跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭書旻
研究生(外文):Shu-Min Hsiao
論文名稱:高導電感光性高分子複合薄膜製備暨其特性研究
論文名稱(外文):Study on Preparation and Characterization of High Conductive and Photosensitive Polymer Composite Film
指導教授:鄭文桐
指導教授(外文):Wen-Tung Cheng
口試委員:林江珍李宗銘
口試委員(外文):Jiang-Zhen LinZong-Ming Li
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:高導電感光性高分子銀奈米粒子複合薄膜光微影
外文關鍵詞:high conductivephotosensitive polymersilver nanoparticlecomposite filmphotolithography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電子產品逐漸走向輕薄化且多功能性發展,複雜及密集的電子線路使電磁波干擾(EMI)的問題越來越嚴重,其中導電貼膠膜被廣泛用於軟板上,以阻絕電磁波干擾,目前主要使用化學鍍在導電貼膠膜材上沉積導電金屬薄膜,化學鍍處理之流程繁瑣、費時,甚至會產生對環境造成汙染的廢水。因此,本研究使用原位(in-situ)合成法並藉由塗佈的方式,在絕緣體基材表層附著高導電複合薄膜。另外,為了可應用於被動式元件的製作,例如eTag、悠遊卡、門禁卡等,本文也探討高導電複合薄膜的微影製程。
感光性高分子溶液由聚乙二醇二丙烯酸酯(PEGDA)作為單體、50 % 1-羥基環己基苯基酮與50 % 二苯甲酮(50 % 1-hydroxycyclohexyl phenyl ketone and 50 % benzophenone)作為光起始劑、乙醇作為還原劑、吡咯(pyrrole)作為有機電解質及硝酸銀(AgNO3)作為金屬前驅物所組成,藉由照射紫外光,將塗佈於玻璃基材上的感光性高分子溶液,進行光聚合並原位合成銀奈米粒子,後續經過燒結處理,合成高導電感光性高分子複合薄膜。將製備出之薄膜使用紫外光可見光光譜儀(UV-Vis)、場發射掃描式電子顯微鏡(FESEM)、X光能量散譜儀(EDS)及X光繞射分析儀(XRD),分別鑑定銀奈米粒子的生成、分佈情況、元素組成及晶體結構,且利用原子力顯微鏡(AFM)觀察表面形貌及低阻抗分析儀的四點探針量測表面阻抗值。
另外,將感光性高分子溶液添加含有44~49 mgKOH/g酸價的酚醛環氧壓克力樹脂,形成複合光阻溶液,然後塗佈成膜且經軟烤再進行紫外光曝光,並經由KOH溶液顯影,最後硬烤得到線路圖案,利用光學顯微鏡(OM)量測其解析度。
從以上實驗結果,本研究獲得下列重要成果:
(1) 成功利用原位合成法,使用紫外光能量提供光起始劑及乙醇產生自由基,促使PEGDA進行交聯反應及合成銀奈米粒子,形成含有銀奈米粒子的高分子複合薄膜,並由FTIR穿透圖譜中位於1633 cm-1的C=C特徵峰減弱,確認自由基聚合反應的進行,而在UV-Vis吸收圖譜中,於波長為430 nm處出現表面電漿共振吸收峰,確定銀奈米粒子於高分子薄膜中生成。
(2) 利用硝酸銀濃度為12.5 wt.%且以3 J/cm2的能量曝光,隨後進行250 °C燒結處理30 min,可產生連續性電子通路的高導電感光性高分子複合薄膜,其表面阻抗值為16.7±0.1 Ω/sq。
(3) 硝酸銀濃度為12.5 wt.%的複合光阻溶液,塗佈成膜後先於90 °C下軟烤3 min再以3 J/cm2的能量曝光,硬烤前的膜厚為7.65 μm,固定KOH濃度為0.1 wt.%顯影30秒,最後經過250 °C硬烤30 min,由OM觀察得知線寬線距比為1.58。
3C products tend to be slim and versatile. Electronic components which are complicated and compact bring severe issues of electromagnetic interference(EMI). Among them, electrically conductive adhesives are widely applied in flexible printed circuits to reduce EMI. Electroless plating was mainly used to deposit conductive metallic layer on the substrate currently. However, the process of electroless plating is numerous, time-consuming, and even may bring waste water. In this study, the use of in-situ synthesis and coating process form high conductive composite film on insulation substrates for the resistance of EMI. Additionally, for passive devices such as eTag, easy card, access card, etc, we develop a simple photolithography process of high conductive composite film.
The photosensitive polymer mixture was composed from polyethylene glycol diacrylate(PEGDA) as monomer, the mixture of 50 % 1-hydroxycyclohexyl phenyl ketone and 50 % benzophenone as photoinitiator, ethanol as reducing agent, pyrrole as organic electrolyte and silver nitrate(AgNO3) as metal precursor. As-prepared mixture was coated on glass substrate by spin coater, then exposed by ultraviolet light for that silver nanoparticles were in-situ synthesized by photo polymerization, followed by thermal sintering to form high conductive and photosensitive polymer composite film. Ultraviolet visible spectrophotometer(UV-Vis), field-emission scanning electron microscope(FESEM), X-ray energy dispersive spectrometer(EDS), and X-ray diffractometer(XRD) were used to characterize the formation of silver nanoparticles, particle size distribution, elemental composition, and crystal structure, respectively. Moreover, surface topography was examined by atomic force microscope(AFM) and sheet resistance was measured by low resistive meter with four-point probes.
Furthermore, cresol epoxy acrylate resin with acid value of 44~49 mgKOH/g was added into as-prepared mixture to form composite photoresist solution followed by spin coating, and soft baking for exposing by ultraviolet light, then KOH solution was used to develop it, and post baking was conducted to acquire the circuit pattern, which was measured by optical microscope(OM) for the resolution of photolithography.
As resulted from the above experiment, we summarized significant conclusions as below:
(1) Photosensitive polymer composite film with the silver nanoparticles was successfully synthesized in-situ process, which was carried out by ultraviolet light to provide energy for initiator and ethanol to produce free radicals and promote PEGDA for cross-linking polymer. As characterized by FTIR, in the resulted composite film, the transmittance located at 1633 cm-1 was reduced for C=C functional group to crack for photo polymerization. Furthermore, the spectrum of UV-Vis light absorption in polymer film showed a surface plasmon band at around 430 nm to confirm the growth of silver nanoparticles.
(2) The sheet resistance of polymer composite film, which was fabricated by loading 12.5 wt.% of AgNO3 and exposing with 3 J/cm2, followed by sintering at 250 °C for 30 minutes, was 16.7±0.1 Ω/sq due to continue electricity path of the high conductive on polymer composite film.
(3) The as-fabricated composite photoresist with 12.5 wt.% of AgNO3 was coated on glass substrate by spin coater, which film thickness is 7.65 μm measured from FESEM, followed by soft baking in oven at 90 °C for 3 minutes, exposing with 3 J/cm2 of UV light, developing with 0.1 wt.% KOH for 30 seconds, and post baking in oven at 250 °C for 30 minutes, resulted in that the ratio of line width to line space is 1.58 measured by OM.
摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究方法 3
1-4 本文架構 5
第二章 文獻回顧 6
2-1 導電高分子複合材料 6
2-1-1 導電高分子複合材料之製備 6
2-1-2 導電高分子複合材料之應用 10
2-2 金屬奈米粒子 17
2-2-1 金屬奈米化的基本理論及性質 17
2-2-2 金屬奈米粒子之製備 20
2-3 感光性高分子溶液配方 22
2-3-1 單體 22
2-3-2 光起始劑 22
2-3-3 還原劑 24
2-3-4 有機電解質 25
2-3-5 金屬前驅物 25
2-4 光微影製程 26
2-4-1 正型光阻 27
2-4-2 負型光阻 27
第三章 研究方法 28
3-1 高導電感光性高分子複合薄膜之製備 28
3-1-1 配製感光性高分子溶液 28
3-1-2 塗佈及曝光 28
3-1-3 燒結處理 29
3-1-4 樣品代號說明 30
3-2 複合光阻之製備 32
3-2-1 配製複合光阻溶液 32
3-2-2 塗佈與曝光 32
3-3 儀器分析 35
3-3-1 傅立葉轉換紅外光譜儀(FTIR) 35
3-3-2 紫外光可見光光譜儀(UV-Vis) 35
3-3-3 場發射掃描式電子顯微鏡(FESEM) 36
3-3-4 原子力顯微鏡(AFM) 38
3-3-5 X光繞射分析儀(XRD) 40
3-3-6 低阻抗分析儀 41
3-3-7 光學顯微鏡(OM) 43
3-4 實驗材料與儀器設備 44
3-4-1 實驗藥品 44
3-4-2 實驗儀器與規格 48
第四章 結果與討論 50
4-1 確認配方材料的可行性 50
4-1-1 光聚合反應 50
4-1-2 銀奈米粒子的生成 51
4-2 高導電感光性高分子複合薄膜之表面阻抗值 54
4-2-1 金屬前驅物濃度的影響 54
4-2-2 曝光能量的影響 69
4-2-3 燒結程序的影響 76
4-3 光微影特性 89
第五章 結論與未來方向 96
5-1 結論 96
5-2 未來方向 98
參考文獻 99
[1]Markarian, J. (2008). New developments in antistatic and conductive additives. Plastics, Additives and Compounding, 10(5), 22-25.
[2]唐寶玲,2007,電子標籤(RFID)天線的印制技術,印制電路信息,6,24-27。
[3]張豐志,2003,應用高分子手冊,五南圖書出版股份有限公司。
[4]Nazar, R., Ronchetti, S., Roppolo, I., Sangermano, M., and Bongiovanni, R. M. (2015). In situ synthesis of polymer embedded silver nanoparticles via photopolymerization. Macromolecular Materials and Engineering, 300(2), 226-233.
[5]Lee, S., Choi, D., Piao, H., and Son, Y. (2016). One step synthesis of Ag nano-filler for e-ink and its low temperature metallization. Microelectronic Engineering, 163, 98-104.
[6]徐國財,2004,奈米複合材料,五南圖書出版股份有限公司。
[7]Zhang, Z., Zhang, L., Wang, S., Chen, W., and Lei, Y. (2001). A convenient route to
polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer, 42(19), 8315-8318.
[8]Mustatea, G., Calinescu, I., Diacon, A. U. R. E. L., and Balan, L. (2014). Photoinduced synthesis of silver/polymer nanocomposites. Revista de Materiale Plastice, 51(1), 17-21.
[9]Jiang, X., Bin, Y., and Matsuo, M. (2005). Electrical and mechanical properties of
polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer, 46(18), 7418-7424.
[10]Hussain, I., Brust, M., Papworth, A. J., and Cooper, A. I. (2003). Preparation of acrylate-stabilized gold and silver hydrosols and gold− polymer composite films. Langmuir, 19(11), 4831-4835.
[11]Lu, J., Moon, K. S., Xu, J., and Wong, C. P. (2006). Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. Journal of Materials Chemistry, 16(16), 1543-1548.
[12]Singh, N., and Khanna, P. K. (2007). In situ synthesis of silver nano-particles in polymethylmethacrylate. Materials Chemistry and Physics, 104(2), 367-372.
[13]Li, G., Yu, S., Sun, R., and Lu, D. (2015). Clean and in-situ synthesis of copper–epoxy nanocomposite as a matrix for dielectric composites with improved dielectric performance. Composites Science and Technology, 110, 95-102.
[14]Balan, L., Schneider, R., and Lougnot, D. J. (2008). A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization. Progress in Organic Coatings, 62(3), 351-357.
[15]張良濤,2008,由聚丙烯腈熱處理法製備電磁波干擾遮蔽材料,明新科技大學化
材系校內專題研究計畫成果報告。
[16]王彙中和馬振基,1999,EMI/RFI遮蔽用導電性高分子複合材料,塑膠資訊第33
期。
[17]Jana, P. B., Mallick, A. K., and De, S. K. (1992). Effects of sample thickness and fiber
aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range. IEEE transactions on electromagnetic compatibility, 34(4), 478-481.
[18]彭秉峰,2002,導電性複合材料於射出成型之EMI屏蔽效應研究,私立中原大學
機械工程學系碩士論文。
[19]Shui, X. and Chung, D. D. L. (1997). Nickel filament polymer-matrix composites with
low surface impedance and high electromagnetic interference shielding effectiveness. Journal of electronic materials, 26(8), 928-934.
[20]Yang, Y., Gupta, M. C., and Dudley, K. L. (2007). Studies on electromagnetic
interference shielding characteristics of metal nanoparticle-and carbon nanostructure-filled polymer composites in the Ku-band frequency. Micro & Nano Letters, 2(4), 85-89.
[21]Sangermano, M., Chiolerio, A., Marti, G., and Martino, P. (2013). UV‐Cured Acrylic
Conductive Inks for Microelectronic Devices. Macromolecular Materials and Engineering, 298(6), 607-611.
[22]Tao, Y., Tao, Y., Wang, B., Wang, L., and Tai, Y. (2013). A facile approach to a silver
conductive ink with high performance for macroelectronics. Nanoscale research letters, 8(1), 296-302.
[23]吳凱第,2008,奈米銀粒子與光硬化環氧樹脂-銀奈米複合材料之製備及性質研究,國立交通大學工學院半導體與製程產業研發碩士專班碩士論文。
[24]吳曜璿,2010,金及銀奈米粒子交替排列於單層雙塊式高分子PS-b-P4VP
形成六方最密堆積排列之薄膜,國立交通大學材料科學與工程學系碩士論文。
[25]張立德和牟季美,2001,奈米材料和奈米結構,科學出版社。
[26]何鎮揚,2004,奈米科技交響曲-化學篇,國立臺灣大學出版中心。
[27]李言榮,2003,材料物理學概論,五南圖書出版股份有限公司。
[28]Liu, H., Ge, X., Ni, Y., Ye, Q., and Zhang, Z. (2001). Synthesis and characterization of
polyacrylonitrile–silver nanocomposites by γ-irradiation. Radiation Physics and Chemistry, 61(1), 89-91.
[29]Hada, H., Yonezawa, Y., Akio, Y., and Kurakake, A. (1976). Photoreduction of silver
ion in aqueous and alcoholic solutions. The Journal of Physical Chemistry, 80(25), 2728-2731.
[30]Semaltianos, N. G. (2010). Nanoparticles by laser ablation. Critical Reviews in Solid
State and Materials Sciences, 35(2), 105-124.
[31]Drobny, J. G. (2010). Radiation technology for polymers (pp.1-307). CRC press.
[32]周洺偉,2007,陽離子型紫外光硬化樹脂之研究,國立台北科技大學化學工程研
究所碩士論文。
[33]Glöckner, P. (2008). Radiation curing: Coatings and printing inks; technical basics,
applications and trouble shooting (pp.1-172). Vincentz Network GmbH & Co KG.
[34]Allen, N. S., Marin, M. C., Edge, M., Davies, D. W., Garrett, J., Jones, F., Navaratnam,
S.Parsons, B. J., and Parsons, B. J. (1999). Photochemistry and photoinduced chemical crosslinking activity of type I & II co-reactive photoinitiators in acrylated prepolymers. Journal of Photochemistry and Photobiology A: Chemistry, 126(1), 135-149.
[35]Bradley, G., and Davidson, R. S. (1995). Some aspects of the role of amines in the
photoinitiated polymerisation of acrylates in the presence and absence of oxygen. Recueil des Travaux Chimiques des Pays-Bas, 114(11‐12), 528-533.
[36]Kim, D., Jeong, S., and Moon, J. (2006). Synthesis of silver nanoparticles using the
polyol process and the influence of precursor injection. Nanotechnology, 17(16), 4019.
[37]Temgire, M. K., and Joshi, S. S. (2004). Optical and structural studies of silver
nanoparticles. Radiation Physics and Chemistry, 71(5), 1039-1044.
[38]Wiley, B., Sun, Y., and Xia, Y. (2007). Synthesis of silver nanostructures with
controlled shapes and properties. Accounts of Chemical Research, 40(10), 1067-1076.
[39]Liang, H., Wang, W., Huang, Y., Zhang, S., Wei, H., & Xu, H. (2010). Controlled
synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C, 114(16), 7427-7431.
[40]Shameli, K., Ahmad, M. B., Wan Yunus, W. M. Z., Ibrahim, N. A., Jokar, M., and
Darroudi, M. (2010). Synthesis and characterization of silver/polylactide nanocomposites. Proceedings of World Academy of Science, Engineering and Technology, 64, 28-32.
[41]Saville, P. (2005). Polypyrrole, formation and use (pp.1-50). Defence Research and
Development Canada.
[42]Pastoriza-Santos, I., and Liz-Marzán, L. M. (2002). Formation of PVP-protected metal
nanoparticles in DMF. Langmuir, 18(7), 2888-2894.
[43]Safavi, A., and Tohidi, M. (2014). Microwave-assisted synthesis of gold, silver,
platinum and palladium nanostructures and their use in electrocatalytic applications. Journal of nanoscience and nanotechnology, 14(9), 7189-7198.
[44]Madou, M. J. (2002). Fundamentals of microfabrication: the science of miniaturization (pp.1-71). CRC press.
[45]龍文安,1998,積體電路微影製程,高立圖書有限公司。
[46]Lawson, R.A. and Robinson, A.P.G. (2016). Overview of materials and processes for lithography. Frontiers of Nanoscience, 11, 1-90.
[47]Madou, M. J. (2011). Manufacturing techniques for microfabrication and
nanotechnology (pp.1-670). CRC Press.
[48]施正雄,2012,儀器分析原理與應用,五南圖書出版股份有限公司。
[49]黃英碩,2005,掃描探針顯微術的原理及應用,科儀新知第二十六卷第四期。
[50]Sze, S. M., and Lee, M. K. (2012). Semiconductor devices: physics and technology
(pp.1-592). John Wiley & Sons.
[51]Mustatea, G., Calinescu, I., Diacon, A. U. R. E. L., and Balan, L. (2014). Photoinduced synthesis of silver/polymer nanocomposites. Revista de Materiale Plastice, 51(1), 17-21.
[52]Thomas, S., Rouxel, D., and Ponnamma, D. (Eds.). (2016). Spectroscopy of Polymer Nanocomposites (pp.130-155). William Andrew.
[53]Shameli, K., Bin Ahmad, M., Jazayeri, S. D., Sedaghat, S., Shabanzadeh, P.,
Jahangirian, H., and Abdollahi, Y. (2012). Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. International journal of molecular sciences, 13(6), 6639-6650.
[54]Lee, Y., and Oh, S. G. (2015). Ostwald ripening and control of Ag ion reduction degree by ammonium hydroxide in alcohol reduction process. Journal of Industrial and Engineering Chemistry, 21, 768-771.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top