(3.237.97.64) 您好!臺灣時間:2021/03/03 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱祥溢
研究生(外文):Hsiang-Yi Chu
論文名稱:添加纖維素衍生物於光電轉換層以提升鈣鈦礦太陽能電池之光伏特性
論文名稱(外文):Enhancing the Photovoltaic Performance of Perovskite Solar Cells by Addition of Cellulose Derivatives in Photoconversion Layer.
指導教授:李榮和李榮和引用關係
指導教授(外文):Rong-Ho Lee
口試委員:陳錦地吳宗明
口試委員(外文):Chin-Ti ChenTzong-Ming Wu
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:纖維素反式鈣鈦礦太陽能電池光伏特性
外文關鍵詞:Celluloseperovskite solar cellsand photovoltaic performance.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要合成一系列纖維素(Hydroxyethyl Cellulose, HEC)衍生物作為鈣鈦礦之前驅物溶液添加劑,以提升鈣鈦礦膜層之結晶顆粒大小。合成得到Chloro-deoxyhydroxyethylcellulose (CDHC)、Bromo-deoxy-hydroxyethyl cellulose (BDHC)後,利用1H NMR、13C NMR、XPS進行結果鑑定。且將一系列纖維素衍生物混摻入鈣鈦礦之前驅物溶液,藉由調整纖維素添加濃度與膜層不同熱處理溫度,獲得電子質量優良的光滑鈣鈦礦薄膜,避免結晶過程中形成不必要的缺陷,例如針洞、晶界,以提升光電轉換層之薄膜結晶粒大小與覆蓋率,改善鈣鈦礦太陽能電池之光電轉換膜層特性與元件光伏性質。在未混摻HEC之基本元件,其結構為ITO/PEDOT:PSS /Perovskite/PC71BM/Ag,獲得光電轉換效率(PCE)為7.47%,開路電壓(Voc)為0.83V,短路電流為15.36 mA/cm2,填充因子(FF)為58.6 %。接著以 0.6mg纖維素衍生物 (HEC、CDHC、BDHC) 之最佳參雜量混摻入鈣鈦礦前驅物溶液( MAI/PbI2,1ml),進行鈣鈦礦層元件製作。其中由添加CDHC之鈣鈦礦元件有著最好的光伏性質,其PCE為11.03%,開路電壓(Voc)為1.01V,短路電流為17.57 mA/cm2,填充因子(FF)為62.1%。經推測含氯原子藉由電負度差異的確能有效達到抑制結晶速度,形成大晶粒的尺寸,更容易傳遞電子電洞對,減少晶界避免再結合現象,使得鈣鈦礦層混摻CDHC之元件光伏特性明顯提升。
In this study, cellulose (hydroxyethylcellulose, HEC) was used as an additive and doped into perovskite precursor solution to improve the crystal sizes of perovskite layer and photovoltaic (PV) performances of perovskite solar cells (PSCs). By adjusting doped content of HEC and thermal annealing temperature of perovskite layer, to obtained shiny smooth perovskite films with excellent electronic quality, avoiding the creation of unwanted defects during crystallization process, for example, pinholes and grain boundaries. The arichitecture of HEC based inverted PSC was ITO/PEDOT:PSS/Perovskite:HEC/PC61BM/Ag. The power conversion efficiency (PCE) of 8.96%, a short-circuit current density (Voc) of 0.88 V, a short-circuit current (Jsc) of 15.23 mA/cm2, and a fill factor (FF) of 66.8% were obtained for the HEC based PSC. In addition, chloro-deoxy-hydroxyethylcellulose (CDHC) and bromo-deoxy-hydroxyethylcellulose (BDHC) were synthesized and used as the additives of perovskite layer. PV properties of CDHC and BDHC incorporated PSCs were better than that HEC incorporated PSC. The presence of chloride and the bromide ions in the perovskite layer suppressed the crystalline rate of perovskite, whih result in the larger size of crystals in the perovskite layer. This is due to the difference of electron negativity between chloride (or bromide) ion of celleulose derivative and iodide ion of PbI2. The highest PCE (11.03%), Voc (1.01V), Jsc (17.57mA/cm2), and FF (62.1%) were obtaind for the CDHC incorporated PSC.
目錄
摘要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 viii
第一章緒論 1
1-1前言 1
1-2太陽能電池種類 1
1-2-1無機太陽能電池 2
1-2-2有機太陽能電池 3
1-3鈣鈦礦太陽能電池的發展 7
1-4鈣鈦礦太陽能電池的結構材料介紹 8
1-4-1鈣鈦礦吸收層材料與特性 8
1-4-2電洞傳遞層材料與特性 9
1-4-3電子傳遞層材料與特性 11
1-5鈣鈦礦太陽能電池的結構與種類 13
1-5-1正式結構鈣鈦礦太陽能電池 14
1-5-2反式結構鈣鈦礦太陽能電池 15
1-6鈣鈦礦層成膜製作方式介紹 16
1-6-1 一步溶液成膜法 17
1-6-2 兩步溶液成膜法 18
1-6-3 雙源共蒸鍍沉積法 20
1-6-4 氣相輔助溶液法 22
1-6-5 化學氣相沉積溶液法 22
1-6-6 噴塗溶液法 24
1-6-7 刮刀塗佈溶液法 24
1-7太陽能電池之工作原理 25
1-7-1太陽能電池的特性分析 26
第二章文獻回顧 29
2-1以混摻技術形成大區域長晶鈣鈦礦薄膜之應用 29
2-1-1以4-甲基苯磺酸做為混摻鈣鈦礦吸光層材料 29
2-1-2以聚甲基丙烯酸甲酯(PMMA)做為混摻鈣鈦礦吸光層材料 30
2-1-3以硫氰酸鉛(Pb(SCN)2)做為混摻鈣鈦礦吸光層材料 31
2-1-4以H2O做為混摻鈣鈦礦吸光層材料 32
2-1-5以Hydrochloride做為混摻鈣鈦礦吸光層材料 32
2-2以溶液製成形成大區域長晶鈣鈦礦薄膜之應用 33
2-2-1 Hot Casting process 33
2-2-2 Solvent Annealing-controlling&TSA-controlling 34
2-2-3前體溶液老化程度對鈣鈦礦結晶影響 36
2-3研究動機 37
第三章實驗 38
3-1溶劑、材料前處理 38
3-2化學藥品 39
3-3單體合成 40
3-4元件製作 42
3-5實驗儀器 43
第四章結果與討論 45
4-1 Chloro-deoxy-hydroxyethylcellulose (CDHC) 結構鑑定分析 45
4-2 Bromo-deoxy-hydroxyethylcellulose (BDHC) 結構鑑定分析 49
4-3熱重分析儀(TGA)和微差熱掃描卡計(DSC)之熱性質分析 52
4-4混摻HEC於Perovskite薄膜之最適成膜溫度表面型態分析 53
4-5混摻不同纖維素含量之Perovskite薄膜分析 55
4-5-1 混摻不同纖維素含量之Perovskite薄膜表面型態分析 55
4-5-2 混摻不同纖維素含量之Perovskite薄膜結晶性分析 58
4-6添加最適化纖維素衍生物含量之鈣鈦礦薄膜分析 59
4-6-1 添加最適化纖維素衍生物含量之鈣鈦礦薄膜表面型態分析 59
4-6-2 添加最適化纖維素衍生物含量之鈣鈦礦薄膜XRD圖譜分析 61
4-7 Perovskite薄膜之光學性質分析 62
4-7-1 混摻不同纖維素含量之Perovskite薄膜紫外光-可見光光譜分析 62
4-7-2 添加最適化纖維素衍生物含量之Perovskite薄膜紫外光-可見光光譜分析 63
4-8 Perovskite電池元件表現 64
4-8-1 Perovskite基本電池元件結構之光伏表現 64
4-8-2 混摻不同纖維素含量之Perovskite電池元件光伏表現 64
4-8-3 添加最適化纖維素衍生物含量之鈣鈦礦電池元件光伏表現 66
4-8-4 Perovskite之入射光子-電子轉換效率 67
第五章結論 68
第六章參考文獻 69
[1]M. Gratzel, Nature 414 (2001) 338-344.
[2]B. O''Regan, M. Gratzel, Nature 353 (1991) 737-740.
[3]M. Grätzel, Inorganic Chemistry 44 (2005) 6841-6851.
[4]C.Y. Kwong, A.B. Djurišić, P.C. Chui, K.W. Cheng, W.K. Chan, Chemical Physics Letters 384 (2004) 372-375.
[5]W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Journal of Materials Chemistry 15 (2005) 2985-2988.
[6]S.G. Chen, S. Chappel, Y. Diamant, A. Zaban, Chemistry of Materials 13 (2001) 4629-4634.
[7]A.N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, J.R. Durrant, The Journal of Physical Chemistry B 109 (2005) 12525-12533.
[8]I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Journal of the American Chemical Society 128 (2006) 2385-2393.
[9]W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295 (2002) 2425.
[10]K. Shankar, G.K. Mor, H.E. Prakasam, O.K. Varghese, C.A. Grimes, Langmuir 23 (2007) 12445-12449.
[11]M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338 (2012) 643.
[12]C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorganic Chemistry 52 (2013) 9019-9038.
[13]A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal of the American Chemical Society 131 (2009) 6050-6051.
[14]J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 3 (2011) 4088-4093.
[15]H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Scientific Reports 2 (2012) 591.
[16]J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499 (2013) 316-319.
[17]N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat Mater 13 (2014) 897-903.
[18]M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy & Environmental Science 9 (2016) 1989-1997.
[19]G. Hodes, Science 342 (2013) 317.
[20]S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, The Journal of Physical Chemistry Letters 5 (2014) 1035-1039.
[21]G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342 (2013) 344.
[22]W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, Science 347 (2015) 522.
[23]Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, The Journal of Physical Chemistry Letters 5 (2014) 1004-1011.
[24]Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, S. Liu, Advanced Materials 27 (2015) 5176-5183.
[25]J. Xiao, J. Shi, D. Li, Q. Meng, Science China Chemistry 58 (2015) 221-238.
[26]J.A. Christians, R.C.M. Fung, P.V. Kamat, Journal of the American Chemical Society 136 (2014) 758-764.
[27]P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, 5 (2014) 3834.
[28]K.-C. Wang, P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen, T.-F. Guo, ACS Applied Materials & Interfaces 6 (2014) 11851-11858.
[29]N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, S.I. Seok, Journal of the American Chemical Society 136 (2014) 7837-7840.
[30]J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Journal of Materials Chemistry A 3 (2013) 11842.
[31]Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, E. Nakamura, Journal of Materials Chemistry A 2 (2014) 13827-13830.
[32]J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-j. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel, S.I. Seok, Nat Photon 7 (2013) 486-491.
[33]N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Nature 517 (2015) 476-480.
[34]H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Science 355 (2017) 722-726.
[35]B. Conings, L. Baeten, T. Jacobs, R. Dera, J. D’Haen, J. Manca, H.G. Boyen, APL Materials 2 (2014) 081505.
[36]D. Liu, T.L. Kelly, Nat Photon 8 (2014) 133-138.
[37]P. Li, X. Li, C. Sun, G. Wang, J. Li, T. Jiu, J. Fang, Solar Energy Materials and Solar Cells 126 (2014) 36-41.
[38]Y. Li, Y. Zhao, Q. Chen, Y. Yang, Y. Liu, Z. Hong, Z. Liu, Y.-T. Hsieh, L. Meng, Y. Li, Y. Yang, Journal of the American Chemical Society 137 (2015) 15540-15547.
[39]F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu, S. Yang, ACS Applied Materials & Interfaces 7 (2015) 13659-13665.
[40]T. Cao, Z. Wang, Y. Xia, B. Song, Y. Zhou, N. Chen, Y. Li, ACS Applied Materials & Interfaces 8 (2016) 18284-18291.
[41]H.J. Snaith, The Journal of Physical Chemistry Letters 4 (2013) 3623-3630.
[42]M. Liu, M.B. Johnston, H.J. Snaith, Nature 501 (2013) 395-398.
[43]K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen, Scientific Reports 4 (2014) 4756.
[44]J. Seo, S. Park, Y. Chan Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Energy & Environmental Science 7 (2014) 2642-2646.
[45]K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Solid State Communications 127 (2003) 619-623.
[46]Y. Zhao, K. Zhu, The Journal of Physical Chemistry C 118 (2014) 9412-9418.
[47]J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Energy & Environmental Science 8 (2015) 1602-1608.
[48]Y. Chen, M. He, J. Peng, Y. Sun, Z. Liang, Advanced Science 3 (2016) n/a-n/a.
[49]H. Chen, Advanced Functional Materials 27 (2017) 1605654-n/a.
[50]Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Journal of the American Chemical Society 136 (2014) 622-625.
[51]M.M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A.L. Rogach, Y. Yao, Z. Fan, 5 (2015) 14083.
[52]P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, ACS Applied Materials & Interfaces 7 (2015) 2708-2714.
[53]S. Gamliel, A. Dymshits, S. Aharon, E. Terkieltaub, L. Etgar, The Journal of Physical Chemistry C 119 (2015) 19722-19728.
[54]A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Energy & Environmental Science 7 (2014) 2944.
[55]S. Das, B. Yang, G. Gu, P.C. Joshi, I.N. Ivanov, C.M. Rouleau, T. Aytug, D.B. Geohegan, K. Xiao, ACS Photonics 2 (2015) 680-686.
[56]Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, Energy & Environmental Science 8 (2015) 1544-1550.
[57]J.T. Bloking, X. Han, A.T. Higgs, J.P. Kastrop, L. Pandey, J.E. Norton, C. Risko, C.E. Chen, J.-L. Brédas, M.D. McGehee, A. Sellinger, Chemistry of Materials 23 (2011) 5484-5490.
[58]M.-S. Kim, B.-G. Kim, J. Kim, ACS Applied Materials & Interfaces 1 (2009) 1264-1269.
[59]F. Han, J. Luo, H.A. Malik, B. Zhao, Z. Wan, C. Jia, Journal of Power Sources 359 (2017) 577-584.
[60]Y. Zhang, L. Tan, Q. Fu, L. Chen, T. Ji, X. Hu, Y. Chen, Chemical Communications 52 (2016) 5674-5677.
[61]D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, Shaik M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Science 1 (2016) 16142.
[62]R. Lindblad, D. Bi, B.-w. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E.M.J. Johansson, H. Rensmo, The Journal of Physical Chemistry Letters 5 (2014) 648-653.
[63]H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, T.-W. Lee, Science 350 (2015) 1222.
[64]Y. Yu, C. Wang, C.R. Grice, N. Shrestha, J. Chen, D. Zhao, W. Liao, A.J. Cimaroli, P.J. Roland, R.J. Ellingson, Y. Yan, ChemSusChem 9 (2016) 3288-3297.
[65]C. Wang, D. Zhao, Y. Yu, N. Shrestha, C.R. Grice, W. Liao, A.J. Cimaroli, J. Chen, R.J. Ellingson, X. Zhao, Y. Yan, Nano Energy 35 (2017) 223-232.
[66]J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, Applied Physics Letters 105 (2014) 183902.
[67]C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M.K. Nazeeruddin, A. Hagfeldt, M. Gratzel, Energy & Environmental Science 8 (2015) 2725-2733.
[68]J. Pan, C. Mu, Q. Li, W. Li, D. Ma, D. Xu, Advanced Materials 28 (2016) 8309-8314.
[69]Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Advanced Materials 26 (2014) 6503-6509.
[70]D. Liu, L. Wu, C. Li, S. Ren, J. Zhang, W. Li, L. Feng, ACS Applied Materials & Interfaces 7 (2015) 16330-16337.
[71]H. Tsai, W. Nie, Y.-H. Lin, J.C. Blancon, S. Tretiak, J. Even, G. Gupta, P.M. Ajayan, A.D. Mohite, Advanced Energy Materials 7 (2017) 1602159-n/a.
[72]J. Wang, X. Lin, H. Zhu, X. Luo, J. Zhang, Polycyclic Aromatic Compounds 34 (2014) 372-387.
[73]K.-i. Furuhata, K. Koganei, H.-S. Chang, N. Aoki, M. Sakamoto, Carbohydrate Research 230 (1992) 165-177.
[74] S.-M. Musyoka, J.-C. Ngila, B. Moodley, L. Petrik, A. Kindness, Analytical Letters 44 (2011) 1925-1936.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔