|
[1] M. M. Khader, M. J. Al-Marri, Sardar Ali, G. Qi, E. P., Giannelis, American Journal of Analytical Chemistry, Adsorption of CO2 on Polyethyleneimine10k—Mesoporous silica Sorbent:XPS and TGA Studies, 2015, 6, 274-284. [2] M. Cersosimo, A. Brunetti, E. Drioli, F. Fiorino , G. X. Dong, K. T. Woo, J. Lee, Y. M. Lee, G. Barbieri, Journal of Membrane Science, Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes, 2015, 492, 257–262. [3] C. H. Yu, C. H. Huang, C. S. Tan, Aerosol and Air Quality Research, A Review of CO2 Capture by Absorption and Adsorption, 2012, 12, 745–769. [4] K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, K. Makino, Journal of Colloid and Interface Science, A novel method for synthesis of silica nanoparticles, 2005, 289, 125–131. [5] X. D. Wang, Z. X. Shen, T. Sang, X. B. Cheng, M. F. Li, L.Y. Chen, Z. S. Wang, Journal of Colloid and Interface Science, Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate, 2010, 341, 23–29. [6] D.L. Green, J.S. Lin, Y. F. Lam, M. Z. C. Hu, D. W. Schaefer, M. T. Harris, Journal of Colloid and Interface Science, Size, volume fraction, and nucleation of Stober silica nanoparticles, 2003, 266, 346–358. [7] W. Stöber, A. Fink, E. Bohn, Journal of Colloid and Interface Science, Controlled growth of monodisperse silica spheres in the micron size range, 1968, 26, 62-69. [8] I. A. M. Ismail, A. A. F. Zikry, M. A. Sharaf, Journal of American Science, Preparation of spherical silica nanoparticles: Stober silica, 2010, 6, 985-989. [9] E. Yablonovitch, Physical Review Letters, Inhibited spontaneous emission in solid-state physics and electronics, 1987, 58, 2059–2062. [10] S. John, Physical Review Letters, Strong localization of photons in certain disordered dielectric superlattices, 1987, 58, 2486–2489. [11] F. Marlow, P. Sharifi, R. Brinkmann and C. Mendive, Angew. Chem., Int. Ed., Opals: status and prospects, 2009, 48, 6212–6233. [12] M. Xiao, Y. Li, M. C. Allen, D. D. Deheyn, X. Yue, J. Zhao, N. C. Gianneschi, M. D. Shawkey, A. Dhinojwala, ACS Nano, Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles, 2015, 9, 5454–5460. [13] H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, U. Demirci, Chemical Society Reviews, Photonic crystals: emerging biosensors and their promise for point-of-care applications, 2017, 46, 366—388. [14] R. H. Siddique, S. Vignolini, C. Bartels, I. Wacker, H. Hölscher, Scientific Reports, Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking, 2016, 6, 36204. [15] C. Pouya, D. G. Stavenga, P. Vukusic, Opt. Express, Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus, 2011,19, 11355–11364. [16] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals: molding the flow of light, 2011. [17] K. J. Vahala, Nature, Optical microcavities, 2003, 424, 839–846. [18] P. Russell, Science, Photonic crystal fibers, 2003, 299, 358–362. [19] A. Di Falco, L. O’Faolain, T. F. Krauss, PhotonicsNanostruct. Fundam. Appl., Photonic crystal slotted slab waveguides, 2008, 6, 38–41. [20] J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, Opt. Lett., Omnidirectional reflection from a one-dimensional photonic crystal, 1998, 23, 1573–1575. [21] C. Pacholski, Sensors, Photonic crystal sensors based on porous silicon, 2013, 13, 4694–4713. [22] G. Freymann, V. Kitaev, B. V. Lotsch, G. A. Ozin, Chemical Society Reviews, Bottom-up assembly of photonic crystals, 2013, 42, 2528-2554. [23] B. V. Lotsch, G. A. Ozin, ACS Nano, Photonic clays: A new family of functional 1d photonic crystals, 2008, 2, 2065 – 2074. [24] B. V. Lotsch, G. A. Ozin, Adv. Mater., Clay Bragg stack optical sensors, 2008, 20, 4079 – 4084. [25] Z. Wang, J. Zhang, J. Xie, Y. Yin, Z.Wang, H. Shen, Y. Li, J. Li, S. Liang, S. L. L. Y. Cui, L. Zhang, H. Zhang, B. Yang, ACS Appl. Mater. Interfaces, Patterning Organic/Inorganic Hybrid Bragg Stacks by Integrating One-Dimensional Photonic Crystals and Macrocavities through Photolithography: Toward Tunable Colorful Patterns as Highly Selective Sensors, 2012, 4, 1397 – 1403. [26]F. J. Ramos M. Oliva-Ramírez, M. K. Nazeeruddin, M. Graetzel, A. R. González-Elipe, S. Ahmad, Journal of Materials Chemistry A, Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells, 2016, 4, 4962–4970. [27] C. Fenzl, T. Hirsch, O. S. Wolfbeis, Angewandte Chemie International Edition, Photonic crystals for chemical sensing and biosensing, 2014, 53, 3318 – 3335. [28] B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vucˇkovic´, Nature Photonics, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser, 2011, 5, 297–300. [29] H. S. Lee, T. S. Shim, H. Hwang, S. M. Yang, S. H. Kim, Chemistry of Materials, Colloidal photonic crystals toward structural color palettes for security materials, 2013, 25, 2684−2690. [30] Y. Fang, Y. Ni, S. Y. Leo, C. Taylor, V. Basile, P. Jiang, Nature Communications, Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers, 2015, 6, 7416. [31] S. Y. Lee , S. H. Kim , H. Hwang , J. Y. Sim , S. M. Yang , Adv. Mater. Controlled Pixelation of Inverse Opaline Structures Towards Reflection‐Mode Displays, 2014, 26 , 2391. [32] Z. Fan, W. Zhang, Y. Fu, L. Yan, X. Ma, J. Phys. Chem. C, Facile Synthesis of Silicon Micropillar Arrays Using Extreme Ultraviolet Lithography and Ag-Assisted Chemical Etching Method, 2016, 120, 6824−6834. [33] S. Ha, R. Janissen, Y. Ye. Ussembayev, M. M. van Oene, B. Solano, N. H. Dekker, Nanoscale, Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles, 2016, 8, 10739–10748. [34] L. Yuan, P. R. Herman, Nanoscale, Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography, 2015, 7, 19905–19913. [35] M. Erdmanis, P. Sievilä, A. Shah, N. Chekurov, V. Ovchinnikov, I. Tittonen, Nanotechnology, Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces, 2014, 25, 335302. [36]R. Garcia, A. W. Knoll, E. Riedo, Nature Nanotechnology, Advanced scanning probe lithography, 2014, 9, 577-587. [37] C. Peroz, S. Dhuey, M. Cornet, M. Vogler, D. Olynick, S. Cabrini, Nanotechnology, Single digit nanofabrication by step-and-repeat nanoimprint lithography, 2012, 23, 015305. [38]G. Calafiore, Q. Fillot, S. Dhuey, S. Sassolini, F. Salvadori, C. A. Mejia, K. Munechika, C. Peroz, S. Cabrini, C. Piña-Hernandez, Nanotechnology, Printable photonic crystals with high refractive index for applications in visible light, 2016, 27, 115303. [39] T. Endo, H. Kajita, Y. Kawaguchi, T. Kosaka, T. Himi, Journal of biotechnology, Label‐free optical detection of C‐reactive protein by nanoimprint lithography‐based 2D‐photonic crystal film, 2016, 11, 831–837. [40]B. Hattona, L. Mishchenko, S. Davis, K. H. Sandhagec, J. Aizenberga, proceedings of the national academy of sciences of the united states of america, Assembly of large-area, highly ordered, crack-free inverse opal films, 2010, 107, 10354. [41] J. J. Richardson, M. Björnmalm, F. Caruso, Science, Technology-driven layer-by-layer assembly of nanofilms, 2015, 348,2491–2502. [42] J. Chena, P. Donga, D. Di, C. Wang, H. Wang, J. Wang, X. Wu, Applied Surface Science, Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating, 2013, 270 6–15. [43] Y. Fang, B. M. Phillips, K. Askar, B. Choi, P. Jiang, B. Jiang, Journal of Materials Chemistry C, Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures, 2013, 1, 6031–6047. [44] K. Askar, S.Y. Leo, C. Xu, D. Liu, P. Jiang, Journal of Colloid and Interface Science, Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals, 2016, 482, 89–94. [45] T. H. Besseling, M. Hermes, A. Fortini, M. Dijkstra, A. Imhofa, A. van Blaaderen, Soft Matter, Oscillatory shear-induced 3D crystalline order in colloidal hard-sphere fluids, 2012, 8, 6931–6939. [46] S. Watanabe, K. Inukai, S. Mizuta, M. T. Miyahara, Langmuir, Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly, 2009, 25, 7287–7295. [47] M. A. Herrera, J. A. Sirviö, A. P. Mathew, K. Oksman, Materials and Design, Environmental friendly and sustainable gas barrier on porous materials: Nanocellulose coatings prepared using spin-and dip-coating, 2016, 93, 19–25. [48] M. M. Gudarzi, F. Sharif, Soft Matter, Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites, 2011, 7, 3432–3440. [49]G. R. Yi, D. J. Pine, S. Sacanna, Journal of Physics:Condensed Matter, Recent progress on patchy colloids and their self-assembly, 2013, 25, 193101. [50] M. Shao, X. Xu, J. Han, J. Zhao, W. Shi, X. Kong, M. Wei, D. G. Evans, X. Duan, Langmuir, Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors, 2011, 27, 8233–8240. [51] S. Singamaneni,V. N. Bliznyuk, C. Binek, E. Y. Tsymbal, Journal of Materials Chemistry, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, 2011, 21, 16819–16845. [52] H. Yang, P. Jiang, Langmuir, Large-scale colloidal self-assembly by doctor blade coating, 2010, 26, 13173–13182. [53] M. Schaffner, G. England, M. Kolle , J. Aizenberg, N. Vogel, small, Combining Bottom‐Up Self‐Assembly with Top‐Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order, 2015, 34, 4334–4340. [54] K. Busch, S. John, J. Lightwave Technol., Photonic Bandgap Formation and Tunability in Certain Self-Organizing Systems, 1999, 17, 1931-1943. [55] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, Nature, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, 2000, 405, 437-440. [56] G. I.N. Waterhouse, M. R. Waterland, Polyhedron, Opal and inverse opal photonic crystals: fabrication and characterization, 2007, 26, 356–368. [57] A. Stein, B. E. Wilson, S. G. Rudisill, Chemical Society Reviews, Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals, 2013, 42, 2763—2803. [58] K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, P. V. Braun, Nature Communications, Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification, 2013, 4, 2630. [59] S. J. Ha, J. H. Heo, S. H. Im, J. H. Moon, Journal of Materials Chemistry A, Mesoscopic CH 3 NH 3 PbI 3 perovskite solar cells using TiO 2 inverse opal electron-conducting scaffolds, 2017, 5, 1972–1977. [60] Z. Liang, G. Zheng, W. Li, Z. W. Seh, H. Yao, K. Yan, D. Kong, Y. Cui, ACS Nano, Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure, 2014, 8, 5249–5256. [61] G. Yun, M. Balamurugan, H. S. Kim, K. S. Ahn, S. H. Kang, Journal of Physical Chemistry C, Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting, 2016, 120, 5906−5915. [62] J. E. G. J. Wijnhoven, W. L. Vos, Science, Preparation of photonic crystals made of air spheres in titania, 1998, 281, 802-804. [63] H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, A. Stein, Chemistry of Materials, General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, 2000, 12, 1134-1141. [64] D. J. Norris, Y. A. Vlasov, AdvancedMaterials, Chemical Approaches to Three‐Dimensional Semiconductor Photonic Crystals, 2001, 13, 371-376. [65] J. Shin, S. G. Han, W. Lee, Analytica Chimica Acta, Inverse opal pH sensors with various protic monomers copolymerized with polyhydroxyethylmethacrylate hydrogel, 2012,752 87– 93. [66] H. Xu, P. Wu, C. Zhu, A. Elbaza, Z. Z. Gu, Journal of Materials Chemistry C, Photonic crystal for gas sensing, 2013, 1, 6087–6098. [67] Y. J. Lee, P. V. Braun, Advanced Materials, Tunable inverse opal hydrogel pH sensors, 2003, 15, 563-566. [68] L. Li, B. Zhao, Y. Long, J. M. Gao, G. Yang, C. H. T. K. S., Journal of Materials Chemistry C, Visual detection of carbonate ions by inverse opal photonic crystal polymers in aqueous solution, 2015, 3, 9524—9527. [69] W. Hong, Y. Chen, X. Feng, Y. Yan, X. Hu, B. Zhao, F. Zhang, D. Zhang, Z. Xu, Y. Lai, Chemical Communications, Full-color CO2 gas sensing by an inverse opal photonic hydrogel, 2013, 49, 8229—8231. [70] C. H. Yu, C. H. Huang, C. S. Tan, Aerosol and Air Quality Research, A review of CO2 capture by absorption and adsorption, 2012, 12, 745–769. [71] H. He,W. Li, M. Zhong, D. Konkolewicz, D. Wu, K. Yaccato, T. Rappold, G. Sugar, N. E. D. K. Matyjaszewski, Energy and Environmental Science, Reversible CO2 capture with porous polymers using the humidity swing, 2013, 6, 488–493. [72] S. Choi, J. H. Drese, P. M. Eisenberger, C. W. Jones, Environmental Science and Technology, Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air, 2011, 45, 2420–2427. [73] G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A. H. A. Park, W. Li, C. W. Jones, E. P. Giannelis, Energy and Environmental Science, High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules, 2011, 4, 444–452. [77] C. Chen, S. T. Yang, W. S. Ahn, R. Ryoo, Chemical Communications, Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity, 2009, 24,3627–3629. [75] A. Goeppert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah, S. R. Narayanan, Journal of the American Chemical Society, Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent, 2011, 133, 20164−20167. [76] A. Sayari, Y. Belmabkhout, Journal of the American Chemical Society, Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor, 2010, 132, 6312–6314. [77] S. A. Didas, M. A. S. Novak, G. S. Foo, C. Sievers, C. W. Jones, Journal of Physical Chemistry Letters, Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species, 2014, 5, 4194−4200. [78] Q. Wang, Y. Liu, J. Chen, Z. Du, J. Mi, Environmental Science and Technology, Control of Uniform and Interconnected Macroporous Structure in PolyHIPE for Enhanced CO2 Adsorption/Desorption Kinetics, 2016, 50, 7879−7888. [79] M. W. Hahn, M. Steib, A. Jentys, J. A. Lercher, Journal of Physical Chemistry C, Mechanism and Kinetics of CO2 Adsorption on surface bonded amines, 2015, 119, 4126−4135. [80] D. J. Belton, S. V. Patwardhan, C. C. Perry, Journal of Materials Chemistry, Spermine, spermidine and their analogues generate tailored silicas, 2005, 15, 4629–4638. [81] G. González, X. F. Francos, À. Serra, M. Sangermanoc, X. Ramis, Polymer Chemistry, Environmentally-friendly processing of thermosets by two-stage sequential aza-Michael addition and free-radical polymerization of amine–acrylate mixtures, 2015, 6, 6987–6997.
|