跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊博任
研究生(外文):Po-Jen Chuang
論文名稱:Caldimonas manganoxidans於3公升發酵槽進行聚羥基丁酸酯生產之研究
論文名稱(外文):Scale up performance of polyhydroxybutyrate production from Caldimonas manganoxidans in 3 L fermentor
指導教授:李思禹
指導教授(外文):Si-Yu Li
口試委員:吳建一陳冠良
口試委員(外文):Jane-Yii WuGuan-Liang Chen
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:49
中文關鍵詞:聚羥基丁酸酯規模放大甘油嗜熱菌
外文關鍵詞:polyhydroxybutyrate(PHB)scale upthermophileCaldimonas manganoxidans
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
塑膠帶給我們生活很大的便利性,但塑膠完成它的任務之後該何去何從卻是個需要解決的問題。生物可降解塑膠因其能夠被生物降解以及具有可再生特性,讓它再取代現有塑膠上有很大的發展潛力。屬於生物可降解塑膠之一的聚羥基丁酸酯因其性質與聚丙烯相似而受到高度的關注。在先前的研究中,Caldimonas manganoxidans在PHB生產上的表現被認為具有工業化的潛力,包含高PHB含量以及高的甘油容忍度。因此,本研究使用3公升發酵槽研究規模放大之後的操作參數(溶氧及酸鹼值)對C. manganoxidans PHB生產表現的影響,並利用饋料批次發酵來進一步提升PHB的產量。因為生質柴油工業的蓬勃發展,副產物的甘油豐富且價格低廉,故用來做為本實驗中的碳源以達到降低PHB成本的目的。53%的PHB含量能夠在固定轉速200 RPM下獲得,但因為菌體密度低而只能得到低的PHB濃度(1.9 g/L)。高菌體密度能夠在10%溶氧條件下獲得,但因酸鹼值的快速降低導致PHB的累積受到嚴重的限制,僅有0.48克/升。再進行酸鹼值的控制之後,能夠在酸鹼值7的條件下得到4.3 克/升的PHB,而酸鹼值在提升到8之後因為PhaZ(負責PHB降解的基因)的活躍而造成PHB濃度不如酸鹼值7來的高。相較於批次發酵,使用饋料批次發酵後PHB的濃度提升了140%,生產力達到0.388克/升/小時。PHB無法進一步累積可能是由於培養液中的甘油濃度累積太高而造成抑制現象的發生,並可以透過饋料策略的改良來達到改善的目的。與先前的搖瓶實驗相比,本菌株的產率在放大之後仍然維持在0.17克PHB/克甘油,這在工業應用上是一大優點。從饋料批次發酵中得到的PHB分子量僅160±23 kDa,可能是長時間接觸甘油所導致的結果。把碳源從精製甘油換成粗製甘油後,菌體的生長延遲了12小時但最後的菌體密度能達到與精緻甘油相近的結果(約6.5 克/升),PHB的表現則有小幅度的下降(約33%),能夠使用粗製甘油來進行PHB的生產讓本菌株在工業上的應用潛力大幅提升。
Petroleum-derived plastics improved people’s lives a lot, but the disposal of petroleum-derived plastics was a difficult issue that was needed to be solved. Biodegradable plastics are excellent material to replace petroleum-derived plastics because they are not only biodegradable but also renewable. In previous study, performance of Caldimonas manganoxidans was proof to be potential for industrial application, including high PHB content and high glycerol tolerance. Therefore, the effect of operation parameters after scaling up was investigated in this study, including dissolved oxygen and pH value. Glycerol was used as carbon source because it was cheap and abundant as a by-product of bio-diesel industry. High PHB content could be obtained under constant 200 rpm agitation speed, but low cell density brought out low PHB concentration which was 1.9 g/L. high biomass could be obtained with 10% dissolved oxygen, but the rapid decrease of pH seriously restricted the accumulation of PHB which was 0.43 g/L only. With the control of pH, the PHB concertation could increase from 0.48 g/L under no pH control to 4.3 g/L under pH 7. Lower PHB concentration under pH 8 was caused by the increased activity of PhaZ. Further improvement in PHB concentration was obtain with pH-stat fed-batch fermentation. The PHB concentration increased by 140% with the productivity of 0.388 g/L/h. Stopping of PHB accumulation may be inhibited by the increased glycerol concentration in medium and this could be improved by the adjustment of feeding strategy. Compared to the previous shake flask experiment, the yield of PHB remained unchanged after scaling up, which was an advantage for industrial application. The MW of PHB obtained by fed-batch fermentation was only 160±23, which was possibly caused by the long exposure to glycerol. The PHB production from bio-diesel derived glycerol (raw glycerol) was examined. 12 hours delayed growth was observed and possibly caused by the impurity of raw glycerol. The ability of producing PHB from raw glycerol is another huge advantage for industrial application.
摘要 i
Abstract ii
Contents iv
Table contents v
Figure contents vi
Chapter 1 Motivation 1
Chapter 2 Introduction 2
2.1 Background 2
2.2 Biodegradable plastic 2
2.3 Thermophilic PHA producer 5
2.4 Fed-batch fermentation 7
Chapter 3 Experimental 10
3.1 Chemicals 10
3.2 Equipment 10
3.3 Strain, cultivation medium and condition 11
3.4 Preparation of bio-diesel-derived glycerol 12
3.5 pH-stat fed-batch fermentation 12
3.6 Analytical method 12
Chapter 4 Results 14
4.1 Identification the performance of PHB production after scaling up 14
4.2 Effect of pH on the performance of PHB production 14
4.3 Effect of DO on the performance of PHB production 15
4.4 pH-stat fed-batch fermentation 16
4.5 Molecular weight of PHB at different fermentation condition 17
4.6 Batch PHB production using bio-diesel-derived glycerol 17
Chapter 5 Discussion 19
Chapter 6 Future perspective 24
Reference 37
Appendix 43
Grothe, E. and Y. Chisti, Poly(beta-hydroxybutyric acid) thermoplastic production by Alcaligenes lotus: Behavior of fed-batch cultures. Bioprocess Engineering, 2000. 22(5): p. 441-449.
2.Chen, S.Y., Y.H. Wei, and J.S. Chang, Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Applied Microbiology and Biotechnology, 2007. 76(1): p. 67-74.
3.Sushmitha, B.S., K.P. Vanitha, and B.E. Rangaswamy, BIOPLASTICS - A REVIEW. International journal of Modern Trends in Engineering and Research, 2016. 3(4): p. 411-3.
4.Lunt, J., Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 145-152.
5.Auras, R.A., B. Harte, S. Selke, and R. Hernandez, Mechanical, physical, and barrier properties of poly(lactide) films. Journal of Plastic Film & Sheeting, 2003. 19(2): p. 123-135.
6.Woodruff, M.A. and D.W. Hutmacher, The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 2010. 35(10): p. 1217-1256.
7.Azimi, B., P. Nourpanah, M. Rabiee, and S. Arbab, Poly (epsilon-caprolactone) Fiber: An Overview. Journal of Engineered Fibers and Fabrics, 2014. 9(3): p. 74-90.
8.Luciani, A., V. Coccoli, S. Orsi, L. Ambrosio, and P.A. Netti, PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 2008. 29(36): p. 4800-4807.
9.Zein, I., D.W. Hutmacher, K.C. Tan, and S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002. 23(4): p. 1169-1185.
10.Méndez-Vilas, A., Communicating current research and educational topics and trends in applied microbiology. Vol. 2. 2007: Formatex.
11.van der Walle, G.A.M., G.J.M. de Koning, R.A. Weusthuis, and G. Eggink, Biopolyesters. Vol. 71. 2001: Springer Berlin Heidelberg.
12.Ojumu, T.V., J. Yu, and B.O. Solomon, Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer. African Journal of Biotechnology, 2004. 3(1): p. 18-24.
13.Saito, Y. and Y. Doi, Microbial Synthesis and Properties of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) in Comamonas-Acidovorans. International Journal of Biological Macromolecules, 1994. 16(2): p. 99-104.
14.Philip, S., T. Keshavarz, and I. Roy, Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology and Biotechnology, 2007. 82(3): p. 233-247.
15.Lemoigne, M., Produits de dehydration et de polymerisation de l’acide ß-oxobutyrique. Bulletin de la Société de Chimie Biologique, 1926. 8: p. 770-82.
16.Sudesh, K., H. Abe, and Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 2000. 25(10): p. 1503-55.
17.Modi, S.K., Assessing the Feasibility of Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and Poly-(lactic Acid) for Potential Food Packaging Applications. 2010: Ohio State University.
18.Avella, M., E. Martuscelli, and M. Raimo, Review - Properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. Journal of Materials Science, 2000. 35(3): p. 523-545.
19.Chen, G.Q. and Q. Wu, The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005. 26(33): p. 6565-6578.
20.Reddy, C.S.K., R. Ghai, Rashmi, and V.C. Kalia, Polyhydroxyalkanoates: an overview. Bioresource Technology, 2003. 87(2): p. 137-146.
21.Naitove, M.H., Bioplastics Are Breaking Out of Their ' Green' Niche. 2012: Plastics Technology. p. 13.
22.Waltz, E., Do biomaterials really mean business? Nature Biotechnology, 2008. 26(8): p. 851-853.
23.Holst, O., A. Manelius, M. Krahe, H. Markl, N. Raven, and R. Sharp, Thermophiles and fermentation technology. Comparative Biochemistry and Physiology a-Physiology, 1997. 118(3): p. 415-422.
24.Pantazaki, A.A., M.G. Tambaka, V. Langlois, P. Guerin, and D.A. Kyriakidis, Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: Purification and biochemical properties of PHA synthase. Molecular and Cellular Biochemistry, 2003. 254(1-2): p. 173-183.
25.Sheu, D.S., W.M. Chen, J.Y. Yang, and R.C. Chang, Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme and Microbial Technology, 2009. 44(5): p. 289-294.
26.Ibrahim, M.H., A. Willems, and A. Steinbuchel, Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria. J Appl Microbiol, 2010. 109(5): p. 1579-90.
27.Liu, Y., S.B. Huang, Y.Q. Zhang, and F.Q. Xu, Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. Journal of Environmental Sciences, 2014. 26(7): p. 1453-1462.
28.Cui, B., S.B. Huang, F.Q. Xu, R.J. Zhang, and Y.Q. Zhang, Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Applied Microbiology and Biotechnology, 2015. 99(14): p. 6009-6019.
29.Xu, F.Q., S.B. Huang, Y. Liu, Y.Q. Zhang, and S.W. Chen, Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Applied Microbiology and Biotechnology, 2014. 98(9): p. 3965-3974.
30.Takeda, M., Y. Kamagata, W.C. Ghirose, S. Hanada, and J. Koizumi, Caldimonas manganoxidans gen. nov., sp nov., a poly(3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. International Journal of Systematic and Evolutionary Microbiology, 2002. 52: p. 895-900.
31.Hsiao, L.J., J.H. Lin, P. Sankatumvong, T.M. Wu, and S.Y. Li, The Feasibility of Thermophilic Caldimonas manganoxidans as a Platform for Efficient PHB Production. Applied Biochemistry and Biotechnology, 2016. 180(5): p. 852-871.
32.Chanasit, W., L. Sueree, B. Hodgson, and K. Umsakul, The production of poly(3-hydroxybutyrate) [P(3HB)] by a newly isolated Bacillus sp ST1C using liquid waste from biodiesel production. Annals of Microbiology, 2014. 64(3): p. 1157-1166.
33.Sharma, P. and B.K. Bajaj, Cost-effective substrates for production of poly-beta-hydroxybutyrate by a newly isolated Bacillus cereus PS-10. Journal of Environmental Biology, 2015. 36(6): p. 1297-1304.
34.White, J., Yeast Technology. Vol. 31. 1954: John Wiley.
35.Yamanè, T. and S. Shimizu, Fed-batch techniques in microbial processes, in Bioprocess Parameter Control. 1984, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 147-194.
36.Riesenberg, D., V. Schulz, W.A. Knorre, H.D. Pohl, D. Korz, E.A. Sanders, A. Ross, and W.D. Deckwer, High Cell-Density Cultivation of Escherichia-Coli at Controlled Specific Growth-Rate. Journal of Biotechnology, 1991. 20(1): p. 17-28.
37.Hoster, P. and M.J. Johnson, Penicillin from Chemically Defined Media. Ind. Eng. Chem., 1953. 45(4): p. 871-4.
38.Akesson, M., P. Hagander, and J.P. Axelsson, Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnology and Bioengineering, 2001. 73(3): p. 223-230.
39.Suzuki, T., T. Yamane, and S. Shimizu, Phenomenological Background and Some Preliminary Trials of Automated Substrate Supply in pH-Stat Modal Fed-Batch Culture Using a Setpoint of High Limit. Journal of Fermentation and Bioengineering, 1990. 69(5): p. 292-297.
40.Brown, D.E. and A. Mcavoy, A Ph-Controlled Fed-Batch Process for Dextransucrase Production. Journal of Chemical Technology and Biotechnology, 1990. 48(4): p. 405-414.
41.Li, K.-T., D.-H. Liu, J. Chu, Y.-H. Wang, Y.-P. Zhuang, and S.-L. Zhang, An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess and Biosystems Engineering, 2008. 31(6): p. 605-610.
42.Tulin, E.E., S. Ueda, H. Yamagata, S. Udaka, and T. Yamane, Effective Extracellular Production of Bacillus-Stearothermophilus Esterase by Ph-Stat Modal Fed-Batch Culture of Recombinant Bacillus-Brevis. Biotechnology and Bioengineering, 1992. 40(7): p. 844-850.
43.Khanna, S. and A.K. Srivastava, Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 2005. 40(2): p. 607-619.
44.Ahn, W.S., S.J. Park, and S.Y. Lee, Production of Poly(3-Hydroxybutyrate) by Fed-Batch Culture of Recombinant Escherichia coliwith a Highly Concentrated Whey Solution. Applied and Environmental Microbiology, 2000. 66(8): p. 3624-3627.
45.Lee, Y. and S.Y. Lee, Enhanced production of poly(3-hydroxybutyrate) by filamentation-suppressed recombinant Escherichia coli in a defined medium. Journal of Environmental Polymer Degradation, 1996. 4(2): p. 131-134.
46.Myshkina, V.L., D.A. Nikolaeva, T.K. Makhina, A.P. Bonartsev, and G.A. Bonartseva, Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Applied Biochemistry and Microbiology, 2008. 44(5): p. 482-486.
47.Trainer, M.A. and T.C. Charles, The role of PHB metabolism in the symbiosis of rhizobia with legumes. Applied Microbiology and Biotechnology, 2006. 71(4): p. 377-386.
48.Kulpreecha, S., A. Boonruangthavorn, B. Meksiriporn, and N. Thongchul, Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng, 2009. 107(3): p. 240-5.
49.Nath, A., M. Dixit, A. Bandiya, S. Chavda, and A.J. Desai, Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol, 2008. 99(13): p. 5749-55.
50.Hsiao, L.J., Production of PHB, PHBV, P(3HB-co-HH) and degradation of polyester films by thermophilic bacteria of Caldimonas manganoxidans and PHB nanocomposites, in Chemical Engineering. 2014, National Chung Hsing University: Taiwan. p. 108.
51.Kobayashi, T., M. Shiraki, T. Abe, A. Sugiyama, and T. Saito, Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. Journal of Bacteriology, 2003. 185(12): p. 3485-3490.
52.Lathwal, P., K. Nehra, M. Singh, P. Jamdagni, and J.S. Rana, Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils. Polish Journal of Microbiology, 2015. 64(3): p. 227-239.
53.Kavitha, G., C. Kurinjimalar, K. Sivakumar, M. Kaarthik, R. Aravind, P. Palani, and R. Rengasamy, Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kutz using response surface methodology. International Journal of Biological Macromolecules, 2016. 93: p. 534-542.
54.Zhu, C.J., C.T. Nomura, J.A. Perrotta, A.J. Stipanovic, and J.P. Nakas, Production and Characterization of Poly-3-hydroxybutyrate From Biodiesel-Glycerol by Burkholderia cepacia ATCC 17759. Biotechnology Progress, 2010. 26(2): p. 424-430.
55.Yeom, S.H. and Y.J. Yoo, Effect of pH on the Molecular-Weight of Poly-3-Hydroxybutyric Acid Produced by Alcaligenes Sp. Biotechnology Letters, 1995. 17(4): p. 389-394.
56.Yu, J. and L.X.L. Chen, Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnology Progress, 2006. 22(2): p. 547-553.
57.Ganesh, M., A. Senthamarai, S. Shanmughapriya, and K. Natarajaseenivasan, Effective production of low crystallinity Poly(3-hydroxybutyrate) by recombinant E. coli strain JM109 using crude glycerol as sole carbon source. Bioresour Technol, 2015. 192: p. 677-81.
58.Kachrimanidou, V., N. Kopsahelis, S. Papanikolaou, I.K. Kookos, M. De Bruyn, J.H. Clark, and A.A. Koutinas, Sunflower-based biorefinery: poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol, 2014. 172: p. 121-30.
59.Nguyen Ado, Q., Y.G. Kim, S.B. Kim, and C.J. Kim, Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (otsBA) for the production of beta-carotene. Bioresour Technol, 2013. 143: p. 531-7.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊