|
Grothe, E. and Y. Chisti, Poly(beta-hydroxybutyric acid) thermoplastic production by Alcaligenes lotus: Behavior of fed-batch cultures. Bioprocess Engineering, 2000. 22(5): p. 441-449. 2.Chen, S.Y., Y.H. Wei, and J.S. Chang, Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Applied Microbiology and Biotechnology, 2007. 76(1): p. 67-74. 3.Sushmitha, B.S., K.P. Vanitha, and B.E. Rangaswamy, BIOPLASTICS - A REVIEW. International journal of Modern Trends in Engineering and Research, 2016. 3(4): p. 411-3. 4.Lunt, J., Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 145-152. 5.Auras, R.A., B. Harte, S. Selke, and R. Hernandez, Mechanical, physical, and barrier properties of poly(lactide) films. Journal of Plastic Film & Sheeting, 2003. 19(2): p. 123-135. 6.Woodruff, M.A. and D.W. Hutmacher, The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 2010. 35(10): p. 1217-1256. 7.Azimi, B., P. Nourpanah, M. Rabiee, and S. Arbab, Poly (epsilon-caprolactone) Fiber: An Overview. Journal of Engineered Fibers and Fabrics, 2014. 9(3): p. 74-90. 8.Luciani, A., V. Coccoli, S. Orsi, L. Ambrosio, and P.A. Netti, PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 2008. 29(36): p. 4800-4807. 9.Zein, I., D.W. Hutmacher, K.C. Tan, and S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002. 23(4): p. 1169-1185. 10.Méndez-Vilas, A., Communicating current research and educational topics and trends in applied microbiology. Vol. 2. 2007: Formatex. 11.van der Walle, G.A.M., G.J.M. de Koning, R.A. Weusthuis, and G. Eggink, Biopolyesters. Vol. 71. 2001: Springer Berlin Heidelberg. 12.Ojumu, T.V., J. Yu, and B.O. Solomon, Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer. African Journal of Biotechnology, 2004. 3(1): p. 18-24. 13.Saito, Y. and Y. Doi, Microbial Synthesis and Properties of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) in Comamonas-Acidovorans. International Journal of Biological Macromolecules, 1994. 16(2): p. 99-104. 14.Philip, S., T. Keshavarz, and I. Roy, Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology and Biotechnology, 2007. 82(3): p. 233-247. 15.Lemoigne, M., Produits de dehydration et de polymerisation de l’acide ß-oxobutyrique. Bulletin de la Société de Chimie Biologique, 1926. 8: p. 770-82. 16.Sudesh, K., H. Abe, and Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 2000. 25(10): p. 1503-55. 17.Modi, S.K., Assessing the Feasibility of Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and Poly-(lactic Acid) for Potential Food Packaging Applications. 2010: Ohio State University. 18.Avella, M., E. Martuscelli, and M. Raimo, Review - Properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. Journal of Materials Science, 2000. 35(3): p. 523-545. 19.Chen, G.Q. and Q. Wu, The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005. 26(33): p. 6565-6578. 20.Reddy, C.S.K., R. Ghai, Rashmi, and V.C. Kalia, Polyhydroxyalkanoates: an overview. Bioresource Technology, 2003. 87(2): p. 137-146. 21.Naitove, M.H., Bioplastics Are Breaking Out of Their ' Green' Niche. 2012: Plastics Technology. p. 13. 22.Waltz, E., Do biomaterials really mean business? Nature Biotechnology, 2008. 26(8): p. 851-853. 23.Holst, O., A. Manelius, M. Krahe, H. Markl, N. Raven, and R. Sharp, Thermophiles and fermentation technology. Comparative Biochemistry and Physiology a-Physiology, 1997. 118(3): p. 415-422. 24.Pantazaki, A.A., M.G. Tambaka, V. Langlois, P. Guerin, and D.A. Kyriakidis, Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: Purification and biochemical properties of PHA synthase. Molecular and Cellular Biochemistry, 2003. 254(1-2): p. 173-183. 25.Sheu, D.S., W.M. Chen, J.Y. Yang, and R.C. Chang, Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme and Microbial Technology, 2009. 44(5): p. 289-294. 26.Ibrahim, M.H., A. Willems, and A. Steinbuchel, Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria. J Appl Microbiol, 2010. 109(5): p. 1579-90. 27.Liu, Y., S.B. Huang, Y.Q. Zhang, and F.Q. Xu, Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. Journal of Environmental Sciences, 2014. 26(7): p. 1453-1462. 28.Cui, B., S.B. Huang, F.Q. Xu, R.J. Zhang, and Y.Q. Zhang, Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Applied Microbiology and Biotechnology, 2015. 99(14): p. 6009-6019. 29.Xu, F.Q., S.B. Huang, Y. Liu, Y.Q. Zhang, and S.W. Chen, Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Applied Microbiology and Biotechnology, 2014. 98(9): p. 3965-3974. 30.Takeda, M., Y. Kamagata, W.C. Ghirose, S. Hanada, and J. Koizumi, Caldimonas manganoxidans gen. nov., sp nov., a poly(3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. International Journal of Systematic and Evolutionary Microbiology, 2002. 52: p. 895-900. 31.Hsiao, L.J., J.H. Lin, P. Sankatumvong, T.M. Wu, and S.Y. Li, The Feasibility of Thermophilic Caldimonas manganoxidans as a Platform for Efficient PHB Production. Applied Biochemistry and Biotechnology, 2016. 180(5): p. 852-871. 32.Chanasit, W., L. Sueree, B. Hodgson, and K. Umsakul, The production of poly(3-hydroxybutyrate) [P(3HB)] by a newly isolated Bacillus sp ST1C using liquid waste from biodiesel production. Annals of Microbiology, 2014. 64(3): p. 1157-1166. 33.Sharma, P. and B.K. Bajaj, Cost-effective substrates for production of poly-beta-hydroxybutyrate by a newly isolated Bacillus cereus PS-10. Journal of Environmental Biology, 2015. 36(6): p. 1297-1304. 34.White, J., Yeast Technology. Vol. 31. 1954: John Wiley. 35.Yamanè, T. and S. Shimizu, Fed-batch techniques in microbial processes, in Bioprocess Parameter Control. 1984, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 147-194. 36.Riesenberg, D., V. Schulz, W.A. Knorre, H.D. Pohl, D. Korz, E.A. Sanders, A. Ross, and W.D. Deckwer, High Cell-Density Cultivation of Escherichia-Coli at Controlled Specific Growth-Rate. Journal of Biotechnology, 1991. 20(1): p. 17-28. 37.Hoster, P. and M.J. Johnson, Penicillin from Chemically Defined Media. Ind. Eng. Chem., 1953. 45(4): p. 871-4. 38.Akesson, M., P. Hagander, and J.P. Axelsson, Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnology and Bioengineering, 2001. 73(3): p. 223-230. 39.Suzuki, T., T. Yamane, and S. Shimizu, Phenomenological Background and Some Preliminary Trials of Automated Substrate Supply in pH-Stat Modal Fed-Batch Culture Using a Setpoint of High Limit. Journal of Fermentation and Bioengineering, 1990. 69(5): p. 292-297. 40.Brown, D.E. and A. Mcavoy, A Ph-Controlled Fed-Batch Process for Dextransucrase Production. Journal of Chemical Technology and Biotechnology, 1990. 48(4): p. 405-414. 41.Li, K.-T., D.-H. Liu, J. Chu, Y.-H. Wang, Y.-P. Zhuang, and S.-L. Zhang, An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess and Biosystems Engineering, 2008. 31(6): p. 605-610. 42.Tulin, E.E., S. Ueda, H. Yamagata, S. Udaka, and T. Yamane, Effective Extracellular Production of Bacillus-Stearothermophilus Esterase by Ph-Stat Modal Fed-Batch Culture of Recombinant Bacillus-Brevis. Biotechnology and Bioengineering, 1992. 40(7): p. 844-850. 43.Khanna, S. and A.K. Srivastava, Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 2005. 40(2): p. 607-619. 44.Ahn, W.S., S.J. Park, and S.Y. Lee, Production of Poly(3-Hydroxybutyrate) by Fed-Batch Culture of Recombinant Escherichia coliwith a Highly Concentrated Whey Solution. Applied and Environmental Microbiology, 2000. 66(8): p. 3624-3627. 45.Lee, Y. and S.Y. Lee, Enhanced production of poly(3-hydroxybutyrate) by filamentation-suppressed recombinant Escherichia coli in a defined medium. Journal of Environmental Polymer Degradation, 1996. 4(2): p. 131-134. 46.Myshkina, V.L., D.A. Nikolaeva, T.K. Makhina, A.P. Bonartsev, and G.A. Bonartseva, Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Applied Biochemistry and Microbiology, 2008. 44(5): p. 482-486. 47.Trainer, M.A. and T.C. Charles, The role of PHB metabolism in the symbiosis of rhizobia with legumes. Applied Microbiology and Biotechnology, 2006. 71(4): p. 377-386. 48.Kulpreecha, S., A. Boonruangthavorn, B. Meksiriporn, and N. Thongchul, Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng, 2009. 107(3): p. 240-5. 49.Nath, A., M. Dixit, A. Bandiya, S. Chavda, and A.J. Desai, Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol, 2008. 99(13): p. 5749-55. 50.Hsiao, L.J., Production of PHB, PHBV, P(3HB-co-HH) and degradation of polyester films by thermophilic bacteria of Caldimonas manganoxidans and PHB nanocomposites, in Chemical Engineering. 2014, National Chung Hsing University: Taiwan. p. 108. 51.Kobayashi, T., M. Shiraki, T. Abe, A. Sugiyama, and T. Saito, Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. Journal of Bacteriology, 2003. 185(12): p. 3485-3490. 52.Lathwal, P., K. Nehra, M. Singh, P. Jamdagni, and J.S. Rana, Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils. Polish Journal of Microbiology, 2015. 64(3): p. 227-239. 53.Kavitha, G., C. Kurinjimalar, K. Sivakumar, M. Kaarthik, R. Aravind, P. Palani, and R. Rengasamy, Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kutz using response surface methodology. International Journal of Biological Macromolecules, 2016. 93: p. 534-542. 54.Zhu, C.J., C.T. Nomura, J.A. Perrotta, A.J. Stipanovic, and J.P. Nakas, Production and Characterization of Poly-3-hydroxybutyrate From Biodiesel-Glycerol by Burkholderia cepacia ATCC 17759. Biotechnology Progress, 2010. 26(2): p. 424-430. 55.Yeom, S.H. and Y.J. Yoo, Effect of pH on the Molecular-Weight of Poly-3-Hydroxybutyric Acid Produced by Alcaligenes Sp. Biotechnology Letters, 1995. 17(4): p. 389-394. 56.Yu, J. and L.X.L. Chen, Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnology Progress, 2006. 22(2): p. 547-553. 57.Ganesh, M., A. Senthamarai, S. Shanmughapriya, and K. Natarajaseenivasan, Effective production of low crystallinity Poly(3-hydroxybutyrate) by recombinant E. coli strain JM109 using crude glycerol as sole carbon source. Bioresour Technol, 2015. 192: p. 677-81. 58.Kachrimanidou, V., N. Kopsahelis, S. Papanikolaou, I.K. Kookos, M. De Bruyn, J.H. Clark, and A.A. Koutinas, Sunflower-based biorefinery: poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol, 2014. 172: p. 121-30. 59.Nguyen Ado, Q., Y.G. Kim, S.B. Kim, and C.J. Kim, Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (otsBA) for the production of beta-carotene. Bioresour Technol, 2013. 143: p. 531-7.
|