跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志翔
研究生(外文):Chih-Hsiang Huang
論文名稱:多彩鈦金屬於背向照光之染料敏化太陽能電池之應用
論文名稱(外文):Application of Colorful Titanium in Dye-Sensitized Solar Cells under rear illumination
指導教授:陳志銘陳志銘引用關係
指導教授(外文):Chih-Ming Chen
口試委員:葉鎮宇衛子健林永森
口試委員(外文):Chen-Yu YehTzu-Chien WeiYung-Sen Lin
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:89
中文關鍵詞:光電極太陽能電池微結構表面處理二氧化鈦
外文關鍵詞:electrodessolar cellsmicrostructuressurface modificationtitanium dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈦金屬廣泛應用於航太與生醫材料,本身具有優異的耐化學腐蝕及生物相容性,在另一方面常作為可撓性染料敏化太陽能電池的軟性基材,而本研究主要利用鈦金屬基材以陽極發色處理技術(Anodizing Oxidation Coloring Technology, AOT)進行鈦的表面處理,將已經預處理的鈦金屬作為陽極電極,置於陽極發色電解液中,藉由調整不同的電壓條件,因此改變所形成的鈦氧化層厚度,而厚度大小會因受到光線干擾不同而產生折射及反射現象,呈現出多彩的鈦金屬。而本研究將經過陽極發色處理的多彩性鈦片以及染料敏化太陽能電池作兩者間的結合,透過一些儀器分析,可發現鈦氧化層的結構能夠有效抑制電子逆反應發生及具有提升電子收集效率的功用,而利用穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)及電子能譜儀(X-ray Photoelectron Spectrometer, XPS)鑑定鈦氧化層的結構組成以二氧化鈦(TiO2)為主,測量鈦氧化層厚度大約為30到100 nm左右,由此可知所形成的鈦氧化層厚度會隨電壓條件越高而產生越厚的鈦氧化層,另外,以太陽光及室內光源(600及1000 lux)強度下量測電池元件性能,找出在電壓條件為10 V時,可獲得最佳的光電轉換效率,約改善20%電池光電轉換效率,在室內光源照射下也有同樣趨勢,而主要增加貢獻於JSC,最後以交流阻抗分析(Electrochemical Impedance Spectroscopy ,EIS)及強度調控光電流/光電壓譜儀(Intensity-modulated photocurrent/photovoltage spectroscopy, IMPS/IMVS)了解電池內部各部位阻抗及電子運作情形,證明鈦氧化層有效抑制逆反應以及提升電子收集功用。
而本研究另一部分是利用陽極發色處理得到的最佳參數(10 V)以大氣電漿系統搭配氧氣進行表面改質處理,主要目的為了降低鈦氧化層表層的缺陷,透過XPS分析Ti2p鍵結能計算特徵峰值線下面積,藉此可知Ti4+與Ti3+在鈦氧化層中的含量多寡,可發現經過大氣電漿處理後之鈦片基材明顯降低氧空位(oxygen vacancy),因此大幅提升電池性能,故本研究成功結合陽極發色處理技術搭配大氣電漿表面處理以及染料敏化太陽能電池,兼具多彩鈦片的美觀且可有效提升電池光電轉換效率。
Titanium (Ti) foil is widely employed as a flexible photo-anode substrate in dye-sensitized solar cells (DSSCs). To increase the specific surface area of the Ti substrate, the Ti surface was etched to form a porous titanium dioxide (TiO2) layer through anodizing oxidation technology (AOT). The surface TiO2 film showed a high color variety with various AOT voltage which was attributable to the light refraction and scattering capability of the TiO2 structures. With the porous TiO2 structure, the electrical contact between screen-printed TiO2 nanoparticle film and the Ti substrate was improved. The porous TiO2 structure also suppressed the charge back-reaction on the photo-anode substrate based on the impedance analysis of electrochemical impedance spectroscopy (EIS). A higher power conversion efficiency (PCE) of DSSC based on the porous TiO2 structure was achieved and the contribution was mainly due to increased short- circuit current density (JSC).
It’s well known that titanium dioxide surface has been observed suboxide and oxygen vacancy such as titanium(III) oxide (Ti2O3) and titanium oxide (TiO). In order to reduce the oxygen vacancy on the TiO2 film by using the atmospheric plasma surface treatment with oxygen gas .A X-ray Photoelectron Spectrometer (XPS) results showed that plasma-treated Ti obviously reduced titanium(III) (Ti3+) concentration on the TiO2 film and improve the cells efficiency.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 4
2-1 染料敏化太陽能電池發展歷史 4
2-2染料敏化太陽能電池簡介 5
2-2-1 染料敏化太陽能電池結構 5
2-2-2 染料敏化太陽能電池運作原理 7
2-2-3 影響效率因素 10
2-3 太陽能電池性能參數 11
2-3-1 太陽光模擬光源 11
2-3-2 量測參數與計算 11
2-4 光電極基材 13
2-4-1 玻璃基材 13
2-4-2 金屬基材 13
2-4-3 塑膠基材 17
2-5 金屬半導體氧化物 18
2-6 染料分子 19
2-7 電解液 20
2-8 對電極 21
2-9 鈦片表面處理 21
2-9-1 鈦陽極發色處理簡介 21
2-9-2 陽極處理原理 24
2-9-2 陽極處理應用於染料敏化太陽能電池 24
2-10 電漿表面處理 26
2-10-1電漿介紹 26
2-10-2電漿表面處理應用於染料敏化太陽能電池 27
第三章 實驗方法 28
3-1 實驗儀器設備與藥品 28
3-2 實驗方法與流程 30
3-2-1 鈦箔板基材前處理 30
3-2-2 陽極發色處理 30
3-2-3 大氣電漿表面處理 31
3-2-4 製備光電極 31
3-2-5 製備對電極 32
3-2-6 染料配製與浸泡方法 32
3-2-7 液態電解液配製 32
3-2-8 熱封膜 33
3-2-9 實驗流程圖 33
3-2-10 分析方法及儀器 34
3-3 分析儀器設備 34
3-3-1 太陽光之性能測量(One Sun illumination) 34
3-3-2 掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 34
3-3-3 穿透式電子顯微鏡(Field Emission Transmission Electron Microscope, FE-TEM) 35
3-3-4 化學表面電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 35
3-3-5 X光繞射分析儀(High Resolution X-ray Diffractometer, XRD) 35
3-3-6 原子力顯微鏡(Atomic Force Microscope, AFM) 35
3-3-7 電化學交流阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 35
3-3-8 光電轉換效率量測及反射波長量測(Incident Photo-to-electron Conversion Efficiency, IPCE & Optical Reflection) 36
3-3-9 室內光源之元件性能測量(Dim light illumination) 36
第四章 結果與討論 37
PART I 37
4-1 陽極處理鈦金屬色彩 37
4-1-1 廠商陽極發色處理 38
4-1-2 實驗室自行陽極處理(30 V–90 V) 39
4-1-3 實驗室自行陽極處理(5 V–20 V) 40
4-2 陽極處理後鈦片表面形貌分析 41
4-2-1 陽極處理鈦片Top view 41
4-2-2 AFM表面粗糙度分析 47
4-3 晶型與結晶型態分析 48
4-4 陽極處理之氧化層組成分析 49
4-4-1 TEM鈦氧化層厚度&組成分析 49
4-4-2 XPS表面組成分析 51
4-5 電池元件性能量測 56
4-5-1 廠商陽極處理 56
4-5-2 太陽光與室內光源之光電性質 57
4-5-3 電化學性質分析 62
4-6 陽極處理色彩分析 66
4-6-1 表面反射率量測 66
PART II 68
4-7 陽極處理高溫退火 68
4-7-1 高溫退火溫度表面形貌 68
4-7-2 電池元件分析 70
PART III 72
4-8 大氣電漿表面處理 72
4-8-1 大氣電漿後表面形貌 72
4-8-2 XPS表面組成分析 73
4-8-3 氧化層厚度&組成分析 75
4-8-4 電池性能量測 77
4-8-5 電化學分析 80
第五章 結論 82
參考文獻 83
[1]N.R.E.Laboratory. (2017, June 8). Photovotaic Reasearch NREL. Available: https://www.nrel.gov/pv/
[2]M. A. Green, "Silicon solar cells: evolution, high-efficiency design and efficiency enhancements," Semiconductor Science and Technology, Vol. 8, pp. 1-12 (1993).
[3]M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145-153 (2003).
[4]K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, Vol. 51, pp. 15894-15897 (2015).
[5]S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, "Flexible dye-sensitized solar cells by 28 GHz microwave irradiation," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 93-96 (2004).
[6]M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, "Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers," Nature Materials, Vol. 4, pp. 607-611 (2005).
[7]T. Miyasaka and Y. Kijitori "Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers," Journal of the Electrochemical Society, Vol. 151, pp. 1767-1773 (2004).
[8]R. Williams, "Becquerel photovoltaic effect in binary compounds," The Journal of Chemical Physics, Vol. 32, pp. 1505-1514 (1960).
[9]A. E. Becquerel, "Research on the effects of chemical radiation of solar light using electric currents," Proceedings of the Academy of sciences, Vol. 9, pp. 145-149 (1839).
[10]H. Vogel, "On the sensitiveness of bromide of silver to the so-called chemically inactive colours," Berichte Deutsche Chemische Gesellschaft, Vol. 6, pp. 1320 (1873).
[11]H. Meier and W. Albrecht, "Zum ausseren lichtelektrischen effekt organischer farbstoffe," Berichte Der Bunsen-Gesellschaft Fur Physikalische Chemie, Vol. 69, pp. 33-34 (1965).
[12]H. Tributsch and M. Calvin, "Electrochemistry of excited molecules : photo-electrochemical reactions of chlorophylls," Photochemistry and Photobiology, Vol. 14, pp. 95-112 (1971).
[13]H. Gerischer and H. Selzle, "Electrochemical investigations on spectral sensitisation of silver halide crystals," Electrochimica Acta, Vol. 18, pp. 799-805 (1973).
[14]R. Memming and H. Tributsch, "Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes," The Journal of Physical Chemistry, Vol. 75, pp. 562-570 (1971).
[15]H. Gerischer, "Electrochemical techniques for the study of photosensitization," Photochemistry and Photobiology, Vol. 16, pp. 243-260 (1972).
[16]C. W. Tang, "Two layer organic photovoltaic cell," Applied Physics Letters, Vol. 48, pp. 183-185 (1986).
[17]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell," Nature, Vol. 261, pp. 402-403 (1976).
[18]B. O’rdgan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized," Nature, Vol. 353, pp. 737-740 (1991).
[19]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency," Science, Vol. 334, pp. 629-634 (2011).
[20]M. K. Nazeeruddin, E. Baranoff, and M. Grätzel, "Dye-sensitized solar cells: A brief overview," Solar Energy, Vol. 85, pp. 1172-1178 (2011).
[21]G. P. Smestad and M. Grätzel, "Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter," Journal of Chemical Education, Vol. 75, pp. 752-756 (1998).
[22]M. Grätzel, "Photoelectrochemical cells," Nature, Vol. 414, pp. 338-344 (2001).
[23]A. B. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, "New architectures for dye-sensitized solar cells," Chemistry–A European Journal, Vol. 14, pp. 4458-4467 (2008).
[24]M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorganic Chemistry, Vol. 44, pp. 6841-6851 (2005).
[25]D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, "Nature of photovoltaic action in dye-sensitized solar cells," The Journal of Physical Chemistry B, Vol. 104, pp. 2053-2059 (2000).
[26]蔡昇佑, "染料敏化奈米太陽能電池研製與效率量測," 臺北科技大學製造科技研究所學位論文, pp. 1-100 (2007).
[27]S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films, Vol. 516, pp. 4613-4619 (2008).
[28]M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, and K.-J. Kim, "Flexible metallic substrates for TiO2 film of dye-sensitized solar cells," Chemistry Letters, Vol. 34, pp. 804-805 (2005).
[29]N. Vlachopoulos, P. Liska, J. Augustynski, and M. Grätzel, "Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films," Journal of the American Chemical Society, Vol. 110, pp. 1216-1220 (1988).
[30]S. Ito, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, and M. Grätzel, "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chemical Communications, pp. 4004-4006 (2006).
[31]D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, "Formation of a Non-Thickness-Limited Titanium Dioxide Mesosponge and its Use in Dye-Sensitized Solar Cells," Angewandte Chemie, Vol. 121, pp. 9490-9493 (2009).
[32]T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, and S.-Y. Suen, "An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination," Progress in Photovoltaics: Research and Applications, Vol. 21, pp. 226-231 (2013).
[33]蔡婷雅, "以鈦為光電極基材之染料敏化太陽能電池之研發," 中興大學化學工程學系所學位論文, pp. 1-84 (2011).
[34]K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, "The superiority of Ti plate as the substrate of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 91, pp. 1176-1181 (2007).
[35]L.-Y. Lin, C.-P. Lee, R. Vittal, and K.-C. Ho, "Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode," Journal of Power Sources, Vol. 195, pp. 4344-4349 (2010).
[36]K. Fan, T. Peng, B. Chai, J. Chen, and K. Dai, "Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells," Electrochimica Acta, Vol. 55, pp. 5239-5244 (2010).
[37]D. Kim, P. Roy, K. Lee, and P. Schmuki, "Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment," Electrochemistry Communications, Vol. 12, pp. 574-578 (2010).
[38]H.-G. Yun, B.-S. Bae, and M. G. Kang, "A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cells," Advanced Energy Materials, Vol. 1, pp. 337-342 (2011).
[39]H.-G. Yun, J. H. Park, B.-S. Bae, and M. G. Kang, "Dye-sensitized solar cells with TiO2 nano-particles on TiO2 nano-tube-grown Ti substrates," Journal of Materials Chemistry, Vol. 21, pp. 3558-3561 (2011).
[40]S. So, I. Hwang, and P. Schmuki, "Hierarchical DSSC structures based on "single walled" TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%," Energy & Environmental Science, Vol. 8, pp. 849-854 (2015).
[41]M. Ye, X. Xin, C. Lin, and Z. Lin, "High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes," Nano Letters, Vol. 11, pp. 3214-3220 (2011).
[42]黃榆婷, "以金屬及塑膠製備染料敏化太陽能電池光電極材之研究與應用," 中興大學化學工程學系所學位論文, pp. 1-102 (2012).
[43]X. Li, H. Lin, J. Li, N. Wang, C. Lin, and L. Zhang, "Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 195, pp. 247-253 (2008).
[44]T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, and H. Arakawa, "Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%," Solar Energy Materials and Solar Cells, Vol. 94, pp. 812-816 (2010).
[45]H. C. Weerasinghe, P. M. Sirimanne, G. P. Simon, and Y. B. Cheng, "Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates," Progress in Photovoltaics: Research and Applications, Vol. 20, pp. 321-332 (2012).
[46]J. Nemoto, M. Sakata, T. Hoshi, H. Ueno, and M. Kaneko, "All-plastic dye-sensitized solar cell using a polysaccharide film containing excess redox electrolyte solution," Journal of Electroanalytical Chemistry, Vol. 599, pp. 23-30 (2007).
[47]H.-W. Chen, C.-Y. Hsu, J.-G. Chen, K.-M. Lee, C.-C. Wang, K.-C. Huang, and K.-C. Ho, "Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods," Journal of Power Sources, Vol. 195, pp. 6225-6231 (2010).
[48]S. Peng, Y. Wu, P. Zhu, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, "Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: chemistry, Vol. 223, pp. 97-102 (2011).
[49]D. Zhang, T. Yoshida, K. Furuta, and H. Minoura, "Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells," Journal of Photochemistry and Photobiology A: chemistry, Vol. 164, pp. 159-166 (2004).
[50]A. Du Pasquier, "An approach to laminated flexible dye sensitized solar cells," Electrochimica Acta, Vol. 52, pp. 7469-7474 (2007).
[51]M. Landmann, E. Rauls, and W. Schmidt, "The electronic structure and optical response of rutile, anatase and brookite TiO2," Journal of Physics: Condensed Matter, Vol. 24, pp. 195503-195509 (2012).
[52]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell," The Journal of Physical Chemistry B, Vol. 107, pp. 8981-8987 (2003).
[53]G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 70, pp. 85-101 (2001).
[54]S. Van Gils, P. Mast, E. Stijns, and H. Terryn, "Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry," Surface and Coatings Technology, Vol. 185, pp. 303-310 (2004).
[55]B. Zhao and G. Jerkiewicz, "Electrochemically formed passive layers on titanium-Preparation and biocompatibility assessment in Hank's balanced salt solution," Canadian Journal of Chemistry, Vol. 84, pp. 1132-1145 (2006).
[56]S. Hrapovic, B. Luan, M. D'amours, G. Vatankhah, and G. Jerkiewicz, "Morphology, chemical composition, and electrochemical characteristics of colored titanium passive layers," Langmuir, Vol. 17, pp. 3051-3060 (2001).
[57]E. Gaul, "Coloring titanium and related metals by electrochemical oxidation," Journal of Chemical Education, Vol. 70, pp. 176-178 (1993).
[58]S. Wang, X. Wu, W. Qin, and Z. Jiang, "TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell," Electrochimica Acta, Vol. 53, pp. 1883-1889 (2007).
[59]W. Shu-Yuan, C. Ying-Hung, C. Keh-Chang, and H. Ju-Liang, "Using micro-arc oxidation and alkali etching to produce a nanoporous TiO2 layer on Titanium foil for flexible dye-sensitized solar cell application," Japanese Journal of Applied Physics, Vol. 49, pp. 092301 (2010).
[60]L. Tonks and I. Langmuir, "A general theory of the plasma of an arc," Physical Review, Vol. 34, pp. 876 (1929).
[61]Y. Kim, B. J. Yoo, R. Vittal, Y. Lee, N.-G. Park, and K.-J. Kim, "Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells," Journal of Power Sources, Vol. 175, pp. 914-919 (2008).
[62]W.-Y. Wu, T.-W. Shih, P. Chen, J.-M. Ting, and J.-M. Chen, "Plasma surface treatments of TiO2 photoelectrodes for use in dye-sensitized solar cells," Journal of the Electrochemical Society, Vol. 158, pp. K101-K106 (2011).
[63]A. K. Sharma, "Anodizing titanium for space applications," Thin Solid Films, Vol. 208, pp. 48-54 (1992).
[64]W. Xiaohong, J. Zhaohua, L. Huiling, L. Xuandong, and H. Xinguo, "TiO 2 ceramic films prepared by micro-plasma oxidation method for photodegradation of rhodamine B," Materials Chemistry and Physics, Vol. 80, pp. 39-43 (2003).
[65]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, "Standard spectra for identification and interpretation of XPS data," Perkin Elmer, Eden Prairie, MN, (1992).
[66]Y. Gu, B. Tay, C. Lim, and M. Yong, "Characterization of bioactive surface oxidation layer on NiTi alloy," Applied Surface Science, Vol. 252, pp. 2038-2049 (2005).
[67]X. Liu, S. Wu, K. W. Yeung, C. Chung, and P. K. Chu, "Surface coloration and electrochemical impedance spectroscopy characterization of oxygen plasma implanted orthopaedic titanium alloys," International Journal of Electrochemical Science, Vol. 7, pp. 6638-6653 (2012).
[68]L. Tan and W. Crone, "Surface characterization of NiTi modified by plasma source ion implantation," Acta Materialia, Vol. 50, pp. 4449-4460 (2002).
[69]S. Wu, P. K. Chu, X. Liu, C. Chung, J. Ho, C. Chu, S. Tjong, K. Yeung, W. Lu, and K. Cheung, "Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma implanted porous nickel titanium shape memory alloy," Journal of Biomedical Materials Research Part A, Vol. 79, pp. 139-146 (2006).
[70]C. Yasuo, I. Ashraful, W. Yuki, K. Ryoichi, K. Naoki, and H. Liyuan, "Dye-sensitized solar cells with conversion efficiency of 11.1%," Japanese Journal of Applied Physics, Vol. 45, pp. L638 (2006).
[71]F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, "Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy," Physical Chemistry Chemical Physics, Vol. 13, pp. 9083-9118 (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊