跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳郁婷
研究生(外文):Yu-Ting Chen
論文名稱:Ni/ZSM-5 觸媒在光催化二氧化碳還原生成甲醇之應用
論文名稱(外文):Photocatalytic of CO2 to methanol conversion using Ni/ZSM-5 Catalysts
指導教授:鄭紀民
口試委員:陳炎輝王飛龍
口試日期:2017-06-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:二氧化碳還原反應Ni/ZSM-5光催化觸媒
外文關鍵詞:carbon dioxide conversionNi/ZSM-5photocatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為以ZSM-5為載體,附加金屬氧化物於載體上作為光觸媒進行二氧化碳還原反應,以達到二氧化碳減量的效果加以轉換成可再利用之產物。
本研究的觸媒製備是先以水熱法自行製備出不同矽鋁莫爾比值(30至120)的ZSM-5沸石材料,接著再以初濕含浸法來附載一氧化鎳金屬於ZSM-5載體上,探討金屬氧化物附載於沸石材料前後的光催化效果以及二氧化碳還原效率,同時亦藉由XRD、SEM、FT-IR、BET等儀器分析其晶體結構、表面型態和成分比例等等。
就二氧化碳還原反應方面,所使用的溶劑為去離子水,加上氫氧化鈉以增加二氧化碳的溶解量及過硫酸鈉當作氧化劑,於室溫下(293K)通入二氧化碳至溶液中(300mL),待二氧化碳飽和後,加入觸媒粉體0.3克,再以波長254nm、8W的燈管8支光照進行光催化之反應,每半小時取樣一次,並以GC-FID(中國層析GC3000型)分析氣相產物為甲醇(CH3OH)。
由實驗結果可以得知,有添加金屬氧化物之ZSM-5皆較未添加金屬之ZSM-5的甲醇產量高,表示添加金屬分散於ZSM-5當中是有增加其觸媒活性且有助於光催化反應之進行。而當含鎳量10wt%於矽鋁莫爾比50的ZSM-5中,經過光照反應4小時後,得到最佳甲醇產率約1124.23(μmole/g-hr)。
另外,藉由調整反應中的參數來了解二氧化碳還原反應的最適條件,改變了溶劑比例及觸媒的克數,我們就實驗結果得知以氫氧化鈉水溶液和過硫酸鈉水溶液分別配置0.2N的濃度、體積比1:1的比例下,加入觸媒0.3克進行反應後,會得到最佳的還原效率。
The main propose of this study is to reduce the amount of carbon dioxide and produce the methanol conversion using Ni/ZSM-5 catalyst.

The ZSM-5 zeolite with different molar rate(Si/Al=30,50,90,120) were prepared using a hydrothermal method. Subsequently, the prepared Ni/ZSM-5 catalysts by incipient wet impregnation method, were characterized using XRD, SEM,FT-IRand BET.The photocatalytic reduction of carbon dioxide in aqueous solution is carried out by catalysts suspended in 150mL 0.2N NaOH solution and 0.2N Na2S2O8 solution at room temperature. After saturated by bubbling carbon dioxide, adding 0.3g of the catalyst into the solution. The light source is using UV lamp(254nm). The major gas phase reduction analyzed by gas chromatography is methanol.From the photocatalytic performance of the CO2to methanol conversion, the yield of methanol with nickel support on ZSM-5 is much than with ZSM-5. It proves that loading of nickel really enhance the catalytic reactivity. Effects of the amounts of nickelsupport on the different of Si/Al and the photocatalytic abilities of the catalysts were investigated.A1124 (μmole/g-hr) yield of methanol gives the most activity, with the 10wt.% NiO on the 50 molar rate of Si/Al of ZSM-5 for 4 hours.To improve the yield of photocatalytic of CO2 to methanol conversion, the reduction such as the volume of NaOH solution and Na2S2O8 solution and the amount of catalyst were discussed. The 1:1 volume rate of both and added 0.3g catalyst for the reaction was the result of the photocatalytic methanol conversion.
誌謝 i
摘要 ii
Abstract iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究流程圖 3
第二章 文獻回顧 4
2-1 多孔材料與沸石材料的介紹 4
2-1-1 多孔材料 4
2-1-2 沸石材料 5
2-2 ZSM-5的介紹和製備方法 7
2-2-1 ZSM-5的介紹 7
2-2-2 ZSM-5的製備方法 8
2-3 金屬離子的改質及合成方法 12
2-4 光觸媒催化二氧化碳還原反應 15
2-4-1 二氧化碳的利用及研究發展 17
2-4-2 光催化反應的機制與原理 18
第三章 實驗材料與方法 21
3-1 製備觸媒之藥品 21
3-2 實驗方法與步驟-ZSM-5觸媒的製備、金屬氧化物的擔持 23
3-2-1 ZSM-5觸媒的製備 23
3-2-2 金屬氧化物擔持的製備 25
3-3 觸媒的鑑定與分析 26
3-3-1 傅立葉轉換紅外光譜(FT-IR) 26
3-3-2 高解析X光繞射儀 (HR-XRD) 27
3-3-3 比表面積及孔隙分佈分析儀 29
3-3-4 場發射掃描式電子顯微鏡(FE-SEM) 33
3-3-5 感應耦合電漿發射光譜儀(ICP-OES) 34
3-4 實驗之設備 35
3-4-1 觸媒製備設備 35
3-4-2 光催化還原反應設備 35
3-5 產物的分析 36
第四章 結果與討論 40
4-1 光催化二氧化碳還原反應 40
4-1-1 探討含鎳量於ZSM-5的觸媒表現 40
4-1-2 溶劑對反應的影響 46
4-1-3 觸媒量對反應的影響 49
4-1-4 反應機制的探討 50
4-1-5 觸媒顏色在反應時的變化 51
4-2 FT-IR圖譜分析 52
4-3 場發射掃描式電子顯微鏡分析 56
4-4 X光繞射儀之晶格測定分析 62
4-5 BET比表面積測定分析 66
4-6 感應耦合電漿發射光譜儀ICP-OES分析結果 74
第五章 結論 75
參考文獻 77
[1]徐如人(民103)。無機合成與製備化學(二版)。臺北市:五南
[2]Dr. Yitzhak Mastai, Advances in Crystallization Processes.InTech China(2012), 259-284
[3]Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1), 1-78.
[4]李文智(2006)。以沸石擔持金屬氧化物製備吸附劑以進行磷化氫氣體吸附之研究。國立交通大學環境工程研究所碩士論文。新竹。
[5]Burkett, S. L., & Davis, M. E. (1994). Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry, 98(17), 4647-4653.
[6]Lee, D. S., & Chen, Y. W. (2015). Photocatalytic reduction of carbon dioxide with water on InVO 4 with NiO cocatalysts. Journal of CO2 Utilization, 10, 1-6.
[7]Ohno, T., Murakami, N., Koyanagi, T., & Yang, Y. (2014). Photocatalytic reduction of CO 2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (gC3 N4) under visible light. Journal of CO2 Utilization, 6, 17-25.
[8]Dey, K. P., Ghosh, S., & Naskar, M. K. (2013). Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source. Ceramics International, 39(2), 2153-2157.
[9]Shams-Ghahfarokhi, Z., & Nezamzadeh-Ejhieh, A. (2015). As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Materials Science in Semiconductor Processing, 39, 265-275.
[10]Li, Y., Wang, W. N., Zhan, Z., Woo, M. H., Wu, C. Y., & Biswas, P. (2010). Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 100(1), 386-392.
[11]Yuan, E., Zhang, K., Lu, G., Mo, Z., & Tang, Z. (2016). Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx with NH3. Journal of Industrial and Engineering Chemistry, 42, 142-148.
[12]胡興中(民82)。觸媒原理與應用(三版)。臺北市:高立圖書有限公司。
[13]Michael T.Repeated Templating. Chem. Mater., 20 (2008), 961–971.
[14]Satthawong, R., Koizumi, N., Song, C., & Prasassarakich, P. (2013). Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. Journal of CO2 Utilization, 3, 102-106.
[15]林麗瓊。在凝態中心築夢踏實我的科研生涯─以光觸媒還原二氧化碳為例。物理專文,雙月刊36卷2期,134-141頁。
[16]Tan, S. S., Zou, L., & Hu, E. (2006). Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115(1), 269-273.
[17]Li, K., An, X., Park, K. H., Khraisheh, M., & Tang, J. (2014). A critical review of CO2 photoconversion: catalysts and reactors. Catalysis Today, 224, 3-12.
[18]Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B, 101(14), 2632-2636.
[19]汪建民(民87)。材料分析(初版)。新竹市:中國材料學會
[20]伍秀菁 (民87)。儀器總覽(初版)。新竹巿:國科會精儀中心
[21]Horikawa, T., Do, D. D., & Nicholson, D. (2011). Capillary condensation of adsorbates in porous materials. Advances in colloid and interface science, 169(1), 40-58.
[22]Tseng, I. H., Chang, W. C., & Wu, J. C. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37(1), 37-48.
[23]周欣穎(2002)。奈米Ag/TiO2觸媒進行二氧化碳光催化還原反應。台灣大學化學工程研究所碩士論文,台北。
[24]Dey, G. R., & Pushpa, K. K. (2007). Formation of different products during photo-catalytic reaction on TiO2 suspension in water with and without 2-propanol under diverse ambient conditions. Research on Chemical Intermediates, 33(7), 631-644.
[25]Vafaeian, Y., Haghighi, M., & Aghamohammadi, S. (2013). Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane. Energy Conversion and Management, 76, 1093-1103.
[26]Moradi, G., Khezeli, F., & Hemmati, H. (2016). Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts. Journal of Natural Gas Science and Engineering, 33, 657-665.
[27]Yung, M. M., Starace, A. K., Mukarakate, C., Crow, A. M., Leshnov, M. A., & Magrini, K. A. (2016). Biomass catalytic pyrolysis on Ni/ZSM-5: Effects of nickel pretreatment and loading. Energy & Fuels, 30(7), 5259-5268.
[28]Yan, B., Li, W., Tao, J., Xu, N., Li, X., & Chen, G. (2017). Hydrogen production by aqueous phase reforming of phenol over Ni/ZSM-5 catalysts. International Journal of Hydrogen Energy, 42(10), 6674-6682.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top