跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許悅彬
研究生(外文):Yue-Bin Syu
論文名稱:利用定點突變法提升Serratia marcescens短鏈脫氫還原酶(SM_SDR)(R)-Phenylephrine的全細胞轉換效率
論文名稱(外文):Enhance the Bioconversion Efficiency of (R) -Phenylephrine by Site-Directed Mutagenesis of Short Chain Dehydrogenase/Reductase (SM_SDR) from Serratia marcescens
指導教授:楊明德楊明德引用關係
口試委員:許文輝王雯靜楊武勇
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
苯腎上腺素[(R)-phenylephrine, (R)-PE]常作為控制血壓或減緩鼻塞的藥劑使用,目前生產苯腎上腺素的方式是以化學合成為主,但此方法的立體選擇性不佳且對於環境造成傷害,通常亦會導致生產成本提高。利用分離純化的酵素或全細胞轉換進行不對稱的酮基還原,生產高純度的 (R)-PE是目前較佳的方式。先前之研究已從Serratia marcescens BCRC 10948篩選到NADPH-dependent short-chain dehydrogenase/reductase (SM_SDR),能夠生產大於99%光學純度 (R)-PE之酵素,但其產率太低 [0.57 (mmole/l.h)],並不利於日後工業生產。本實驗目的是利用已解析完成之SM_SDR晶體結構設計定點突變,選擇預期可改變酵素活性或偏好NADH 作為cofactor的Y40,A42,F98,T193,M195,N196,F202,L206等8個胺基酸位點進行定點突變。經篩選定序後總共得到35種變異酵素並於BL21(DE3)進行全細胞轉換,其中變異酵素A42和F98轉換活性並未明顯提昇,變異酵素Y40D、F98L、T193N、T193D、M195A、N196S、L206Y和N185Q偵測不到轉換活性。而預期可增加受質親和性或擴大結合口袋的F202變異酵素F202A、F202K、F202R、F202D和F202E,經利用10 mM HPAME反應3小時,(R)-PE產量至少提升了約1.3倍的產量。另外,實驗中亦分析全細胞轉換時,不同碳源和HPMAE受質濃度的最適化,以2% glycerol作為碳源,在40 mM 的HPMAE受質濃度,可作為野生株生產 (R)-PE的最佳條件。然而在50 mM 的HPMAE受質濃度反應48小時,變異酵素F202A、F202K、F202R、F202D和F202E的 (R)-PE產量較野生株分別提升了約1.84、2.02、1.53、1.64和1.87倍。另外,本研究也將SM_SDR野生株及F202A突變基因轉型至S. marcescens BCRC10948中表現並進行全細胞轉換。以5% 的細胞濃度在50 mM 的HPMAE受質濃度進行反應,野生株和變異酵素F202A經反應12小時後,分別得到23.82±0.75 mM及38.52±1.84 mM之 (R)-PE。當提高到10%的細胞濃度,變異酵素F202A能夠生產43.79±2.57 mM之 (R)-PE,但野生株產量無法增加。在重複利用菌體進行生物轉換方面,變異酵素F202A可進行6次轉換,若與第一次的轉換率作比較,其轉換率都保持在95%以上。此外,藉由饋料批次式反應 (fed-batch progress)來生產 (R)-PE,其產量可顯著提高,可得到134.09±2.97 mM (R)-PE,轉換率達到89.3% 和2.97 mmol/l·h之產率。
(R)-phenylephrine, (R)-PE, is often used as a medical treatment for blood pressure control and nasal decongestant. Conventional chemical synthesis is the current method being used for (R)-PE production. However, poor enantioselectivity and environmentally unfriendly are the major drawbacks and increase the production costs. Asymmetric bioreduction of prochiral ketone using purified enzymes or whole-cell system is more attractive method for production of optical pure (R)-PE. In our previous report, a novel NADPH-dependent short chain dehydrogenase/reductase (SM_SDR) from Serratia marcescens BCRC10948 was used for the reduction of 1-(3-hydroxyphenyl)-2-(methylamino)ethanone (HPME) to (R)-PE with more than 99% enantiomeric excess. However, a low conversion yield (51.06%) and productivity [0.57 (mmole/l.h)] limited the application of this method in industrial processes. In this study, the crystallographic structure of SM_SDR was used as a structural basis for site-directed mutagenesis to identify SM_SDR mutants that either enhance catalytic activities or change their cofactor preference from NADPH to NADH. A total of 35 mutants were constructed and then transformed into BL21(DE3) for whole cell conversion. Results showed that no significant change in conversion efficiency was observed for most of the mutants. However, mutational changes at Y40D, F98L, T193N, T193D, M195A, N196S, L206Y and N185Q resulted in completely lost of their enzymatic activities. Mutations at position F202 were designed to enhance the binding affinity with HPMAE or expand the binding pocket. Results revealed that F202A, F202K, F202R, F202D, F202E displayed at least 1.3-fold increase in (R)-PE production when using 10 mM HPMAE as substrate. The effect of different carbon sources and HPMAE concentrations on whole-cell bioconversion were evaluated. Results showed that 2% glycerol and 40 mM HPMAE, respectively, are the best conditions for (R)-PE production. However, the variants F202A, F202K, F202R, F202D and F202E have 1.84, 2.02, 1.53, 1.64 and 1.87 fold increase in (R)-PE production than wild type SM_SDR at 50 mM HPMAE at 48 h. Homologous expression of the cloned wild type and F202A SM_SDR in S. marcescens BCRC10948 were also carried out to enhance the (R)-PE production. When 5% of the recombinant cells was used for bioconversion, the wild type and F202A produced 23.82±0.75 mM and 38.52±1.84 mM of (R)-PE, respectively, after 12 h reaction using 50 mM HPMAE as substrate. The (R)-PE production can increase to 43.79±2.57 mM when 10% of the F202A but not for wild type recombinant cells were used for reaction. Moreover, the F202A recombinant cells can be recycled for 6 times and remaining over 95% conversion efficiency when compared to the first cycle. The fed-batch culture was performed to further improve the (R)-PE production, results revealed that (R)-PE production was dramatically increased to 134.09±2.97 mM with conversion yield of 89.3% and productivity of 2.97 mmol/l.h.
目錄
中文摘要………………………………………………………………i
Abstract………………………………………………………………ii
縮寫字對照表………………………………………………………………iii
前言………………………………………………………………1
材料與方法
I. 材料
1. 菌種與質體………………………………………………………………7
2. 藥品………………………………………………………………7
3. 分析管柱………………………………………………………………7
4. 酵素………………………………………………………………7
5. 引子………………………………………………………………7
6. 培養基及緩衝液………………………………………………………………8
II. 實驗方法
1. 小量質體DNA抽取………………………………………………………………9
2. DNA片段回收………………………………………………………………9
3. 接合作用 (ligation)………………………………………………………………9
4. 製備E. coli之熱休克勝任細胞……………………………………10
5. 熱休克轉型作用………………………………………………………………10
6. 製備S. marcescens BCRC10948之電穿孔細胞…10
7. S. marcescens BCRC10948之電轉型條件……………10
8. 菌種保存………………………………………………………………10
9. 聚合酶鏈鎖反應……………………………………………………………11
10. S. marcescens BCRC10948 sdr基因之定點突變…11
11. 重組蛋白表現、純化……………………………………………………11
11.1. 於BL21(DE3)進行蛋白表現………………………………………11
11.2. 於S. marcescens BCRC10948進行同源蛋白表現…12
11.3 蛋白定量標準曲線(Bio- Rad protein assay)…12
12. SDS-PAGE膠體電泳分析……………………………………………………13
13. 全細胞轉換HPMAE生產PE…………………………………………………13
13.1. 在E.coli BL21 (DE3)進行全細胞轉換…13
13.1.1. 不同碳源分析對於全細胞轉換之影響…13
13.1.2. 不同受質濃度對於全細胞轉換之影響…13
13.2. 在S. marcescens BCRC10948進行全細胞轉換…14
13.2.1. 不同反應條件對於全細胞轉換之影響…14
13.2.2. 重複利用菌體 (cell recycle)對全細胞轉換的影響………………………………………………………………14
13.2.3. 饋料批次式反應 (Fed batch process)對全細胞轉換的影響………………………………………………………………14
14. 高效能液相層析 (High Performance Liquid Chromatography, HPLC)………………………………………………………………14
15. 酵素活性分析………………………………………………………………15

結果
一、 於BL21 (DE3) 進行SM_SDR之表現及酵素活性分析………………16
二、利用BL21 (DE3) (pET30a-sdr10)全細胞轉換生產(R)-PE之最適化條件………………………………………………………………16
1. 不同的碳源影響……………………………………16
2. 不同濃度的glycerol影響………………17
3. 不同受質濃度的影響…………………………17
三、 SM_SDR變異酵素之構築及蛋白表現………………………………………17
四、 於S. marcescens 10948表現SM_SDR及其變異酵素進行全細胞轉換………………………………………19
1. 構築pUC-T5-sdr10和變異酵素並轉型送入S.marcescens BCRC10948…………………………………………19
2.於S.marcescens BCRC10948表現SM_SDR……………………………20
3. 比較不同 HPMAE受質濃度對全細胞轉換的影響…………………20
4. 重複利用菌體進行全細胞轉換的影響………………………………………21
5. 持續添加HPMAE進行全細胞轉換的影響…………………………………22
五、 選殖具轉換HPMAE為 (R)-PE能力之基因…………………………22

討論
一、 找尋在 E. coli 全細胞最適的轉換條件藉以提升 (R)-PE產量…23
二、構築提高酵素活性或受質親合性之SM_SDR變異酵素……………………24
三、 在S. marcescens 10948表現SM_SDR及變異酵素SM_SDR F202A ………………………………………25
四、 選殖具轉換HPAME為 (R)-PE能力的基因………………………………26

參考文獻………………………………………………………………28
表、………………………………………………………………33-40
圖、………………………………………………………………41-56

附錄
附錄一、 培養基與緩衝液………………………………………………………………57
附錄二、 不同環境因子分析S. marcescens BCRC10948 (pUC57-T5-sdr10)對於全細胞轉
換之影響9小時 (R)-PE的產量………………………………………………………………62
附錄三、 SM_SDR與SQ_SDR2胺基酸序列比對分析…………………………………63
附錄四、 SM_SDR與SQ_SDR胺基酸序列比對分析……………………………………64

表目錄

表ㄧ、本實驗所使用之菌種…………………………………………33
表二、本實驗所使用與構築之質體………………………………………………34
表三、本實驗所使用的核甘酸引子………………………………………………………………36
表四、以BL21 (DE3)表現不同變異酵素SM_SDR進行細胞轉換HPMAE為 (R)-PE………………………………………………………………39
表五、不同細胞密度對於全細胞轉換之影響對於S. marcescens BCRC10948 表現 SM_SDR and F202A變異酵素SM_SDR進行細胞轉換HPMAE為 (R)-PE………………………………………………………………40

圖目錄

圖一、 常見類交感神經胺類及其結構……………………………………………………41
圖二、SDS-PAGE分析不同濃度IPTG對BL21 (DE3) (pET30a-sdr10)表現SM_SDR之情形………………………………………………………42
圖三、以SDS-PAGE分析BL21(DE3) (pET30a-sdr10)表現及純化SM_SDR之情形………………………………………………………………43
圖四、利用2%不同的碳源進行BL21 (DE3) pET30a-sdr10全細胞轉換反應12小時PE的產量…………………………………………………44
圖五、利用不同濃度的glycerol以50 mM HPMAE進行BL21 (DE3) pET30a-sdr10全細胞反應………………………………………45
圖六、SDS-PAGE分析BL21 (DE3) (pET30a-sdr10)與變異酵素表現之情形……………………………………………46
圖七、利用2% glycerol以10 mM HPMAE進行BL21 (DE3) pET30a-sdr10和變異酵素進行全細胞反應………………………………47
圖八、以BL21 (DE3) (pET30a-sdr10 ) 和變異酵素表現SM_SDR在不同HPMAE濃度進行細胞轉換為PE之影響……………………48
圖九、以HPLC分析BL21 (DE3) (pET30a-sdr10) (A)與變異酵素sdr10 F202A (B), sdr10 F202K (C), sdr10 F202R (D), sdr10 F202D (E)和sdr10 F202E (F)轉換HPMAE為PE之旋光性…………………49
圖十、利用BL21 (DE3) (pET30a-sdr10 ) 和變異酵素表現SM_SDR菌株進行重複菌體生產PE之全細胞轉換反應……………………………………50
圖十一、質體pUC57-T5-sdr10 (A)及變異酵素pUC57-T5-sdr10 F202A (B)之構築………………………………………………………………51
圖十二、SDS-PAGE分析S. marcescens (pUC57-T5-sdr10)與變異酵素表現之情形………………………………………………………………52
圖十三、以S. marcescens (pUC57-T5-sdr10) (A)和變異酵素(pUC57-T5-sdr10 F202A)(B)表現SM_SDR在不同HPMAE 濃度進行細胞轉換為PE之影響………………………………………………………………53
圖十四、利用S. marcescens (pUC57-T5-sdr10 和pUC57-T5-sdr10 F202A )菌株進行重複菌體生產PE之全細胞轉換反應………………………………………………………………54
圖十五、S. marcescens (pUC57-T5-sdr10 F202A)持續添加HPMAE進行全細胞轉換反應………………………………………………………………55
圖十六、以HPLC分析BL21 (DE3) (pET30a-SQSDR2)轉換HPMAE為PE之旋光性………………………………………………………………56
徐人英 (1975). 藥物化學。合記圖書出版社,台北市。.

陳慧中 (2006). 酮基還原酵素之篩選俾應用L-phenylephrine之生合成。國立中興大學分子生物學研究所碩士論文。

林郁君 (2008). 酮基還原酵素之篩選俾應用於L-phenylephrine之生產。國立中興大學分子生物學研究所碩士論文。

傅則凱 (2009). 選殖Serratia菌屬之ketonereductase得將HPMAE轉換成L-phenylephrine。國立中興大學分子生物學研究所碩士論文。

卓燕菁 (2010). 利用Serratia quinivorans BCRC 14811之short-chain dehydrogenase/reductase立體選擇性生產phenylephrine。國立中興大學分子生物學研究所碩士論文。

周曉怡 (2011). 利用Rhodosporidium toruloides BCRC 21888 及 Serratia marcescens BCRC10948做為生物催化劑生產L-phenylephrine。國立中興大學分子生物學研究所碩士論文。

林瑋德 (2010). 利用不對稱酵素催化及化學轉換法合成 (R)-phenylephrine。國立中興大學分子生物學研究所博士論文。

彭冠智 (2013). 利用Escherichia coli表現Serratia菌屬之short-chain dehydrogenase/reductase基因進行不對稱性phenylephrine合成。國立中興大學分子生物學研究所博士論文。

鄒宇 (2015). 以酵素工程法開發黏質沙雷氏菌BCRC10948之新型具有高催化效率短鏈脫氫酶還原酶。國立清華大學分子與細胞生物研究所碩士論文。

Du, P.X., P. Wei, W.Y. Lou and M.H. Zong, 2014. Biocatalytic anti-prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158. Microb Cell Fact, 13: 84.

Gavrilescu, M. and Y. Chisti, 2005. Biotechnology—a sustainable alternative for chemical industry. Biotechnology Advances, 23(7–8): 471-499.

Goodman, L.S., L.L. Brunton, B. Chabner and B.C. Knollmann, 2011. Goodman & gilman's the pharmacological basis of therapeutics. 12th ed.

Ho, S.N., H.D. Hunt, R.M. Horton, J.K. Pullen and L.R. Pease, 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1): 51-59.

Huisman, G.W., J. Liang and A. Krebber, 2010. Practical chiral alcohol manufacture using ketoreductases. Current Opinion in Chemical Biology, 14(2): 122-129.

Jörnvall, H., J.-O. Höög and B. Persson, 1999. SDR and MDR: Completed genome sequences show these protein families to be large, of old origin, and of complex nature.
FEBS Letters, 445(2–3): 261-264.

Kallberg, Y., U. Oppermann, H. Jornvall and B. Persson, 2002. Short-chain dehydrogenases/reductases (SDRs). European journal of biochemistry / FEBS, 269(18): 4409-4417.

Kataoka, M., K. Kita, M. Wada, Y. Yasohara, J. Hasegawa and S. Shimizu, 2003.
Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol, 62(5-6): 437-445.

Kataoka M, M.T., Kita S, Sakamoto K, Shimizu S, Tsuzaki K, 2002. Aminoketoneasymmetric reductase and nucleic acid thereof. Japanese Patent,WO02070714.

Kurbanoglu, E.B., K. Zilbeyaz, N.I. Kurbanoglu and H. Kilic, 2007. Asymmetric reduction of acetophenone analogues by Aternaria alternata using ram horn peptone. Tetrahedron: Asymmetry, 18(19): 2332-2335.

Lerchner, A., A. Jarasch, W. Meining, A. Schiefner and A. Skerra, 2013. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. Alcohol dehydrogenase toward NADH cosubstrate specificity.
Biotechnology and bioengineering, 110(11): 2803-2814.

Li, J., P. Wang, J.-Y. He, J. Huang and J. Tang, 2013. Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: Ethanol and glycerol. Applied Microbiology and Biotechnology, 97(15): 6685-6692.

Li, Y., R. Zhang, Y. Xu, R. Xiao, L. Wang, X. Zhou, H. Liang and J. Jiang, 2016. Efficient bioreduction of 2-hydroxyacetophenone to (S)-1-phenyl-1, 2-ethanediol
through homologous expression of (S)-carbonyl reductase II in Candida parapsilosis CCTCC M203011. Process Biochemistry, 51(9): 1175-1182.

Lundquist, R. and B.M. Olivera, 1971. Pyridine nucleotide metabolism in Escherichia coli : I. Exponential growth. Journal of Biological Chemistry, 246(4): 1107-1116.

Jai-Shin Liu, Y.-C.K., Yu Tsou, Wen-Hwei Hsu, Ming-Te Yang, and Wen-Ching Wang, 2017. Structure-guided design of Serratia marcescens short-chain
dehydrogenase/reductase for stereoselective synthesis of (R)-phenylephrine (in press).

New-register.com, 2005. Drug companies consider substitude for cold medicine, mcminnville, oregon.

Patel, R.N., 2000. Microbial/enzymatic synthesis of chiral drug intermediates. Advances in applied microbiology, 47: 33-78.

Pennacchio, A., V. Sannino, G. Sorrentino, M. Rossi, C.A. Raia and L. Esposito, 2013. Biochemical and structural characterization of recombinant short-chain
NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil. Applied Microbiology and Biotechnology, 97(9): 3949-3964.

Persson, B. and Y. Kallberg, 2013. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs). Chemico-biological interactions, 202(1-3): 111-115.

Robert, X. and P. Gouet, 2014. Deciphering key features in protein structures with the new endscript server. Nucleic Acids Research, 42(W1): W320-W324.

Rocha-Martín, J., D. Vega, J.M. Bolivar, A. Hidalgo, J. Berenguer, J.M. Guisán and F. López-Gallego, 2012. Characterization and further stabilization of a new
anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresource Technology, 103(1): 343-350.

Rocha, L.C., M.H. Seleghim, J.V. Comasseto, L.D. Sette and A.L. Porto, 2015. Stereoselective bioreduction of alpha-azido ketones by whole cells of marine-derived fungi. Marine biotechnology (New York, N.Y.), 17(6): 736-742.

Shibatani, T., K. Omori, H. Akatsuka, E. Kawai and H. Matsumae, 2000. Enzymatic resolution of diltiazem intermediate by Serratia marcescens lipase: Molecular mechanism of lipase secretion and its industrial application. Journal of Molecular Catalysis B: Enzymatic, 10(1): 141-149.

Tan, A.W.I., M. Fischbach, H. Huebner, R. Buchholz, W. Hummel, T. Daussmann, C. Wandrey and A. Liese, 2006. Synthesis of enantiopure (5R)-hydroxyhexane-2-one
with immobilised whole cells of Lactobacillus kefiri. Applied Microbiology and Biotechnology, 71(3): 289-293.

Yang, C., X. Ying, M. Yu, Y. Zhang, B. Xiong, Q. Song and Z. Wang, 2012. Towards the discovery of alcohol dehydrogenases: NAD(P)H fluorescence-based screening and characterization of the newly isolated Rhodococcus erythropolis WZ010 in the preparation of chiral aryl secondary alcohols. Journal of industrial microbiology & biotechnology, 39(10): 1431-1443.

Yang, W., J.-H. Xu, J. Pan, Y. Xu and Z.-L. Wang, 2008. Efficient reduction of aromatic ketones with NADPH regeneration by using crude enzyme from Rhodotorula cells and mannitol as cosubstrate. Biochemical Engineering Journal, 42(1): 1-5

Xu, Q., W.-Y. Tao, H. Huang and S. Li, 2016. Highly efficient synthesis of ethyl
(S)-4-chloro-3-hydroxybutanoate by a novel carbonyl reductase from Yarrowia
lipolytica and using mannitol or sorbitol as cosubstrate. Biochemical Engineering Journal, 106: 61-67.

Zhang, R., Y. Xu, Y. Sun, W. Zhang and R. Xiao, 2009. Ser67asp and His68asp
substitutions in Candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Applied and Environmental Microbiology,
75(7): 2176-2183.

Zhibin Liu, R.W., Anton Glieder, 2004. Enzymes from higher eukaryotes for industrial biocatalysis.

Zhou, X., R. Zhang, Y. Xu, H. Liang, J. Jiang and R. Xiao, 2015. Coupled (R)-carbonyl reductase and glucose dehydrogenase catalyzes
(R)-1-phenyl-1,2-ethanediol biosynthesis with excellent stereochemical selectivity. Process Biochemistry, 50(11): 1807-1813.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊