(3.220.231.235) 您好!臺灣時間:2021/03/08 05:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林意函
研究生(外文):Yi-Han Lin
論文名稱:刮刀塗佈多孔性光子晶體應用於二氧化碳之檢測
論文名稱(外文):Carbon Dioxide Sensing Enabled by Doctor Blade Coated Macroporous Photonic Crystals
指導教授:孫幸宜楊宏達楊宏達引用關係
口試委員:劉博滔
口試日期:2017-06-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:刮刀塗佈自組裝光子晶體布拉格定律二氧化碳偵測
外文關鍵詞:Doctor blade coatingPhotonic crystalsBragg’s diffractionCO2 detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究以大規模連續性捲揚式刮刀塗佈自組裝技術製備多孔性乙氧基化三羥甲基丙烷三丙烯酸酯(ETPTA)高分子薄膜,於規則排列多孔性薄膜之孔洞內塗佈不同的胺基,形成多孔性胺基/ETPTA高分子複合薄膜,由光學測量及布拉格定律計算其理論值可知,此三維規則排列之多孔性光子晶體可以繞射特定波長的光,實驗驗證二氧化碳會與胺基產生化學反應,並吸附於多孔性薄膜之孔洞中,使繞射之入射光產生紅移現象,證實此多孔性高分子複合薄膜可用於二氧化碳偵測。
Our research reports a scalable and roll-to-roll doctor blade coating technology for self-assembly macroporous ethoxylated trimethylolpropane triacrylate (ETPTA) films. The pores of macroporous films can be coated by chemicals with amine groups to create macroporous composite films. The optical measurements and theoretical predications reveal the as-prepared macroporous photonic crystals exhibit optical diffraction by the three-dimensional ordered based on the Bragg’s diffractive theory. The study demonstrates that CO2 can adsorb on the walls of macroporous films, leading to the redshift of the optical stop bands. The composite macroporous films can use for CO2 detection.
中文摘要i
Abstract ii
目錄 iii
圖目錄 vi
流程圖目錄 viii
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與方法 2
1.4 研究架構與流程 3
第二章 文獻回顧 7
2.1 二氧化矽粒子之合成 7
2.2 光子晶體之概述與製程 8
2.2.1 光子晶體之源起 8
2.2.2 光子晶體之製程 10
2.3 多孔性光子晶體薄膜 16
2.3.1 反蛋白石結構 16
2.3.2 光子晶體感測器 18
2.4 二氧化碳之捕捉 20
2.4.1 二氧化碳之捕捉方法 20
2.4.2 二氧化碳之捕捉反應 22
第三章 實驗方法 25
3.1 實驗儀器與設備 25
3.2 實驗藥品與氣體 27
3.3 實驗步驟 31
3.3.1 製備二氧化矽膠體粒子 31
3.3.2 表面改質之方法 31
3.3.3 製備二氧化矽光子晶體與乙氧基化三羥甲基丙烷三丙烯酸酯高分子複合薄膜 32
3.3.4 製備多孔性乙氧基化三羥甲基丙烷三丙烯酸酯高分子薄膜33
3.3.5 製備二乙烯三胺/乙醇混合液、五亞乙基六胺/乙醇混合液33
3.3.6 製備二乙烯三胺/ETPTA、五亞乙基六胺/ETPTA之多孔性高分子複合薄膜 33
3.3.7 樣品表面結構之分析 34
3.3.8 使用紫外光-可見光-近紅外光光譜儀測量二氧化碳氣體吸附35
第四章 結果與討論 36
4.1 二氧化矽膠體晶體之粒徑結果分析 36
4.2 二氧化矽光子晶體/高分子薄膜之製備 38
4.3 多孔性高分子薄膜之製備 40
4.4 高分子薄膜、二氧化矽/高分子複合薄膜、多孔性高分子薄膜之光學分析 42
4.5 多孔性胺基/高分子複合薄膜之製備 44
4.5.1 多孔性二乙烯三胺/ETPTA之高分子複合薄膜 44
4.5.2 多孔性五亞乙基六胺/ETPTA之高分子複合薄膜 45
4.5.3 二氧化矽/高分子複合薄膜、多孔性高分子薄膜、胺基/多孔性高分子薄膜之光學分析 46
4.5.4 多孔性複合薄膜之化學結構分析 47
4.6 多孔性複合薄膜用於二氧化碳之吸附 49
4.6.1 ETPTA多孔性高分子薄膜之二氧化碳吸附光譜圖 49
4.6.2 同濃度之二乙烯三胺/ETPTA和五亞乙基六胺/ETPTA多孔性複合薄膜之二氧化碳感測光譜圖 50
4.6.3 不同濃度之五亞乙基六胺/ETPTA多孔性複合薄膜之二氧化碳吸附光譜圖 56
4.6.4 不同水蒸氣壓之五亞乙基六胺/ETPTA多孔性複合薄膜之二氧化碳感測光譜圖 58
4.6.5 重複性測試 59
第五章 結論 61
參考文獻 62
[1] M. M. Khader, M. J. Al-Marri, Sardar Ali, G. Qi, E. P., Giannelis, American Journal of Analytical Chemistry, Adsorption of CO2 on Polyethyleneimine10k—Mesoporous silica Sorbent:XPS and TGA Studies, 2015, 6, 274-284.
[2] M. Cersosimo, A. Brunetti, E. Drioli, F. Fiorino , G. X. Dong, K. T. Woo, J. Lee, Y. M. Lee, G. Barbieri, Journal of Membrane Science, Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes, 2015, 492, 257–262.
[3] C. H. Yu, C. H. Huang, C. S. Tan, Aerosol and Air Quality Research, A Review of CO2 Capture by Absorption and Adsorption, 2012, 12, 745–769.
[4] K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, K. Makino, Journal of Colloid and Interface Science, A novel method for synthesis of silica nanoparticles, 2005, 289, 125–131.
[5] X. D. Wang, Z. X. Shen, T. Sang, X. B. Cheng, M. F. Li, L.Y. Chen, Z. S. Wang, Journal of Colloid and Interface Science, Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate, 2010, 341, 23–29.
[6] D.L. Green, J.S. Lin, Y. F. Lam, M. Z. C. Hu, D. W. Schaefer, M. T. Harris, Journal of Colloid and Interface Science, Size, volume fraction, and nucleation of Stober silica nanoparticles, 2003, 266, 346–358.
[7] W. Stöber, A. Fink, E. Bohn, Journal of Colloid and Interface Science, Controlled growth of monodisperse silica spheres in the micron size range, 1968, 26, 62-69.
[8] I. A. M. Ismail, A. A. F. Zikry, M. A. Sharaf, Journal of American Science, Preparation of spherical silica nanoparticles: Stober silica, 2010, 6, 985-989.
[9] E. Yablonovitch, Physical Review Letters, Inhibited spontaneous emission in solid-state physics and electronics, 1987, 58, 2059–2062.
[10] S. John, Physical Review Letters, Strong localization of photons in certain disordered dielectric superlattices, 1987, 58, 2486–2489.
[11] F. Marlow, P. Sharifi, R. Brinkmann and C. Mendive, Angew. Chem., Int. Ed., Opals: status and prospects, 2009, 48, 6212–6233.
[12] M. Xiao, Y. Li, M. C. Allen, D. D. Deheyn, X. Yue, J. Zhao, N. C. Gianneschi, M. D. Shawkey, A. Dhinojwala, ACS Nano, Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles, 2015, 9, 5454–5460.
[13] H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, U. Demirci, Chemical Society Reviews, Photonic crystals: emerging biosensors and their promise for point-of-care applications, 2017, 46, 366—388.
[14] R. H. Siddique, S. Vignolini, C. Bartels, I. Wacker, H. Hölscher, Scientific Reports, Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking, 2016, 6, 36204.
[15] C. Pouya, D. G. Stavenga, P. Vukusic, Opt. Express, Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus, 2011,19, 11355–11364.
[16] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals: molding the flow of light, 2011.
[17] K. J. Vahala, Nature, Optical microcavities, 2003, 424, 839–846.
[18] P. Russell, Science, Photonic crystal fibers, 2003, 299, 358–362.
[19] A. Di Falco, L. O’Faolain, T. F. Krauss, PhotonicsNanostruct. Fundam. Appl., Photonic crystal slotted slab waveguides, 2008, 6, 38–41.
[20] J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, Opt. Lett., Omnidirectional reflection from a one-dimensional photonic crystal, 1998, 23, 1573–1575.
[21] C. Pacholski, Sensors, Photonic crystal sensors based on porous silicon, 2013, 13, 4694–4713.
[22] G. Freymann, V. Kitaev, B. V. Lotsch, G. A. Ozin, Chemical Society Reviews, Bottom-up assembly of photonic crystals, 2013, 42, 2528-2554.
[23] B. V. Lotsch, G. A. Ozin, ACS Nano, Photonic clays: A new family of functional 1d photonic crystals, 2008, 2, 2065 – 2074.
[24] B. V. Lotsch, G. A. Ozin, Adv. Mater., Clay Bragg stack optical sensors, 2008, 20, 4079 – 4084.
[25] Z. Wang, J. Zhang, J. Xie, Y. Yin, Z.Wang, H. Shen, Y. Li, J. Li, S. Liang, S. L. L. Y. Cui, L. Zhang, H. Zhang, B. Yang, ACS Appl. Mater. Interfaces, Patterning Organic/Inorganic Hybrid Bragg Stacks by Integrating One-Dimensional Photonic Crystals and Macrocavities through Photolithography: Toward Tunable Colorful Patterns as Highly Selective Sensors, 2012, 4, 1397 – 1403.
[26]F. J. Ramos M. Oliva-Ramírez, M. K. Nazeeruddin, M. Graetzel, A. R. González-Elipe, S. Ahmad, Journal of Materials Chemistry A, Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells, 2016, 4, 4962–4970.
[27] C. Fenzl, T. Hirsch, O. S. Wolfbeis, Angewandte Chemie International Edition, Photonic crystals for chemical sensing and biosensing, 2014, 53, 3318 – 3335.
[28] B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vucˇkovic´, Nature Photonics, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser, 2011, 5, 297–300.
[29] H. S. Lee, T. S. Shim, H. Hwang, S. M. Yang, S. H. Kim, Chemistry of Materials, Colloidal photonic crystals toward structural color palettes for security materials, 2013, 25, 2684−2690.
[30] Y. Fang, Y. Ni, S. Y. Leo, C. Taylor, V. Basile, P. Jiang, Nature Communications, Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers, 2015, 6, 7416.
[31] S. Y. Lee , S. H. Kim , H. Hwang , J. Y. Sim , S. M. Yang , Adv. Mater. Controlled Pixelation of Inverse Opaline Structures Towards Reflection‐Mode Displays, 2014, 26 , 2391.
[32] Z. Fan, W. Zhang, Y. Fu, L. Yan, X. Ma, J. Phys. Chem. C, Facile Synthesis of Silicon Micropillar Arrays Using Extreme Ultraviolet Lithography and Ag-Assisted Chemical Etching Method, 2016, 120, 6824−6834.
[33] S. Ha, R. Janissen, Y. Ye. Ussembayev, M. M. van Oene, B. Solano, N. H. Dekker, Nanoscale, Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles, 2016, 8, 10739–10748.
[34] L. Yuan, P. R. Herman, Nanoscale, Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography, 2015, 7, 19905–19913.
[35] M. Erdmanis, P. Sievilä, A. Shah, N. Chekurov, V. Ovchinnikov, I. Tittonen, Nanotechnology, Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces, 2014, 25, 335302.
[36]R. Garcia, A. W. Knoll, E. Riedo, Nature Nanotechnology, Advanced scanning probe lithography, 2014, 9, 577-587.
[37] C. Peroz, S. Dhuey, M. Cornet, M. Vogler, D. Olynick, S. Cabrini, Nanotechnology, Single digit nanofabrication by step-and-repeat nanoimprint lithography, 2012, 23, 015305.
[38]G. Calafiore, Q. Fillot, S. Dhuey, S. Sassolini, F. Salvadori, C. A. Mejia, K. Munechika, C. Peroz, S. Cabrini, C. Piña-Hernandez, Nanotechnology, Printable photonic crystals with high refractive index for applications in visible light, 2016, 27, 115303.
[39] T. Endo, H. Kajita, Y. Kawaguchi, T. Kosaka, T. Himi, Journal of biotechnology, Label‐free optical detection of C‐reactive protein by nanoimprint lithography‐based 2D‐photonic crystal film, 2016, 11, 831–837.
[40]B. Hattona, L. Mishchenko, S. Davis, K. H. Sandhagec, J. Aizenberga, proceedings of the national academy of sciences of the united states of america, Assembly of large-area, highly ordered, crack-free inverse opal films, 2010, 107, 10354.
[41] J. J. Richardson, M. Björnmalm, F. Caruso, Science, Technology-driven layer-by-layer assembly of nanofilms, 2015, 348,2491–2502.
[42] J. Chena, P. Donga, D. Di, C. Wang, H. Wang, J. Wang, X. Wu, Applied Surface Science, Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating, 2013, 270 6–15.
[43] Y. Fang, B. M. Phillips, K. Askar, B. Choi, P. Jiang, B. Jiang, Journal of Materials Chemistry C, Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures, 2013, 1, 6031–6047.
[44] K. Askar, S.Y. Leo, C. Xu, D. Liu, P. Jiang, Journal of Colloid and Interface Science, Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals, 2016, 482, 89–94.
[45] T. H. Besseling, M. Hermes, A. Fortini, M. Dijkstra, A. Imhofa, A. van Blaaderen, Soft Matter, Oscillatory shear-induced 3D crystalline order in colloidal hard-sphere fluids, 2012, 8, 6931–6939.
[46] S. Watanabe, K. Inukai, S. Mizuta, M. T. Miyahara, Langmuir, Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly, 2009, 25, 7287–7295.
[47] M. A. Herrera, J. A. Sirviö, A. P. Mathew, K. Oksman, Materials and Design, Environmental friendly and sustainable gas barrier on porous materials: Nanocellulose coatings prepared using spin-and dip-coating, 2016, 93, 19–25.
[48] M. M. Gudarzi, F. Sharif, Soft Matter, Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites, 2011, 7, 3432–3440.
[49]G. R. Yi, D. J. Pine, S. Sacanna, Journal of Physics:Condensed Matter, Recent progress on patchy colloids and their self-assembly, 2013, 25, 193101.
[50] M. Shao, X. Xu, J. Han, J. Zhao, W. Shi, X. Kong, M. Wei, D. G. Evans, X. Duan, Langmuir, Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors, 2011, 27, 8233–8240.
[51] S. Singamaneni,V. N. Bliznyuk, C. Binek, E. Y. Tsymbal, Journal of Materials Chemistry, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, 2011, 21, 16819–16845.
[52] H. Yang, P. Jiang, Langmuir, Large-scale colloidal self-assembly by doctor blade coating, 2010, 26, 13173–13182.
[53] M. Schaffner, G. England, M. Kolle , J. Aizenberg, N. Vogel, small, Combining Bottom‐Up Self‐Assembly with Top‐Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order, 2015, 34, 4334–4340.
[54] K. Busch, S. John, J. Lightwave Technol., Photonic Bandgap Formation and Tunability in Certain Self-Organizing Systems, 1999, 17, 1931-1943.
[55] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, Nature, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, 2000, 405, 437-440.
[56] G. I.N. Waterhouse, M. R. Waterland, Polyhedron, Opal and inverse opal photonic crystals: fabrication and characterization, 2007, 26, 356–368.
[57] A. Stein, B. E. Wilson, S. G. Rudisill, Chemical Society Reviews, Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals, 2013, 42, 2763—2803.
[58] K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, P. V. Braun, Nature Communications, Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification, 2013, 4, 2630.
[59] S. J. Ha, J. H. Heo, S. H. Im, J. H. Moon, Journal of Materials Chemistry A, Mesoscopic CH 3 NH 3 PbI 3 perovskite solar cells using TiO 2 inverse opal electron-conducting scaffolds, 2017, 5, 1972–1977.
[60] Z. Liang, G. Zheng, W. Li, Z. W. Seh, H. Yao, K. Yan, D. Kong, Y. Cui, ACS Nano, Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure, 2014, 8, 5249–5256.
[61] G. Yun, M. Balamurugan, H. S. Kim, K. S. Ahn, S. H. Kang, Journal of Physical Chemistry C, Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting, 2016, 120, 5906−5915.
[62] J. E. G. J. Wijnhoven, W. L. Vos, Science, Preparation of photonic crystals made of air spheres in titania, 1998, 281, 802-804.
[63] H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, A. Stein, Chemistry of Materials, General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, 2000, 12, 1134-1141.
[64] D. J. Norris, Y. A. Vlasov, AdvancedMaterials, Chemical Approaches to Three‐Dimensional Semiconductor Photonic Crystals, 2001, 13, 371-376.
[65] J. Shin, S. G. Han, W. Lee, Analytica Chimica Acta, Inverse opal pH sensors with various protic monomers copolymerized with polyhydroxyethylmethacrylate hydrogel, 2012,752 87– 93.
[66] H. Xu, P. Wu, C. Zhu, A. Elbaza, Z. Z. Gu, Journal of Materials Chemistry C, Photonic crystal for gas sensing, 2013, 1, 6087–6098.
[67] Y. J. Lee, P. V. Braun, Advanced Materials, Tunable inverse opal hydrogel pH sensors, 2003, 15, 563-566.
[68] L. Li, B. Zhao, Y. Long, J. M. Gao, G. Yang, C. H. T. K. S., Journal of Materials Chemistry C, Visual detection of carbonate ions by inverse opal photonic crystal polymers in aqueous solution, 2015, 3, 9524—9527.
[69] W. Hong, Y. Chen, X. Feng, Y. Yan, X. Hu, B. Zhao, F. Zhang, D. Zhang, Z. Xu, Y. Lai, Chemical Communications, Full-color CO2 gas sensing by an inverse opal photonic hydrogel, 2013, 49, 8229—8231.
[70] C. H. Yu, C. H. Huang, C. S. Tan, Aerosol and Air Quality Research, A review of CO2 capture by absorption and adsorption, 2012, 12, 745–769.
[71] H. He,W. Li, M. Zhong, D. Konkolewicz, D. Wu, K. Yaccato, T. Rappold, G. Sugar, N. E. D. K. Matyjaszewski, Energy and Environmental Science, Reversible CO2 capture with porous polymers using the humidity swing, 2013, 6, 488–493.
[72] S. Choi, J. H. Drese, P. M. Eisenberger, C. W. Jones, Environmental Science and Technology, Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air, 2011, 45, 2420–2427.
[73] G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A. H. A. Park, W. Li, C. W. Jones, E. P. Giannelis, Energy and Environmental Science, High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules, 2011, 4, 444–452.
[77] C. Chen, S. T. Yang, W. S. Ahn, R. Ryoo, Chemical Communications, Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity, 2009, 24,3627–3629.
[75] A. Goeppert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah, S. R. Narayanan, Journal of the American Chemical Society, Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent, 2011, 133, 20164−20167.
[76] A. Sayari, Y. Belmabkhout, Journal of the American Chemical Society, Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor, 2010, 132, 6312–6314.
[77] S. A. Didas, M. A. S. Novak, G. S. Foo, C. Sievers, C. W. Jones, Journal of Physical Chemistry Letters, Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species, 2014, 5, 4194−4200.
[78] Q. Wang, Y. Liu, J. Chen, Z. Du, J. Mi, Environmental Science and Technology, Control of Uniform and Interconnected Macroporous Structure in PolyHIPE for Enhanced CO2 Adsorption/Desorption Kinetics, 2016, 50, 7879−7888.
[79] M. W. Hahn, M. Steib, A. Jentys, J. A. Lercher, Journal of Physical Chemistry C, Mechanism and Kinetics of CO2 Adsorption on surface bonded amines, 2015, 119, 4126−4135.
[80] D. J. Belton, S. V. Patwardhan, C. C. Perry, Journal of Materials Chemistry, Spermine, spermidine and their analogues generate tailored silicas, 2005, 15, 4629–4638.
[81] G. González, X. F. Francos, À. Serra, M. Sangermanoc, X. Ramis, Polymer Chemistry, Environmentally-friendly processing of thermosets by two-stage sequential aza-Michael addition and free-radical polymerization of amine–acrylate mixtures, 2015, 6, 6987–6997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔