跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳依詠
研究生(外文):Yi-Yung Chen
論文名稱:以石墨烯當矽穿孔之導電層與阻障層行鈷鎢合金與純鈷電鍍填充
論文名稱(外文):Using Graphene as a Conductive and Barrier Layer of Through Silicon Vias filled with Plated CoW Alloy and Pure Co
指導教授:竇維平
口試委員:萬其超廖英志林靖淵陳巧珮
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:164
中文關鍵詞:石墨烯矽穿孔鈷鎢合金純鈷電鍍配方
外文關鍵詞:GrapheneTSVsCoW Alloypure CoElectroplating Formula
相關次數:
  • 被引用被引用:1
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統矽穿孔 (Through silicon vias, TSVs)製程屬於乾式製程,主要藉由離子蝕刻出矽穿孔,並乾式沉積二氧化矽絕緣層,再以物理氣相沉積 (Physical vapor deposition, PVD)或化學氣相沉積法 (Chemical vapor deposition, CVD),沉積出氮化鈦 (TiN) 阻障層與銅晶種層,最後以濕式電鍍法填充金屬銅於矽穿孔中。近年發現,金屬銅與矽基材之間,經熱信賴度測試後,因兩者熱膨脹係數差異甚大,在銅、矽介面會產生相當大的熱機械應力 (Thermo-Mechanical Stress),故在金屬銅與矽基材之間產生大量的破裂現象。因此,本研究嘗試使用熱膨脹係數較接近矽基材、具金屬擴散阻障能力且導電性極佳的石墨烯材料,取代傳統矽穿孔製程中的氮化鈦阻障層與銅晶種層,達到降低成本及簡化製程的目的,並利用濕式電鍍法於石墨烯上沉積鈷鎢 (CoW)合金與純鈷來取代原製程的金屬銅,鈷金屬具備比銅更低的熱膨脹係數及較長的電遷移壽命 (Electromigration life time)。
本研究主要探討基礎鍍液、電鍍添加劑、電鍍參數對填孔行為之影響與熱信賴度測試,其中,電化學分析部分以線性掃描伏安法 (Linear sweep voltammertry, LSV)探討電鍍添加劑的電化學行為,藉由電化學分析結果解釋不同分子量之抑制劑搭配單一平整劑之電鍍配方,並將其對應電鍍填孔之表現,發現電鍍配方對金屬離子還原反應的強抑制性及減少氫氣的庫倫量之行為,能達成鈷鎢合金與純鈷之超級填充。熱信賴度測試方面,本研究將填充鈷鎢合金與純鈷之TSVs於500℃的條件下,進行四小時熱信賴度測試,並於測試後利用光學顯微鏡、電子顯微鏡觀察鈷鎢合金或純鈷與矽基材介面之結構,證實熱膨脹係數較低的鈷鎢合金或純鈷搭配具金屬擴散阻障功能的石墨烯,便能有效解決TSVs製程於熱信賴度上的各種疑慮,因此,本研究所開發出的鈷鎢合金/石墨烯/矽穿孔製程與純鈷/石墨烯/矽穿孔製程,若能將其實行於工業量產,將是三維積體電路堆疊之矽穿孔製程技術的一大突破。
Usually, TSV fabrication uses a dry process, including via formation by reactive ion etching, SiO2 isolation liner deposition, TiN barrier layer and copper seed layer by chemical vapor deposition (CVD) or physical vapor deposition (PVD) formation and via filling with electrodeposited copper. Recently, industry and academic field find out that the difference of coefficient of thermal expansion (CTE) between the filled copper and silicon substrates often leads to failures in the TSVs interconnects because the CTE of copper is much higher than that of silicon. The filled materials in the TSVs with high CTEs will induce large thermo-mechanical stress at the interfaces between the filled materials and silicon substrates. To overcome this problem, graphene is selected to substitute the TiN barrier layer and the copper seed layer, which simultaneously reduces the cost and simplifies the original process. Since the CTE of graphene is closer to that of silicon. Moreover, we select cobalt, which possesses not only a lower CTE but also a longer electromigration lifetime than that of copper, as the filled material of TSVs.
In this work, the effects of electroplating baths, electroplating additives, electroplating operating parameters, filling performance and thermal reliability performance of the electrodeposited CoW alloy and pure Co are investigated. Linear sweep voltammetry (LSV) is carried out to electrochemically analyze these electroplating additives. The electrochemical behaviors of these electroplating additives are explored to explain the correlation between the suppression and the corresponding filling performance. The results indicate that the combination of suppressors with different molecular weights and a leveler can exhibit strong suppression and lead to CoW and pure Co bottom-up filling of TSVs. The thermal reliability examinations are also conducted at 500℃ for 4 hours. Then, the structure at the interface between the CoW alloy or pure Co and the silicon substrate is observed by optical microscope and scanning electron microscope. The results demonstrate that the combination of CoW or pure Co possessing a low CTE and graphene possessing excellent conductivity and barrier function can solve the thermal reliability problem in TSVs fabrication process.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
第 1 章、 緒論 1
第 2 章、 電化學理論及文獻回顧 2
第2.1節、 電化學理論 2
第2.1.1項、 電鍍原理及方法 2
第2.1.2項、 電化學反應程序 4
第2.1.3項、 極化與過電位 6
第2.1.4項、 電子轉移控制與質傳之關係 7
第2.1.5項、 電化學分析方法 9
第2.2節、 半導體製程技術發展與演進 10
第2.2.1項、 鋁製程技術缺失 10
第2.2.2項、 大馬士革雙鑲嵌技術 (Dual-Damscence) 10
第2.2.3項、 銅製程技術之矽晶圓阻障層材料 12
第2.2.4項、 銅製程技術缺失 14
第2.2.5項、 未來取代銅製程之替代方案 18
第2.3節、 矽穿孔製程 (Through Silicon Vias, TSVs) 22
第2.4節、 石墨烯 (Graphene) 23
第2.4.1項、 氧化石墨烯與還原氧化石墨烯 25
第2.5節、 氧化石墨烯的還原 27
第2.5.1項、 化學還原法 27
第2.5.2項、 氮摻雜還原法 28
第2.6節、 石墨烯化學接枝法 30
第2.7節、 鈷鎢電鍍基本鍍液 33
第2.7.1項、 氯離子系統、硫酸根系統、氨基磺酸根系統比較 33
第2.7.2項、 鎢酸根離子 34
第2.7.3項、 緩衝劑 34
第2.7.4項、 螯合劑 35
第2.8節、 鈷鎢與純鈷電鍍添加劑 37
第2.8.1項、 氯離子 37
第2.8.2項、 抑制劑 37
第2.8.3項、 平整劑 41
第2.8.4項、 光澤劑 43
第 3 章、 研究動機 46
第 4 章、 實驗藥品、裝置與步驟 48
第4.1節、 實驗藥品 48
第4.2節、 實驗裝置 49
第4.2.1項、 電鍍實驗系統 49
第4.2.2項、 電化學分析實驗系統 51
第4.3節、 儀器分析 53
第4.4節、 實驗步驟 61
第4.4.1項、 使用IGO (Improved Graphene Oxide)法合成氧化石墨烯水溶液 61
第4.4.2項、 還原氧化石墨烯接枝 62
第4.4.3項、 矽晶圓前處理 63
第4.4.4項、 哈林槽電鍍實驗 63
第4.4.5項、 電化學分析實驗 64
第 5 章、 實驗結果與討論 65
第5.1節、 硫酸鈷系統之鈷鎢合金填孔成效 65
第5.1.1項、 硫酸鈷系統之最佳抑制劑測試 65
第5.1.2項、 硫酸鈷系統孔底潤濕性探討 70
第5.1.3項、 比較硫酸鈷系統與氨基磺酸鈷系統之填孔行為 73
第5.2節、 氨基磺酸鈷系統之鈷鎢合金填孔成效 77
第5.2.1項、 氨基磺酸鈷系統之多段電流電鍍探討 77
第5.2.2項、 氨基磺酸鈷系統之最佳pH值與溫度判定 82
第5.2.3項、 氨基磺酸鈷系統之不同分子量PEG濃度探討 85
第5.2.4項、 氨基磺酸鈷系統之最適電流密度探討 90
第5.2.5項、 氨基磺酸鈷系統之硼酸效應 93
第5.3節、 探討鈷鎢合金填孔添加劑之電化學分析 99
第5.3.1項、 達成底部上移 (Buttom-up)之四劑電鍍配方分析 99
第5.3.2項、 超級填孔之三劑電鍍配方分析 103
第5.3.1項、 超級填孔於硼酸系統之四劑電鍍配方分析 106
第5.4節、 探討純鈷於TSVs電鍍填孔之成效 113
第5.4.1項、 純鈷系統之基礎鍍液探討 113
第5.4.2項、 不同分子量之聚乙二醇 (PEG)濃度探討 121
第5.4.3項、 純鈷系統之Leveler A最適濃度探討 124
第5.4.4項、 純鈷系統之兩段式電流電鍍探討 128
第5.4.5項、 探討Leveler A的濃度在TSV高深寬比 (AR 7)之成效 130
第5.5節、 石墨烯功能性之鑑定 132
第5.5.1項、 石墨烯均勻度之檢驗 132
第5.5.2項、 石墨烯接枝層厚度之檢驗 135
第5.5.3項、 石墨烯導電層之貢獻度鑑定 138
第5.5.4項、 石墨烯對銅阻障能力之功能性鑑定 139
第5.6節、 鈷鎢合金、純鈷與銅之熱信賴度測試與比較 141
第5.6.1項、 TSVs電鍍銅之熱信賴度測試 141
第5.6.2項、 TSVs電鍍鈷鎢合金之熱信賴度測試 144
第5.6.3項、 TSVs電鍍純鈷之熱信賴度測試 147
第5.6.4項、 TSV AR5~AR7電鍍之熱信賴度結果比較 149
第 6 章、 結論 152
第 7 章、 未來研究計劃 156
第 8 章、 參考文獻 157
1.S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, "High-Aspect-Ratio Through Silicon Vias for High Frequency Application Fabricated by Magnetic Assembly of Gold Coated Nickel Wires", IEEE Transactions on components,packaging and manufacturing technology, vol. 5, p.21-27, 2015.
2.P. Garrou, C. Bower, and P. Ramm, "Handbook of 3D Integration Technology and Application of 3D Integration Circuits", Wiley, 2008.
3.L. L. W. Leung and K. J. Chen, "Microwave characterization of High Aspect Ratio through-wafer Interconnect Vias in silicon substrates", IEEE, International Microwave Symposium Digest, vol. 2, p.1197-1200, 2004.
4.S. K. Kim, D. Josell, and T. P. Moffat, "Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling ", Joural of Electrochemical Society, vol. 153, p. 826-833, 2006.
5.P. C. Andricacos, C. Uzoh, and J. O. Dukovic, "Damascene Copper Electroplating for Chip Interconnections", IBM Journal of Research and Development, vol. 42, p. 567-574, 1998.
6.P. Singer, "先進內連線之新材料與新製程", 半導體科技, 2014.
7.Y. Cao, G. Y. Wei, H. L. Ge, and X. F. Meng, "Study on preparation of NiFe films by galvanostatic electrodeposition", Surface Engineering, vol. 30, p. 97-101, 2014.
8.R. Abdel-Karim, Y. Reda, M. Muhammed, S. El-Raghy, M. Shoeib, and H. Ahmed, "Electrodeposition and Characterization of Nanocrystalline Ni-Fe Alloys", Journal of Nanomaterials, vol. 2011, p.1-8, 2011.
9.方景禮, 電鍍添加劑總論.
10.萬其超, 電化學之原理與應用. 徐式基金會出版, 1992.
11.胡啟章, 電化學原理與方法. 五南圖書出版公司, 2007.
12.張勁燕, VLSI概論. 五南圖書出版股份有限公司, 2008.
13.C. S. Shin, Y. W. Kim, J. E. Greene and I. Petrov, cPhase Composition and Microstructure of Polycrystalline and Epitaxial TaNx Layers Grown on Oxidized Si(001) and MgO(001) by Reactive Magnetron Sputter Deposition", Thin Solid Film, vol. 402, p.172-182, 2002.
14.O. Lühn, C. V. Hoof, W. Ruythooren, and J.-P. Celis, "Barrier and Seed LayerCoverage in 3D Structures with Different Aspect Ratios using Sputtering and ALD Processes", Microelectron. Eng, vol. 85, p.1947-1951, 2008.
15.Y. Shacham-Diamand, A. Zylberman, N. Petrov, and Y. Sverdlov, "Electroless Co(Mo,P) Films for Cu Interconnect Application", Microelectronic Engineering vol. 64, p. 315-320, 2002.
16.E. Rudnik and J. Gorgosz, "The Influence of Maleic Acid on the Co–P Electroless Deposition", Surface and Coatings Technology, vol. 201, p. 6953-6959, 2007.
17.H. Nakano, T. Itabashi, and H. Akahoshi, "Electroless Deposited Cobalt-Tungsten-Boron Capping Barrier Metal on Damascene Copper Interconnection", Journal of The Electrochemical Society, vol. 152, p. 163-166, 2005.
18.F. Ren, S. J. Pearton, J. Kim, and H. Y. Kim, "Graphene Bades Metal Diffusion Barrier", International Patent, WO 2013/096273 A1.
19.Xi Liu, Q. Chen, and P. Dixit, "Failure Mechanisms and Optimum Design for Electroplated Copper Through Silicon Vias (TSV) ", Electroic Componets and Technology Conference, p. 624-629, 2009.
20.M. Song, L. Chen, and J. A. Szpunar, "Thermomechanical Characteristics of Copper Through-Silicon via Structures", IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 5, p. 225-231, 2015.
21.X. Liu, Q. Chen, P. Dixit, R. Chatterjee, R. R. Tummala and S. K. Sitaraman, "Failure Mechanisms and Optimum Design for Electroplated Copper Through Silicon Vias (TSV)", Electronic Components and Technology Conference, p. 624-629, 2009.
22.L. W. Kong, A. C. Rudack, P. Krueger, E. Zschech, S. Arkalgud and A. C. Diebold, "3D-Interconnect:Visualization of Extrusion and Voids Induced in Copper-Filled Through-Silicon Vias (TSVs) at Various Temperatures using X-Ray Microscopy", Microelectrnic Engineering, vol. 92, p. 24-28, 2012.
23.P. Kumar, I. Dutta, and M.S. Bakir, "Interfacial Effect During Thermal Cycling of Cu-Filled Through-Sillicon Vias (TSVs)", Journal of Electronic Materials, vol. 41, p. 322-335, 2012.
24.F. Su, X. Pan, P. Huang, Y. Guan, J. Chen and S. Ma, "Influence of Copper Pumping on Integrity and Stress of Through-Silicon Vias. IEEE Transactions on Components", Packaging and Manufacturing Technology, vol. 6, p. 1221-1225, 2016.
25.L. W. Kong, A. C. Rudack, P. Krueger, E. Zschech, S. Arkalgud and A. C. Diebold, "3D-Interconnect:Visualization of Extrusion and Voids Induced in Copper-Filled Through-Silicon Vias (TSVs) at Various Temperatures using X-Ray Microscopy", Microelectronic Engineering, vol 92, p. 24-28, 2012.
26.J. W. Yoon, B. I. Noh, Y. H. Lee, H. S. Lee and S. B. Jung, "Effect of Isothermal Aging and Temperature-Humidity Treatment of Substrate on Joint Reliability of Sn-3.0Ag-0.5Cu/OSP-Finished Cu CSP Solder Joint", Microelectronics Reliability, vol. 48, p. 1864-1874, 2008.
27.A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme and F. Niklaus, "Very High Aspect Ratio Through-Silicon vias(TSVs) fabricated using automated magnetic assembly of nickel wires", Journal of Micromechanics and Microengineering, vol. 22, p. 1-9, 2012.
28.黃馨嫚, "填充矽通孔之新穎電鍍鎳鎢合金配方", 國立中興大學 碩士論文, 2012.
29.C. Y. Yu, W. Y. Chen, and J. G. Duh, "Suppressing the Growth of Cu-Sn Intermetallic Compounds in Ni/Sn-Ag-Cu/Cu-Zn Solder Joints During Thermal Aging", Intermetallics, vol. 26, p. 11-17, 2012.
30.V. M. Dubin,M. O. Lisunova, and B. L. Walton, "Invar Electrodeposition for Controlled Expansion Interconnects", Journal of The Electrochemical Society, vol. 164, p. 321-326, 2017.
31.曾為揚, "石墨烯直接電鍍技術之研究與開發", 國立中興大學 碩士論文, 2016.
32.N. T. Nguyen, E. Boellaard, N. P. Pham, V. G. Kutchoukov, G. Craciun, and P. M. Sarro, "Through Wafer Copper Electroplating for Three Dimensional Interconnects", Journal Mircromechanics Microengineering, vol. 12, p. 395-399, 2002
33.L. W. Schaper, S. L. Burkett, S. Spiesshoefer, G. V. Vangara, Z. Rahman, and Polamreddy, "Architectural Implications and Process Development of 3 D VLSI Z-Axis Interconnects Using Through Silicon Vias", IEEE Transaction Components Packaging Technology, vol. 28, p. 356-366, 2005.
34.莊鎮宇, "石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展",物理專文, 2011.
35.C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, vol. 321, p. 385-388, 2008.
36.洪偉修教授, "世界上最薄的材料-石墨烯", 98康熹化學報報 (康熹文化事業股份有限公司), 2009.
37.S. G. Alexander, A. Balandin, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Letters, vol. 8, p. 902-907, 2008.
38.R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber,N. M. Peres, A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene", Science, vol. 320, p. 1308, 2008.
39.S. Park and R. S. Ruoff, "Chemical Methods for The Production of Graphenes", Nature Nanotechnology, vol. 4, p. 217-224, 2009.
40.K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, "The Chemistry of Graphene", Journal of Materials Chemistry, vol. 20, p. 2277-2289, 2010.
41.Z. Song, C. Berger, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics", Journal of Physical Chemistry, vol. 108, p. 19912-19916, 2004.
42.蘇清源, "石墨烯氧化物之特性與應用前景," 物理專文, p.163, 2011.
43.C. Hontoria-Lucas, A. J. López-Peinado, J. d. D. López-González, M. L. Rojas-Cervantes, and R. M. Martín-Aranda, "Study Of Oxygen-Containing Groups In a Series of Graphite Oxides: Physical And Chemical Characterization", Carbon, vol. 33, p. 1585-1592, 1995.
44.A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and C. B. Shenoy, "Structural Evolution During The Reduction Of Chemically Derived Graphene Oxide", Nature Chemistry, vol. 2, p. 581-587, 2010.
45.J. Ito, J. Nakamura, and A. Natori, "Semiconducting Nature of The Oxygen-Adsorbed Graphene Sheet", Journal of Applied Physics, vol. 103, p. 113712, 2008.
46.S. Pei and H.-M. Cheng, "The Reduction of Graphene Oxide", Carbon, vol. 50, p. 3210-3228, 2012.
47.C. G. Mez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, "Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets", Nano Letters, vol. 7, p. 3499-3503, 2007.
48.H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, and J. M. Kim, "Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance", Advanced Functional Materials, vol. 19, p. 1987-1992, 2009.
49.M. Periasamy and M. Thirumalaikumar "Methods of Enhancement of Reactivity and Selectivity of Sodium Borohydride for Applications in Organic Synthesis", Journal of Organometallic Chemistry, vol. 609, p. 137-151, 2000.
50.S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, "Direct Reduction of Graphene Oxide Films Into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, vol. 48, p. 4466-4474, 2010.
51.S. Thakur and N. Karak, "Alternative Methods and Nature-Based Reagents for the Reduction of Graphene Oxide: A review", Carbon, vol. 94, p. 224-242, 2015.
52.B. Grzyb, S. Gryglewicz, A. ´Sliwak, N. D´ıez, J. Machnikowski, and G. Gryglewicz, "Guanidine, Amitrole and Imidazole as Nitrogen Dopants for the Synthesis of N-Graphenes", The Royal Society of Chemistry, vol. 6, p. 15782-15787, 2016.
53.S. Sandoval, N. Kumar, J. Oro-Soléa, A. Sundaresan, C.N.R. Rao, A. Fuertes, and G. Tobiasa, "Tuning the Nature of Nitrogen Atoms in N-Containing Reduced Graphene Oxide", Carbon, vol. 96, p. 594-602, 2016.
54.W. C. Bigelow, D. L. Pickett, and W.A. Zisman, "Oleophobic Monolayers: I. Films Adsorbed From Solution In Non-Polar Liquids", Journal of Colloid Science, vol. 1, p. 513-538, 1946.
55.A. Ulman, "Formation and Structure of Self-Assembled Monolayers. Chem", Rev., vol 96, p. 1533-1554, 1996.
56.J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chemical Review, vol. 105, p. 1103-1169, 2005.
57.Y. Lou, G. Liu, S. Liu, J. Shen, and W. Jin, "A Facile Way to Prepare Ceramic-Supported Graphene Oxide Composite Membrane Via Silane-Graft Modification", Applied Surface Science, vol. 307, p. 631-637, 2014.
58.P. Bera, H. Seenivasan, K. S. Rajam, C. Shivakumara, and S. K. Parida, "Characterization and Microhardness of Co−W Coatings Electrodeposited at Different pH Using Gluconate Bath: A Comparative Study", Surface and Interface Analysis, vol. 45, p. 1026-1036, 2013.
59.I. Tabakovic, J. Gong, S. Riemer, and M. Kautzky, "Influence of Surface Roughness and Current Efficiency on Composition Gradients of Thin NiFe Films Obtained by Electrodeposition", Journal of The Electrochemical Society, vol. 162 ,p. 102-108, 2015.
60.A. C. Frank and P. T. A. Sumodjo, "Electrodeposition of cobalt from citrate containing bathsA", Electrochimica Acta, vol. 132, p. 75-82, 2014.
61.Brenner, A., Electrodeposition of Alloys. Vol. I & II, Academic Press, New York, 1963.
62.P. P. Bhattacharjee, R. K. Ray and A. Upadhyaya, "Nickel Base Substrate Tapes For Coated Superconductor Applications", Journal of Materials Science, vol 42, p. 1984-2001, 2017.
63.A. Bodaghi and J. Hosseini, "Corrosion Behavior of Electrodeposited Cobalt-Tungsten Alloy Coatings in NaCl Aqueous Solution", International Journal Electrochemical Science, vol. 7, p. 2584 - 2595, 2012.
64.W. E. Clark and M. H. Lietzke, "The Mechanism of the Tungsten Alloy Plating Procesd", Jouranl of the Electrochemical Society, vol. 99, p. 245-249, 1952.
65.M. Palomar-Pardav´e, B. R. Scharifker, E. M. Arce, and M. Romero-Romo, "Nucleation and Diffusion-Controlled Growth of Electroactive Centers: Reduction of Protons during Cobalt Electrodeposition", Electrochimica. Acta, vol. 50, p. 4736-4745, 2005.
66.D. R. Gabe, "The role of Hydrogen in Metal Electrodeposition Processes", Journal of Applied Electrochemistry, vol. 27, p. 908-915, 1997.
67.N. Zech and D. Landolt, "The Influence of Boric Acid and Sulfate Ions on the Hydrogen Formation in Ni-Fe Plating Electrolytes", Electrochimica. Acta, vol. 45, p. 3461-3741, 2000.
68.J. S. Santos, R. Matos, F. Trivinho-Strixino, and E. C. Pereira, "Effect of Temperature on Co Electrodeposition in the Presence of Boric Acid", Electrochimica Acta, vol. 53, p. 644-649, 2007.
69.K. Ignatova, "Effect of H3BO3 and Na3citrate on the conditions of electrodeposition of Ni-Co alloy from citrate electrolyte Bulgarian Chemical Communications", vol. 47, p. 776-782, 2015.
70.E. J. Podlaha and D. Landolt, "Induced Codeposition III. Molybdenum Alloys with Nickel, Cobalt, and Iron", Journal of Electrochemicl Society, vol. 144, p. 1672-1680, 1997.
71.M. C. Esteves, and P. T. A. Sumodjo, "Electrodepositon of CoNiMo Magnetic Thin Films from a Chloride Bath in the Presence of Citrate or Glycine", Journal of Electrochemicl Society, vol. 153, p.540-545, 2006.
72.F. M. Takata and P. T. A. Sumodjo, "Electrodeposition of magnetic CoPd thin films: Influence of plating condition", Electrochimica Acta, vol. 52, p. 6089-6096, 2007.
73.I. Tabakovic, S. Riemer, M. Sun, V. A. Vas’ko, and M. T. Kief, "Effect of Magnetic Field on NiCu Electrodeposition from Citrate Plating Solution and Characterization of Deposit", Journal of Electrochemical Society, vol. 152, p. 851-860, 2005.
74.G. Y. Wei, J. W. Lou, H. L. Ge, Y. D. Yu and L. X. Sun, "Co–W films prepared from electroplating baths with different complexing agents", Surface Engineering, vol. 28, p. 412-417, 2012.
75.Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss and D. J. Zurawski, "Chloride Ion Catalysis of the Copper Deposition Reaction", Journal of Electrochemical Society, vol. 142, p. 87-89, 1995.
76.W. P. Dow and C. W. Liu, "Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method", Journal of The Electrochemical Society, vol. 153, p. 190-194, 2006.
77.W. P. Dow, M. Y. Yen, C. W. Liu, and C. C. Huang, "Enhancement of Filling Performance of a Copper Plating Formula at Low Chloride Concentration", Electrochimica Acta, vol. 53, p. 3610-3619, 2008.
78.W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, "Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating", Journal of Electrochemical Society, vol. 152, p. 769-775, 2005.
79.S. C. Chang, J. M. Shieha, K. C. Lin, and B. T. Dai, "Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers", Journal of Vacuum Science Technology , vol. 20, p.1311, 2002.
80.D. Josell and T. P. Moffat, "Superconformal Bottom-Up Nickel Deposition in High Aspect Ratio Through Silicon Vias", Journal of The Electrochemical Society, vol. 163, p. 322-331, 2016.
81.Q. Huang, T. W. Lyons and W. D. Sides, "Electrodeposition of Cobalt for Interconnect Application: Effect of Dimethylglyoxime", Journal of The Electrochemical Society, vol. 163, p. 715-721, 2016.
82.C. H. Lee, "Superconformal Electrodeposition of Co and Co–Fe Alloys Using 2-Mercapto-5-benzimidazolesulfonic Acid", Journal of The Electrochemical Society, vol. 158, p. 301, 2009.
83.T. M. Manhabosco and I. L. Müller, "Influence of saccharin on morphology and properties of cobalt thin films electrodeposited over n-Si(100)", Surface & Coatings Technology, vol. 202. p. 3585-3559, 2008.
84.S. Ahn and K. Hong, "Electrodeposition of Cobalt Nanowires", Bull. Korean Chemical Society, vol. 34, p.927-930, 2013.
85.S. K. Ryu, T. Jiang, K. H. Lu, J.Im, H.Y. Son, K. Y. Byun,"Characterization of Thermal Stresses in Through-Silicon Vias for Three-Dimensional Interconnects by Bending Beam Technique", Applied Physics. Letters, vol. 100, p. 427-431 2012.
86.G. A. Dosovitskiy, S. V. Samoilenkov, A. R. Kaul, and D. P. Rodionov, "Thermal Expansion of Ni-W, Ni-Cr, and Ni-Cr-W Alloys Between Room Temperature and 800℃", International Joural of Thermophysics, vol. 30, p.124-129, 2009.
87.N. T. M. Hai, S. Furukawa, T. Vosch, S. D. Feyter, P. Broekmannac, and K. Wandelt, "Electrochemical Reactions at a Porphyrin-Copper Interface", Physical Chemistry Chemical Physics, vol.11, p. 5422-5430, 2009.
88.汪建民, "材料分析," 中國材料科學會, 2013.
89.G. Wei, H. Ge, X. Zhu, Q. Wu, J. Yu, and B. Wang, "Effect of Organic Additives on Characterization of Electrodeposited Co-W Thin Films", Applied Surface Science, vol. 253, p. 7461-7466, 2007.
90.Zhou Qiaoying, Ge Hongliang, W. Guoying, and W. Qiong, "Chacterization of Electrodeposited Co-W Alloy Thin Films", Rare Metal Material and Engineering, vol. 37, p. 155-158, 2008.
91.王欣為, "鎳鎢合金電鍍填充矽穿孔之電化學探討", 國立中興大學化學工程學系 碩士論文, 2014.
92.T. Burchardt, "Hydrogen evolution on NiPx alloys: the influence of sorbed hydrogen", International Journal of Hydrogen Energy, vol. 26, p. 1193-1198, 2001.
93.J. Edwards, "Incorporation of Sulphur in Nickel Deposited from Solutions Containing p-Toluenesul-phonamide and Saccharin", Transactions of the Institute of Metal Finishing, vol.39, p.52, 1962.
94.L. Lai, L. Chen, D. Zhan, L. Sun, J. Liu, S. H. Lim, C. K. Poh, Z. Shen, and J. Lin, "One-Step Synthesis of NH2-Graphene from in situ Graphene Oxide Reduction and its Improved Electrochemical Properties", Carbon, vol. 49, p. 3250-3257, 2011.
95.L. Shao, G. Tobias, C. G. Salzmann, B. Ballesteros, S. Y. Hong, A. Crossley, B. G. Davis, and M. L. H. Green, "Removal of Amorphous Carbon for the Efficient Sidewall Functionalisation of Single-Walled Carbon Nanotubes", Chemical Communication, vol. 47, p. 5090-5092, 2007.
96.A. M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C. M. Whelan, and Y. Travaly, "Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers", Advanced Functional Materials, vol. 20, p. 1125-1131, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top