跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪詩惠
研究生(外文):Shi-Hui Hong
論文名稱:刮刀塗佈光子晶體於智能調光玻璃之應用
論文名稱(外文):Photonic Crystals-Based Smart Glasses by Doctor Blade Coating
指導教授:楊宏達楊宏達引用關係
指導教授(外文):Hongta Yang
口試委員:劉博滔李榮和
口試委員(外文):Bo-Tau LiuRong-Ho Lee
口試日期:2017-06-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:刮刀塗佈技術調光玻璃光子晶體超疏水
外文關鍵詞:Doctor Blade Coating technologySwitched Window (Glaze)Photonic Crystalssuperhydrophobic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
為提高室內採光度,減少燈具使用,並使室外景觀得以引入室内空間,多數大型建築常以大面積之連續横向玻璃開窗替代原本各式窄窗。然而,除可見光外,紫外光與近紅外光對玻璃亦具高穿透性,而紫外光輻射可致使皮膚老化、產生皺紋與黑色素,近紅外光可穿透玻璃至建築內部,形成溫室效應,導致空調設備所需耗能增加。此研究以玻璃為基板,大面積連續性刮刀塗佈彈性光子晶體於其上,使所組合而成的智能調光玻璃可以選擇性繞射對人體有害的紫外光及近紅外光,且可因應室內外溫差選擇性繞射近紅外光,夏季時,玻璃可阻擋大部分近紅外光減少室內溫室效應所造成的空調所需損耗;冬季時,玻璃夾層間之乙醇會因Kelvin方程式傾向凝結於多孔性薄膜孔洞中,使近紅外光可穿透玻璃至室內並提高室內溫度,同時保持可見光之高穿透率。此外,其奈米光子晶體結構可以表面改質以具自潔能力,可減少清洗玻璃之費用。
A simple, roll-to-roll compatible doctor blade coating technology for producing three-dimensional highly ordered macroporous polymer membranes is developed. The research describes an invention in using the prepared macroporous polymer films as photonic crystals for large area, low cost, and no energy consumption self-adjusting smart glasses, which are useful for energy control in glazed buildings. This invention is inspired by the heat pipe technology. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. Therefore, once the amount of solvent trapped in the macroporous films can be automatically controlled by difference between indoor and outdoor temperature, the device can make macroporous film self-adjust light transmission. Moreover, the glass surface exhibits superhydrophobic and self-cleaning properties after surface modification.
中文摘要 i
Abstract ii
示意圖目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與方法 3
1.4 研究架構與流程 4
第二章 文獻回顧 8
2.1 二氧化矽粒子合成 8
2.2 光子晶體相關文獻 9
2.2.1 由上至下製程(Bottom-Up Fabrications) 10
2.2.2 由下至上製程(Top-Down Fabrications) 12
2.3 智能調光玻璃相關文獻 14
2.3.1 被動式動力系統 (Passive dynamical systems) 14
2.3.2 主動式動力系統 (Active dynamical systems) 17
2.4 刮刀塗佈相關文獻 22
2.5 超疏水材料相關文獻 25
第三章 實驗 28
3.1 實驗儀器設備 28
3.2 實驗藥品 29
3.3 實驗步驟 32
3.3.1 製備200奈米二氧化矽膠體粒子 32
3.3.2 製備470奈米二氧化矽膠體粒子 32
3.3.3 製備二氧化矽膠體晶體/ETPTA單體懸浮液 33
3.3.4 刮刀塗佈製備二氧化矽膠體晶體/ETPTA高分子複合材料 33
3.3.5 製備多孔性高分子薄膜 34
3.3.6 製備超疏水多孔性高分子薄膜 34
3.3.7 組裝可繞射紫外光並可調節近紅外光入射之智能玻璃 35
3.4 實驗特性分析 35
3.4.1 活性氧離子蝕刻 35
3.4.2 樣品光學性質之量測 36
3.4.3 組裝後裝置光學性質之量測 36
3.4.4 靜態接觸角、前近接觸角,後退接觸角之量測 36
3.4.5 樣品表面結構之觀測 37
第四章 實驗結果與討論 38
4.1 刮刀塗佈技術 38
4.2 抗近紅外光多孔性高分子薄膜之製備 40
4.2.1 結構影像與分析 41
4.2.2 薄膜光學性質分析 43
4.3 調光裝置調控近紅外光分析 45
4.3.1 裝置光學性質之分析 46
4.3.2 不同量乙醇置入裝置之繞射波長影響 47
4.3.3 裝置填入乙醇之可逆性測試 49
4.4 不同環境溫度對調光裝置之繞射波長影響 50
4.4.1 可繞射近紅外光玻璃之調光機制 50
4.4.2 低環境溫度下智能裝置光學性質 52
4.4.3 高環境溫度下智能裝置光學性質 55
4.5 酒水混合液置入裝置之繞射波長影響 58
4.6 不同光強度對裝置繞射波長之影響 59
4.7 具抗紫外光及抗近紅外光之多孔性高分子薄膜之調光玻璃製備 61
4.7.1 抗紫外光及近紅外光複合玻璃影像與結構分析 62
4.7.2 抗紫外光及近紅外光複合玻璃光學性質分析 65
4.8 具超疏水自潔功能多孔性薄膜之製備 67
4.8.1 薄膜影像與結構分析 68
4.8.2 薄膜靜態水滴接觸角之量測與分析 70
第五章 結論 75
第六章 參考文獻 76
1.R. S. Chapman, K. D. Cooper and E. C. De Faro, Solar ultraviolet radiation and the risk of infectious disease: summary of a workshop, Photochemistry and Photobiology, 1995, 61, 223-247.
2.S. Okada, E. Weatherhead, I. N. Targoff, R. Wesley and F. W. Miller, Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease, Arthritis & Rheumatism, 2003, 48, 2285-2293.
3.F. Causone, S. P. Corgnati, M. Filippi and B. W. Olesen, Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load, Energy and Buildings, 2010, 42, 305-314.
4.X. Sheng and J. Zhang, Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers, Langmuir, 2009, 25, 6916-6922.
5.L. Zhai, F. Ç. Cebeci, R. E. Cohen and M. F. Rubner, Stable superhydrophobic coatings from polyelectrolyte multilayers, Nano Letters, 2004, 4, 1349-1353.
6.W. Stöber, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 1968, 26, 62-69.
7.K. D. Hartlen, A. P. T. Athanasopoulos and V. Kitaev, Facile preparation of highly monodisperse small silica spheres (15 to> 200 nm) suitable for colloidal templating and formation of ordered arrays, Langmuir, 2008, 24, 1714-1720.
8.N. Plumeré, A. Ruff, B. Speiser, V. Feldmann and H. A. Mayer, Stöber silica particles as basis for redox modifications: Particle shape, size, polydispersity, and porosity, Journal of Colloid and Interface Science, 2012, 368, 208-219.
9.E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 1987, 58, 2059-2062.
10.S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 1987, 58, 2486-2489.
11.J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic crystals: molding the flow of light, Princeton university press, 2011.
12.F. Wang, Z. Meng, F. Xue, M. Xue, W. Lu, W. Chen, Q. Wang and Y. Wang, Responsive photonic crystal for the sensing of environmental pollutants, Trends in Environmental Analytical Chemistry, 2014, 3–4, 1-6.
13.H.-Y. Hsueh, Y.-C. Huang, R.-M. Ho, C.-H. Lai, T. Makida and H. Hasegawa, Nanoporous gyroid nickel from block copolymer templates via electroless plating, Advanced Materials, 2011, 23, 3041-3046.
14.E. Betzig and J. K. Trautman, Near-field optics- Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, 1992, 257, 189-195.
15.K. Deguchi and T. Haga, Proximity X-ray and extreme ultraviolet lithography, Comptes Rendus de l'Académie des Sciences - Series IV – Physics, 2000, 1, 829-842.
16.A. C. Pearson, M. R. Linford, J. N. Harb and R. C. Davis, Dual patterning of a poly (acrylic acid) layer by electron-beam and block copolymer lithographies, Langmuir, 2013, 29, 7433-7438.
17.P. Fischer, D. H. Kim, W. Chao, J. A. Liddle, E. H. Anderson, D. T. Attwood, Soft X-ray microscopy of nanomagnetism, Mater. Today, 2006, 9, 26-33.
18.A. Radke ,T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating, Adv. Mater., 2011, 23, 3018-3021.
19.H. Yang, N. Gozubenli, Y. Fang and P. Jiang, Generalized fabrication of monolayer nonclose-packed colloidal crystals with tunable lattice spacing, Langmuir 2013, 29, 7674-7681.
20.G. von Freymann, V. Kitaev, B. V. Lotsch and G. A. Ozin, Bottom-up assembly of photonic crystals, Chem. Soc. Rev., 2013, 42, 2528-2554.
21.E. C. H. Ng, K. M. Chin and C. C. Wong, Controlling inplane orientation of a monolayer colloidal crystal by meniscus pinning, Langmuir, 2011, 27, 2244-2249.
22.D. A. Walker, B. Kowalczyk, M. O. de la Cruz and B. A. Grzybowski, Electrostatics at the nanoscale, Nanoscale, 2011, 3, 1316.
23.J. Ge and Y. Yin, Angew. Responsive photonic crystals, Chem., Int. Ed., 2011, 50, 1492.
24.F. Li, D. P. Josephson and A. Stein, Colloidal assembly: the road from particles to colloidal molecules and crystals, Angew. Chem., Int. Ed., 2011, 50, 360.
25.B. A. Grzybowski, C. E. Wilmer, J. Kim, K. P. Brownie and K. J. M. Bishop, Self-assembly: from crystals to cells, Soft Matter, 2009, 5, 1110.
26.M. Casini, Smart windows for energy efficiency of buildings, IJCSE, 2014, 2, 2372-3971.
27.L. Nadar, N. Destouches, N. Crespo-Monteiro, R. Sayah, F. Vocanson, S. Reynaud, Y. Lefkir and B. Capoen, Multicolor photochromism of silver-containing mesoporous films of amorphous or anatase TiO2, J. Nanopart. Res., 2013, 15, 2048–2058.
28.N. Crespo-Monteiro, N. Destouches and T. Fournel, Updatable random texturing of Ag/TiO2 films for goods authentication, Appl. Phys. Express, 2012, 5, 075803.
29.N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud and T. Fournel, Reversible and Irreversible Laser Microinscription on Silver‐Containing Mesoporous Titania Films, Adv. Mater., 2010, 22, 3166–3170.
30.L. Nadar, R. Sayah, F. Vocanson, N. Crespo-Monteiro, A. Boukenter, S. Sao Joao and N. Destouches, Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with a silver salt, Photochem. Photobiol. Sci., 2011, 10, 1810–1816.
31.R. Han, X. Zhang, L. Wang, R. Dai and Y. Liu, Size-dependent photochromism-based holographic storage of Ag/TiO 2 nanocomposite film, Appl. Phys. Lett., 2011, 98, 221905.
32.K. Naoi, Y. Ohko and T. Tatsuma, Switchable rewritability of Ag–TiO 2 nanocomposite films with multicolor photochromism, Chem. Commun., 2005, 1288–1290.
33.R. Han, X. Zhang, L. Wang, R. Dai and Y. Liu, Size-dependent photochromism-based holographic storage of Ag/TiO 2 nanocomposite film, Appl. Phys. Lett., 2011, 98, 221905.
34.F. Tricot, F. Vocanson, D. Chaussy, D. Beneventi, S. Reynaud, Y. Lefkir and N. Destouches, Photochromic Ag: TiO 2 thin films on PET substrate, RSC Adv.,2014, 4, 61305-61312.
35.P. Jin and S. Tanemura, Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature, Jpn. J. Appl. Phys.,1994, 33, 1478.
36.F. Guinneton et al., Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure, Thin Solid Films, 2004, 446, 287–295.
37.M. Kamalisarvestani, R. Saidur, S. Mekhilef, F. S. Javadi, Performance, materials and coating technologies of thermochromic thin films on smart windows, Renewable and Sustainable Energy Reviews, 2013, 26, 353–364.
38.Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M.Kanehira, C. Cao, Nanoceramic VO 2 thermochromic smart glass: a review on progress in solution processing, Nano Energy, 2012, 1, 221–246.
39.P. de Wildea, M. van der Voorden, Providing computational support for the selection of energy saving building components, Energy and Buildings, 2004, 36, 749–758.
40.C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing, Thin Solid Films, 2009, 517, 4565–4570.
41.C.G. Granqvist, P.C. Lansaker, N.R. Mlyuka, G.A. Niklasson, E. Avendano, Progress in chromogenics: new results for electrochromic and thermochromic materials and devices, Solar Energy Materials & Solar Cells, 2009, 93, 2032–2039.
42.T. Carusoa, M. Castriota, A. Policicchio, A. Fasanella, M.P. De Santo, F. Ciuchi, et al, Thermally induced evolution of sol–gel grown WO 3 films on ITO/glass substrates, Appl Surf Sci, 2014, 297, 195-204.
43.X. Sun, Z. Liu, H. Cao, Effects of film density on electrochromic tungsten oxide thin films deposited by reactive dc-pulsed magnetron sputtering, J. Alloys Compd., 2010, 504, 418–421.
44.O. Tuna, A. Sezgin, R. Budakoglu, S. Türküz, H. Parlar, Electrochromic properties of tungsten trioxide (WO 3) layers grown on ITO/glass substrates by magnetron sputtering, Vacuum, 2015, 120, 28-31.
45.S. R. Meher, L. Balakrishnan, Sol–gel derived nanocrystalline TiO 2 thin films: A promising candidate for self-cleaning smart window applications, Materials Science in Semiconductor Processing, 2014, 26, 251-258.
46.N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, Regional performance targets for transparent near-infrared switching electrochromic window glazings, D. J. Milliron, Building and Environment, 2013, 61, 160-168.
47.C.G. Granqvist, Electrochromic devices, J Eur Ceram Soc, 2005, 25, 2907–2912.
48.C.G. Granqvist, Oxide electrochromics: An introduction to devices and materials, Sol. Energy Mater. Sol. Cells, 2012, 99, 1-13.
49.S. Ghoshal, S. Neogi, Advance glazing system–energy efficiency approach for buildings a review, Energy Procedia, 2014, 54, 352 – 358.
50.R. Vergaz, J-M. S-Pena, D. Barrios, C. Vazquez, P. C-Lallana, Modelling and electro-optical testing of suspended particle devices, Sol. Energy Mater. Sol. Cells, 2008, 92, 1483-1487.
51.D Barrios, R Vergaz, J. M S-Pena et al, Toward a quantitative model for suspended particle devices: Optical scattering and absorption coefficients, Sol. Energy Mater. Sol. Cells, 2013, 111, 115-122.
52.A. Ghosh, B. Norton, A. Duffy, Measured overall heat transfer coefficient of a suspended particle device switchable glazing, Applied Energy, 2015, 159, 362–369.
53.Y. R. Kung, C. M. Leu, 工業材料雜誌光電特刊, 2014, 330, 120-129.
54.C. M. Lampert, Chromogenic smart materials, Mater. Today, 2004, 7, 28-35.
55.D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua et al, Self-adjusting smart windows based on polymer-dispersed liquid crystals, Sol. Energy Mater. Sol. Cells, 2009, 93, 2008-2012.
56.R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Sol. Energy Mater. Sol. Cells, 2010, 94, 87-105.
57.J. Marchwiński, Ph.D.Arch, Architectural evaluation of switchable glazing technologies as sun protection measure, Energy Procedia, 2014, 57, 1677 – 1686.
58.T. E. Williams, C. M. Chang, E. L. Rosen, G. Garcia, E. L. Runnerstrom, B. L. Williams, B. Koo, R. Buonsanti, D. J. Milliron and B. A. Helms, NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices, J. Mater. Chem. C, 2014, 2, 3328–3335.
59.T. M. Mattox, A. Bergerud, A. Agrawal and D. J. Milliron, Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals, Chem. Mater., 2014, 26, 1779–1784.
60.E. L. Runnerstrom, A. Llordes, S. D. Lounisac and D. J. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals, Chem. Commun., 2014, 50, 10555-10572.
61.B. G. Prevo and O. D. Velev, Controlled, rapid deposition of structured coatings from micro-and nanoparticle suspensions, Langmuir, 2004, 20, 2099-2107.
62.H. Yang and P. Jiang, Self-cleaning diffractive macroporous films by doctor blade coating, Langmuir, 2010, 26, 12598-12604.
63.H. Yang and P. Jiang, Large-scale colloidal self-assembly by doctor blade coating, Langmuir, 2010, 26, 13173-13182.
64.R. W. Scott, S. Yang, G. Chabanis, N. Coombs, D. Williams and G. Ozin, Tin Dioxide Opals and Inverted Opals: Near‐Ideal Microstructures for Gas Sensors, Advanced Materials, 2001, 13, 1468-1472.
65.Y. Galagan, I. G. de Vries, A. P. Langen, R. Andriessen, W. J. H. Verhees, S. C. Veenstra and J. M. Kroon, Technology development for roll-to-roll production of organic photovoltaics, Chemical Engineering and Processing: Process Intensification, 2011, 50, 454-461.
66.L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss and M. Schrödner, Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells, Solar Energy Materials and Solar Cells, 2009, 93, 476-483.
67.C. NEINHUIS and W. BARTHLOTT, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 1997, 79, 667-677.
68.W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 1997, 202, 1-8.
69.M. Gong, Z. Yang, X. Xu, D. Jasion, S. Mou, H. Zhang, Y. Long, and S. Ren, Superhydrophobicity of hierarchical ZnO nanowire coatings, Journal of Materials Chemistry A, 2014, 2, 6180-6184.
70.Y. Lee, S. H. Park, K. B. Kim, and J. K. Lee, Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces, Advanced Materials, 2007, 19, 2330-2335.
71.H. Yang, X. Dou, Y. Fang, and P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays, Journal of Colloid and Interface Science, 2013, 405, 51-57.
72.G. Whyman, E. Bormashenko and T. Stein, The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chemical Physics Letters, 2008, 450, 355-359.
73.L. Gao and T. J. McCarthy, How Wenzel and Cassie were wrong, Langmuir, 2007, 23, 3762-3765.
74.W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen and G. H. McKinley, A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, Journal of Colloid and Interface Science, 2009, 339, 208-216.
75.Y.-K. Chen, K.-C. Chang, K.-Y. Wu, Y.-L. Tsai, J.-s. Lu and H. Chen, Fabrication of superhydrophobic silica-based surfaces with high transmittance by using tetraethoxysilane precursor and different polymeric species, Applied Surface Science, 2009, 255, 8634-8642.
76.H. Yang, X. Dou, Y. Fang and P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays, Journal of colloid and interface science, 2013, 405, 51-57.
77.P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Single-crystal colloidal multilayers of controlled thickness, Chemistry of Materials, 1999, 11, 2132-2140.
78.R. Rengarajan, P. Jiang, V. Colvin and D. Mittleman, Optical properties of a photonic crystal of hollow spherical shells, Applied Physics Letters, 2000, 77, 3517-3519.
79.C Lopez, L Vazquez, F Meseguer, R Mayoral, M. Ocana, Photonic crystal made by close packing SiO2submicron spheres, Superlattices Microstruct., 1997, 22, 399-404.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top