|
1.R. S. Chapman, K. D. Cooper and E. C. De Faro, Solar ultraviolet radiation and the risk of infectious disease: summary of a workshop, Photochemistry and Photobiology, 1995, 61, 223-247. 2.S. Okada, E. Weatherhead, I. N. Targoff, R. Wesley and F. W. Miller, Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease, Arthritis & Rheumatism, 2003, 48, 2285-2293. 3.F. Causone, S. P. Corgnati, M. Filippi and B. W. Olesen, Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load, Energy and Buildings, 2010, 42, 305-314. 4.X. Sheng and J. Zhang, Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers, Langmuir, 2009, 25, 6916-6922. 5.L. Zhai, F. Ç. Cebeci, R. E. Cohen and M. F. Rubner, Stable superhydrophobic coatings from polyelectrolyte multilayers, Nano Letters, 2004, 4, 1349-1353. 6.W. Stöber, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 1968, 26, 62-69. 7.K. D. Hartlen, A. P. T. Athanasopoulos and V. Kitaev, Facile preparation of highly monodisperse small silica spheres (15 to> 200 nm) suitable for colloidal templating and formation of ordered arrays, Langmuir, 2008, 24, 1714-1720. 8.N. Plumeré, A. Ruff, B. Speiser, V. Feldmann and H. A. Mayer, Stöber silica particles as basis for redox modifications: Particle shape, size, polydispersity, and porosity, Journal of Colloid and Interface Science, 2012, 368, 208-219. 9.E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 1987, 58, 2059-2062. 10.S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 1987, 58, 2486-2489. 11.J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic crystals: molding the flow of light, Princeton university press, 2011. 12.F. Wang, Z. Meng, F. Xue, M. Xue, W. Lu, W. Chen, Q. Wang and Y. Wang, Responsive photonic crystal for the sensing of environmental pollutants, Trends in Environmental Analytical Chemistry, 2014, 3–4, 1-6. 13.H.-Y. Hsueh, Y.-C. Huang, R.-M. Ho, C.-H. Lai, T. Makida and H. Hasegawa, Nanoporous gyroid nickel from block copolymer templates via electroless plating, Advanced Materials, 2011, 23, 3041-3046. 14.E. Betzig and J. K. Trautman, Near-field optics- Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, 1992, 257, 189-195. 15.K. Deguchi and T. Haga, Proximity X-ray and extreme ultraviolet lithography, Comptes Rendus de l'Académie des Sciences - Series IV – Physics, 2000, 1, 829-842. 16.A. C. Pearson, M. R. Linford, J. N. Harb and R. C. Davis, Dual patterning of a poly (acrylic acid) layer by electron-beam and block copolymer lithographies, Langmuir, 2013, 29, 7433-7438. 17.P. Fischer, D. H. Kim, W. Chao, J. A. Liddle, E. H. Anderson, D. T. Attwood, Soft X-ray microscopy of nanomagnetism, Mater. Today, 2006, 9, 26-33. 18.A. Radke ,T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating, Adv. Mater., 2011, 23, 3018-3021. 19.H. Yang, N. Gozubenli, Y. Fang and P. Jiang, Generalized fabrication of monolayer nonclose-packed colloidal crystals with tunable lattice spacing, Langmuir 2013, 29, 7674-7681. 20.G. von Freymann, V. Kitaev, B. V. Lotsch and G. A. Ozin, Bottom-up assembly of photonic crystals, Chem. Soc. Rev., 2013, 42, 2528-2554. 21.E. C. H. Ng, K. M. Chin and C. C. Wong, Controlling inplane orientation of a monolayer colloidal crystal by meniscus pinning, Langmuir, 2011, 27, 2244-2249. 22.D. A. Walker, B. Kowalczyk, M. O. de la Cruz and B. A. Grzybowski, Electrostatics at the nanoscale, Nanoscale, 2011, 3, 1316. 23.J. Ge and Y. Yin, Angew. Responsive photonic crystals, Chem., Int. Ed., 2011, 50, 1492. 24.F. Li, D. P. Josephson and A. Stein, Colloidal assembly: the road from particles to colloidal molecules and crystals, Angew. Chem., Int. Ed., 2011, 50, 360. 25.B. A. Grzybowski, C. E. Wilmer, J. Kim, K. P. Brownie and K. J. M. Bishop, Self-assembly: from crystals to cells, Soft Matter, 2009, 5, 1110. 26.M. Casini, Smart windows for energy efficiency of buildings, IJCSE, 2014, 2, 2372-3971. 27.L. Nadar, N. Destouches, N. Crespo-Monteiro, R. Sayah, F. Vocanson, S. Reynaud, Y. Lefkir and B. Capoen, Multicolor photochromism of silver-containing mesoporous films of amorphous or anatase TiO2, J. Nanopart. Res., 2013, 15, 2048–2058. 28.N. Crespo-Monteiro, N. Destouches and T. Fournel, Updatable random texturing of Ag/TiO2 films for goods authentication, Appl. Phys. Express, 2012, 5, 075803. 29.N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud and T. Fournel, Reversible and Irreversible Laser Microinscription on Silver‐Containing Mesoporous Titania Films, Adv. Mater., 2010, 22, 3166–3170. 30.L. Nadar, R. Sayah, F. Vocanson, N. Crespo-Monteiro, A. Boukenter, S. Sao Joao and N. Destouches, Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with a silver salt, Photochem. Photobiol. Sci., 2011, 10, 1810–1816. 31.R. Han, X. Zhang, L. Wang, R. Dai and Y. Liu, Size-dependent photochromism-based holographic storage of Ag/TiO 2 nanocomposite film, Appl. Phys. Lett., 2011, 98, 221905. 32.K. Naoi, Y. Ohko and T. Tatsuma, Switchable rewritability of Ag–TiO 2 nanocomposite films with multicolor photochromism, Chem. Commun., 2005, 1288–1290. 33.R. Han, X. Zhang, L. Wang, R. Dai and Y. Liu, Size-dependent photochromism-based holographic storage of Ag/TiO 2 nanocomposite film, Appl. Phys. Lett., 2011, 98, 221905. 34.F. Tricot, F. Vocanson, D. Chaussy, D. Beneventi, S. Reynaud, Y. Lefkir and N. Destouches, Photochromic Ag: TiO 2 thin films on PET substrate, RSC Adv.,2014, 4, 61305-61312. 35.P. Jin and S. Tanemura, Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature, Jpn. J. Appl. Phys.,1994, 33, 1478. 36.F. Guinneton et al., Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure, Thin Solid Films, 2004, 446, 287–295. 37.M. Kamalisarvestani, R. Saidur, S. Mekhilef, F. S. Javadi, Performance, materials and coating technologies of thermochromic thin films on smart windows, Renewable and Sustainable Energy Reviews, 2013, 26, 353–364. 38.Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M.Kanehira, C. Cao, Nanoceramic VO 2 thermochromic smart glass: a review on progress in solution processing, Nano Energy, 2012, 1, 221–246. 39.P. de Wildea, M. van der Voorden, Providing computational support for the selection of energy saving building components, Energy and Buildings, 2004, 36, 749–758. 40.C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing, Thin Solid Films, 2009, 517, 4565–4570. 41.C.G. Granqvist, P.C. Lansaker, N.R. Mlyuka, G.A. Niklasson, E. Avendano, Progress in chromogenics: new results for electrochromic and thermochromic materials and devices, Solar Energy Materials & Solar Cells, 2009, 93, 2032–2039. 42.T. Carusoa, M. Castriota, A. Policicchio, A. Fasanella, M.P. De Santo, F. Ciuchi, et al, Thermally induced evolution of sol–gel grown WO 3 films on ITO/glass substrates, Appl Surf Sci, 2014, 297, 195-204. 43.X. Sun, Z. Liu, H. Cao, Effects of film density on electrochromic tungsten oxide thin films deposited by reactive dc-pulsed magnetron sputtering, J. Alloys Compd., 2010, 504, 418–421. 44.O. Tuna, A. Sezgin, R. Budakoglu, S. Türküz, H. Parlar, Electrochromic properties of tungsten trioxide (WO 3) layers grown on ITO/glass substrates by magnetron sputtering, Vacuum, 2015, 120, 28-31. 45.S. R. Meher, L. Balakrishnan, Sol–gel derived nanocrystalline TiO 2 thin films: A promising candidate for self-cleaning smart window applications, Materials Science in Semiconductor Processing, 2014, 26, 251-258. 46.N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, Regional performance targets for transparent near-infrared switching electrochromic window glazings, D. J. Milliron, Building and Environment, 2013, 61, 160-168. 47.C.G. Granqvist, Electrochromic devices, J Eur Ceram Soc, 2005, 25, 2907–2912. 48.C.G. Granqvist, Oxide electrochromics: An introduction to devices and materials, Sol. Energy Mater. Sol. Cells, 2012, 99, 1-13. 49.S. Ghoshal, S. Neogi, Advance glazing system–energy efficiency approach for buildings a review, Energy Procedia, 2014, 54, 352 – 358. 50.R. Vergaz, J-M. S-Pena, D. Barrios, C. Vazquez, P. C-Lallana, Modelling and electro-optical testing of suspended particle devices, Sol. Energy Mater. Sol. Cells, 2008, 92, 1483-1487. 51.D Barrios, R Vergaz, J. M S-Pena et al, Toward a quantitative model for suspended particle devices: Optical scattering and absorption coefficients, Sol. Energy Mater. Sol. Cells, 2013, 111, 115-122. 52.A. Ghosh, B. Norton, A. Duffy, Measured overall heat transfer coefficient of a suspended particle device switchable glazing, Applied Energy, 2015, 159, 362–369. 53.Y. R. Kung, C. M. Leu, 工業材料雜誌光電特刊, 2014, 330, 120-129. 54.C. M. Lampert, Chromogenic smart materials, Mater. Today, 2004, 7, 28-35. 55.D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua et al, Self-adjusting smart windows based on polymer-dispersed liquid crystals, Sol. Energy Mater. Sol. Cells, 2009, 93, 2008-2012. 56.R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Sol. Energy Mater. Sol. Cells, 2010, 94, 87-105. 57.J. Marchwiński, Ph.D.Arch, Architectural evaluation of switchable glazing technologies as sun protection measure, Energy Procedia, 2014, 57, 1677 – 1686. 58.T. E. Williams, C. M. Chang, E. L. Rosen, G. Garcia, E. L. Runnerstrom, B. L. Williams, B. Koo, R. Buonsanti, D. J. Milliron and B. A. Helms, NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices, J. Mater. Chem. C, 2014, 2, 3328–3335. 59.T. M. Mattox, A. Bergerud, A. Agrawal and D. J. Milliron, Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals, Chem. Mater., 2014, 26, 1779–1784. 60.E. L. Runnerstrom, A. Llordes, S. D. Lounisac and D. J. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals, Chem. Commun., 2014, 50, 10555-10572. 61.B. G. Prevo and O. D. Velev, Controlled, rapid deposition of structured coatings from micro-and nanoparticle suspensions, Langmuir, 2004, 20, 2099-2107. 62.H. Yang and P. Jiang, Self-cleaning diffractive macroporous films by doctor blade coating, Langmuir, 2010, 26, 12598-12604. 63.H. Yang and P. Jiang, Large-scale colloidal self-assembly by doctor blade coating, Langmuir, 2010, 26, 13173-13182. 64.R. W. Scott, S. Yang, G. Chabanis, N. Coombs, D. Williams and G. Ozin, Tin Dioxide Opals and Inverted Opals: Near‐Ideal Microstructures for Gas Sensors, Advanced Materials, 2001, 13, 1468-1472. 65.Y. Galagan, I. G. de Vries, A. P. Langen, R. Andriessen, W. J. H. Verhees, S. C. Veenstra and J. M. Kroon, Technology development for roll-to-roll production of organic photovoltaics, Chemical Engineering and Processing: Process Intensification, 2011, 50, 454-461. 66.L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss and M. Schrödner, Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells, Solar Energy Materials and Solar Cells, 2009, 93, 476-483. 67.C. NEINHUIS and W. BARTHLOTT, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 1997, 79, 667-677. 68.W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 1997, 202, 1-8. 69.M. Gong, Z. Yang, X. Xu, D. Jasion, S. Mou, H. Zhang, Y. Long, and S. Ren, Superhydrophobicity of hierarchical ZnO nanowire coatings, Journal of Materials Chemistry A, 2014, 2, 6180-6184. 70.Y. Lee, S. H. Park, K. B. Kim, and J. K. Lee, Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces, Advanced Materials, 2007, 19, 2330-2335. 71.H. Yang, X. Dou, Y. Fang, and P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays, Journal of Colloid and Interface Science, 2013, 405, 51-57. 72.G. Whyman, E. Bormashenko and T. Stein, The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chemical Physics Letters, 2008, 450, 355-359. 73.L. Gao and T. J. McCarthy, How Wenzel and Cassie were wrong, Langmuir, 2007, 23, 3762-3765. 74.W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen and G. H. McKinley, A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, Journal of Colloid and Interface Science, 2009, 339, 208-216. 75.Y.-K. Chen, K.-C. Chang, K.-Y. Wu, Y.-L. Tsai, J.-s. Lu and H. Chen, Fabrication of superhydrophobic silica-based surfaces with high transmittance by using tetraethoxysilane precursor and different polymeric species, Applied Surface Science, 2009, 255, 8634-8642. 76.H. Yang, X. Dou, Y. Fang and P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays, Journal of colloid and interface science, 2013, 405, 51-57. 77.P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Single-crystal colloidal multilayers of controlled thickness, Chemistry of Materials, 1999, 11, 2132-2140. 78.R. Rengarajan, P. Jiang, V. Colvin and D. Mittleman, Optical properties of a photonic crystal of hollow spherical shells, Applied Physics Letters, 2000, 77, 3517-3519. 79.C Lopez, L Vazquez, F Meseguer, R Mayoral, M. Ocana, Photonic crystal made by close packing SiO2submicron spheres, Superlattices Microstruct., 1997, 22, 399-404.
|