[1]徐如人(民103)。無機合成與製備化學(二版)。臺北市:五南
[2]Dr. Yitzhak Mastai, Advances in Crystallization Processes.InTech China(2012), 259-284
[3]Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1), 1-78.
[4]李文智(2006)。以沸石擔持金屬氧化物製備吸附劑以進行磷化氫氣體吸附之研究。國立交通大學環境工程研究所碩士論文。新竹。
[5]Burkett, S. L., & Davis, M. E. (1994). Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry, 98(17), 4647-4653.
[6]Lee, D. S., & Chen, Y. W. (2015). Photocatalytic reduction of carbon dioxide with water on InVO 4 with NiO cocatalysts. Journal of CO2 Utilization, 10, 1-6.
[7]Ohno, T., Murakami, N., Koyanagi, T., & Yang, Y. (2014). Photocatalytic reduction of CO 2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (gC3 N4) under visible light. Journal of CO2 Utilization, 6, 17-25.
[8]Dey, K. P., Ghosh, S., & Naskar, M. K. (2013). Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source. Ceramics International, 39(2), 2153-2157.
[9]Shams-Ghahfarokhi, Z., & Nezamzadeh-Ejhieh, A. (2015). As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Materials Science in Semiconductor Processing, 39, 265-275.
[10]Li, Y., Wang, W. N., Zhan, Z., Woo, M. H., Wu, C. Y., & Biswas, P. (2010). Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 100(1), 386-392.
[11]Yuan, E., Zhang, K., Lu, G., Mo, Z., & Tang, Z. (2016). Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx with NH3. Journal of Industrial and Engineering Chemistry, 42, 142-148.
[12]胡興中(民82)。觸媒原理與應用(三版)。臺北市:高立圖書有限公司。
[13]Michael T.Repeated Templating. Chem. Mater., 20 (2008), 961–971.
[14]Satthawong, R., Koizumi, N., Song, C., & Prasassarakich, P. (2013). Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. Journal of CO2 Utilization, 3, 102-106.
[15]林麗瓊。在凝態中心築夢踏實我的科研生涯─以光觸媒還原二氧化碳為例。物理專文,雙月刊36卷2期,134-141頁。[16]Tan, S. S., Zou, L., & Hu, E. (2006). Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115(1), 269-273.
[17]Li, K., An, X., Park, K. H., Khraisheh, M., & Tang, J. (2014). A critical review of CO2 photoconversion: catalysts and reactors. Catalysis Today, 224, 3-12.
[18]Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B, 101(14), 2632-2636.
[19]汪建民(民87)。材料分析(初版)。新竹市:中國材料學會
[20]伍秀菁 (民87)。儀器總覽(初版)。新竹巿:國科會精儀中心
[21]Horikawa, T., Do, D. D., & Nicholson, D. (2011). Capillary condensation of adsorbates in porous materials. Advances in colloid and interface science, 169(1), 40-58.
[22]Tseng, I. H., Chang, W. C., & Wu, J. C. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37(1), 37-48.
[23]周欣穎(2002)。奈米Ag/TiO2觸媒進行二氧化碳光催化還原反應。台灣大學化學工程研究所碩士論文,台北。[24]Dey, G. R., & Pushpa, K. K. (2007). Formation of different products during photo-catalytic reaction on TiO2 suspension in water with and without 2-propanol under diverse ambient conditions. Research on Chemical Intermediates, 33(7), 631-644.
[25]Vafaeian, Y., Haghighi, M., & Aghamohammadi, S. (2013). Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane. Energy Conversion and Management, 76, 1093-1103.
[26]Moradi, G., Khezeli, F., & Hemmati, H. (2016). Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts. Journal of Natural Gas Science and Engineering, 33, 657-665.
[27]Yung, M. M., Starace, A. K., Mukarakate, C., Crow, A. M., Leshnov, M. A., & Magrini, K. A. (2016). Biomass catalytic pyrolysis on Ni/ZSM-5: Effects of nickel pretreatment and loading. Energy & Fuels, 30(7), 5259-5268.
[28]Yan, B., Li, W., Tao, J., Xu, N., Li, X., & Chen, G. (2017). Hydrogen production by aqueous phase reforming of phenol over Ni/ZSM-5 catalysts. International Journal of Hydrogen Energy, 42(10), 6674-6682.