystal structure of colicin Ia. Nature. 385,461-464.
Yanisch-Perron C, Vieira J, Messing J.(1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 33(1):103-19.

Zeth K, Römer C, Patzer SI, and Braun V.(2008) Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J Biol Chem.12; 283(37):25324-31.

Zhang D, de Souza RF, Anantharaman V, Iyer LM, and Aravind L.(2012) Polymorphic toxin systems. comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology Direct. 7, 1745-6150.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top