跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/15 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹博帆
研究生(外文):Po-Fan Chan
論文名稱:電鍍銅微結構與沉積幾何的控制應用在銅箔製備、填孔電鍍與銅錫焊接製程
論文名稱(外文):The Control Methods for Electrodeposited Cu Microstructure and Geometry - Applications in the Cu Foil Manufacture, Cu Microvias Filling and Cu/Sn Joints
指導教授:竇維平
口試委員:萬其超黃炳照陳志銘張厚謙吳欣潔
口試日期:2017-07-18
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:146
中文關鍵詞:電鍍銅微結構沉積幾何雙晶銅超大晶粒銅負微分電阻電鍍銅箔填孔電鍍銅錫焊接
外文關鍵詞:electrodeposited Cu microstructuredeposition geometrytwin boundaryultra-large grain coppernegative differential resistanceelectrodeposited Cu foilbottom-up filling electrodepositionCu/Sn joint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:880
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電鍍銅微結構與沉積幾何的控制,是以調控化學參數(如電鍍添加劑、溶液酸鹼度)與物理參數(如鍍液對流、電流密度)達到控制微結構與沉積幾何的效果。沉積幾何意指被鍍物經常呈現複雜幾何形狀,因尖端效應造成電流分布不均,進而造成鍍層厚度不均勻,在本論文中我們面對的幾何形狀則是大量用在積體電路(IC)與印刷電路板(PCB)中的導線及孔洞。對鍍液對流的瞭解則是透過COMSOL進行電腦模擬。在微結構的控制上,藉由流場的型態與剪力的大小控制雙晶的形成與排列,提供研究電鍍的學者,從力學來思考電化學沉積的過程。藉由各項化學與物理參數控制定電流電鍍下電位的數值,發現自發性電位震盪與微結構上超大晶粒的對應關係,並延伸至以負微分電阻(NDR)控制自發性電位震盪之振幅。不論是雙晶銅或是超大晶粒銅,都應用到電鍍銅箔上。負微分電阻(NDR)不只應用在超大晶粒電鍍銅的製備,也應用於電鍍填孔,以電化學微分方程式描述電鍍添加劑對負微分電阻之影響,並藉此方程式將電鍍添加劑分類,分別為加速劑、抑制劑與螯合劑,透過微分方程式使電鍍添加劑的分類更為明確,說明電鍍添加劑是如何發揮它在電鍍中所扮演的角色。對銅鍍層微結構控制上的掌握,不同的晶粒大小與雙晶的有無,皆可自在調控,因此延伸至銅錫焊接製程並探討銅層結構對銅錫焊接處微結構之影響,發現當銅層晶界越少、晶粒越大,可有效避免焊接處孔洞產生,並發現孔洞產生的起始原因為晶界處與晶粒內擴散的速度差異。
The microstructure and deposition geometry of electrodeposited Cu are controlled by tuning the chemical parameters (e.g., the concentration of plating additives and the pH value of the plating solution) and the physical parameters (e.g., the convection of the plating solution and the operating current density). The deposition geometry is usually subject to the complex cathodic geometric surface; therefore, the thickness of the electrodeposited Cu is non-uniform because the tip effect that current prefers to pass through the peak position on the cathode. The geometric shapes we faced in this study are trenches, vias and holes, which are wildly used in the IC and PCB industries. To understand the fluid behavior of the electroplating fluid, the convection of electroplating solution between the cathode and the anode is simulated using COMSOL Multiphysics®. The formation and the orientation of the twin boundary in the electrodeposited Cu can be controlled by tuning the mode of flow field and the strength of the shear stress on the cathodic surface. This study provides readerships who study the electrodeposition a thought way from the view point of fluid mechanics to give insight into the electrochemical deposition process. The cathodic potential under galvanostatic electrodeposition could be controlled by numerous chemical and physical parameters, and it was found that a spontaneous potential oscillation (SPO) correlated the crystalline Cu formation with ultra-large grains (ULGs). Moreover, the amplitude of the SPO depended on the potential range of negative differential resistance (NDR). Both twinned and ULG Cu can be applied to the copper foil industry. The NDR behavior of a copper electroplating solution also can be applied to the bottom-up filling electrodeposition. The NDR occurrence is explained by an electrochemical differential equation. The plating additives are divided into three classifications according to the NDR differential equation: the accelerator, the suppressor, and the chelator. The differential equation also can explain how the plating additive plays its role in the electrodeposition. On the other hand, different grain size Cu samples with and without twinned boundary are electrodeposited as study models for studying the interface reaction of Cu/Sn joint and the formation of intermetallic compounds (IMCs). The results show that the voids were eliminated when the Cu grain boundary was extremely few and the Cu grain size was pretty large. The root cause of the voids formation is attributed to the diffusion rate difference of the Cu atoms that are located at the grain boundary or the lattice.
Contents
Chapter 1
Introduction…………………………………………………………………………....1
Reference………………………………………………………………………………8

Chapter 2
Effects of Additives and Convection on Cu Foil Surface Roughness and Microstructure…………………………………………………………………..…....10
Reference…………………………………………………………………………..…32

Chapter 3
The Effect of Fluid Behavior and Shear Stress on Electrodeposited Nanotwin Copper………………………………………………………………………………..37
Reference…………………………………………………………………………..…50

Chapter 4
The Spontaneous Potential Oscillation (SPO) and the discovery of ultra-large grain (ULG) copper deposit………………………………………………………………...54
Reference…………………………………………………………………………..…72

Chapter 5
The Manufacturing Method of Electrodeposited Annealing-Free Copper Foil with Ultra-Large Grains and the Anti-Fingerprint Property………………………………..76
Reference…………………………………………………………………………..…85

Chapter 6
Effect of Copper Grain Size on the Interfacial Microstructure of Sn/Cu Joint
– Larger is Better……………………………………………………………………...86
Reference……………………………………………………………………………101

Chapter 7
Negative Differential Resistance and Copper Via Filling Electrodeposition…….......104
Reference……………………………………………………………………………119

Appendix
Negative Differential Resistance (NDR) and Its Oscillator: From the Views of Electronics to Electrochemistry……………………………………………………..123
Reference……………………………………………………………………………133
Chapter 1
1.J. Coonrod, Different Copper Foils for Different Reasons, in the PCB Magazine. 2012. p. 60-64.
2.C.B. Yates, C.T. Cheng and A.M. Wolski, Process for the manufacture of high quality very low profile copper foil and copper foil produced thereby. 1999, US Patent 5863410.
3.B.M. Luce and B.L. Berdan, Process and apparatus for electroplating copper foil. 1990, US Patent 4898647.
4.P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans and H. Deligianni, Damascene copper electroplating for chip interconnections. IBM Journal of Research and Development, 1998. 42(5): p. 567-574.
5.K.K.H. Wong, S. Kaja and P.W. DeHaven, Metallization by plating for high-performance multichip modules. IBM Journal of Research and Development, 1998. 42(5): p. 587-596.
6.C.-T. Ko and K.-N. Chen, Wafer-level bonding/stacking technology for 3D integration. Microelectronics Reliability, 2010. 50(4): p. 481-488.
7.K.N. Tu, Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523.
8.K.N. Chen, C.S. Tan, A. Fan and R. Reif, Morphology and Bond Strength of Copper Wafer Bonding. Electrochemical and Solid-State Letters, 2004. 7(1): p. G14-G16.
9.C.M. Liu, H.W. Lin, Y.S. Huang, Y.C. Chu, C. Chen, D.R. Lyu, K.N. Chen and K.N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Sci Rep, 2015. 5: p. 9734.
10.H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen and K.N. Tu, Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper. Science, 2012. 336(6084): p. 1007-1010.
11.A. Jourdain, S. Stoukatch, P.D. Moor, W. Ruythooren, S. Pargfrieder, B. Swinnen and E. Beyne. Simultaneous Cu-Cu and Compliant Dielectric Bonding for 3D Stacking of ICs. in 2007 IEEE International Interconnect Technology Conferencee. 2007.

Chapter 2
1.R. Akolkar and U. Landau, Mechanistic Analysis of the "Bottom-Up" Fill in Copper Interconnect Metallization. Journal of the Electrochemical Society, 2009. 156(9): p. D351-D359.
2.Y. Cao, P. Taephaisitphongse, R. Chalupa and A.C. West, Three-additive model of superfilling of copper. Journal of the Electrochemical Society, 2001. 148(7): p. C466-C472.
3.U. Emekli and A.C. West, Simulation of the Effect of Additives on Electrochemical Nucleation. Journal of the Electrochemical Society, 2010. 157(9): p. D479-D485.
4.A. Radisic, O. Luhn, H.G.G. Philipsen, Z. El-Mekki, M. Honore, S. Rodet, S. Armini, C. Drijbooms, H. Bender and W. Ruythooren, Copper plating for 3D interconnects. Microelectronic Engineering, 2011. 88(5): p. 701-704.
5.I. Volov, T. Saito and A.C. West, Investigation of Copper Plating and Additive Interactions in the Presence of Fe3+/Fe2+ Redox Couple. Journal of the Electrochemical Society, 2011. 158(6): p. D384-D389.
6.W.-P. Dow, M.-Y. Yen, S.-Z. Liao, Y.-D. Chiu and H.-C. Huang, Filling mechanism in microvia metallization by copper electroplating. Electrochimica Acta, 2008. 53(28): p. 8228-8237.
7.N.T.M. Hai and P. Broekmann, Smart Hybrid Polymers for Advanced Damascene Electroplating: Combination of Superfill and Leveling Properties. ChemElectroChem, 2015. 2(8): p. 1096-1099.
8.T.M.T. Huynh, F. Weiss, N.T.M. Hai, W. Reckien, T. Bredow, A. Fluegel, M. Arnold, D. Mayer, H. Keller and P. Broekmann, On the role of halides and thiols in additive-assisted copper electroplating. Electrochimica Acta, 2013. 89: p. 537-548.
9.S.K. Kim, D. Josell and T.P. Moffat, Electrodeposition of Cu in the PEI-PEG-Cl-SPS additive system - Reduction of overfill bump formation during superfilling. Journal of the Electrochemical Society, 2006. 153(9): p. C616-C622.
10.K. Kondo, T. Matsumoto and K. Watanabe, Role of additives for copper damascene electrodeposition experimental study on inhibition and acceleration effects. Journal of the Electrochemical Society, 2004. 151(4): p. C250-C255.
11.K. Kondo, N. Yamakawa, Z. Tanaka and K. Hayashi, Copper damascene electrodeposition and additives. Journal of Electroanalytical Chemistry, 2003. 559: p. 137-142.
12.T.P. Moffat, D. Wheeler, S.K. Kim and D. Josell, Curvature enhanced adsorbate coverage model for electrodeposition. Journal of the Electrochemical Society, 2006. 153(2): p. C127-C132.
13.V.H. Hoang and K. Kondo, Extreme fast filling of conical shape through-silicon vias in 3 minutes and additive optimization. Electrochimica Acta, 2016. 212: p. 270-276.
14.S.-M. Huang, C.-W. Liu and W.-P. Dow, Effect of Convection-Dependent Adsorption of Additives on Microvia Filling in an Acidic Copper Plating Solution. Journal of The Electrochemical Society, 2012. 159(3): p. D135-D141.
15.T.P. Moffat, D. Wheeler, S.K. Kim and D. Josell, Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing. Electrochimica Acta, 2007. 53(1): p. 145-154.
16.N.T.M. Hai, J. Furrer, E. Barletta, N. Luedi and P. Broekmann, Copolymers of Imidazole and 1,4-Butandiol Diglycidyl Ether as an Efficient Suppressor Additive for Copper Electroplating. Journal of the Electrochemical Society, 2014. 161(9): p. D381-D387.
17.W.-P. Dow, H.-S. Huang, M.-Y. Yen and H.-C. Huang, Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating. Journal of The Electrochemical Society, 2005. 152(6): p. C425-C434.
18.K. Kondo and H. Murakami Crystal Growth of Electrolytic Cu Foil. Journal of The Electrochemical Society, 2004. 151(7): p. C514-C518.
19.T. Chang, Y. Jin, L. Wen, C. Zhang, C. Leygraf, I.O. Wallinder and J. Zhang, Synergistic effects of gelatin and convection on copper foil electrodeposition. Electrochimica Acta, 2016. 211: p. 245-254.
20.W. Peng, G. Yi, F. Cai, T. He and X. Yang. Experimental analysis of pinhole on electrolytic copper foil and its prevention. in 2011 Second International Conference on Mechanic Automation and Control Engineering. 2011.
21.B. Blocken and C. Gualtieri, Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 2012. 33: p. 1-22.
22.J. Coonrod, Different Copper Foils for Different Reasons, in the PCB Magazine. 2012. p. 60-64.
23.T. Okubo, T. Sudo, T. Hosoi, H. Tsuyoshi and F. Kuwako. Signal transmission loss on printed circuit board in GHz frequency region. in 2013 IEEE Electrical Design of Advanced Packaging Systems Symposium (EDAPS). 2013.
24.M.Y. Koledintseva, A.G. Razmadze, A.Y. Gafarov, S. De, J.L. Drewniak and S. Hinaga. PCB conductor surface roughness as a layer with effective material parameters. in 2012 IEEE International Symposium on Electromagnetic Compatibility. 2012.
25.C.D. Xu, K.W.E. Cheng, R.S. Raghu and J.F. Liu. Characterization and modeling of copper foil conductor for high frequency power distribution. in 2015 6th International Conference on Power Electronics Systems and Applications (PESA). 2015.
26.B.M. Luce and B.L. Berdan, Process and apparatus for electroplating copper foil. 1990, US Patent 4898647.
27.N. Ibl and K. Schadegg, Surface Roughness Effects in the Electrodeposition of Copper in the Limiting Current Range. Journal of The Electrochemical Society, 1967. 114(1): p. 54-58.
28.Y.I. Yanson and M.J. Rost, Structural accelerating effect of chloride on copper electrodeposition. Angew Chem Int Ed Engl, 2013. 52(9): p. 2454-8.
29.W. Shao, G. Pattanaik and G. Zangari, Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolytes. Journal of The Electrochemical Society, 2007. 154(4): p. D201.
30.K.R. Hebert, Role of Chloride Ions in Suppression of Copper Electrodeposition by Polyethylene Glycol. Journal of The Electrochemical Society, 2005. 152(5): p. C283-C287.
31.M. Hayase, M. Taketani, K. Aizawa, T. Hatsuzawa and K. Hayabusa, Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition. Electrochemical and Solid-State Letters, 2002. 5(10): p. C98-C101.
32.W.-P. Dow, M.-Y. Yen, W.-B. Lin and S.-W. Ho, Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating. Journal of The Electrochemical Society, 2005. 152(11): p. C769-C775.
33.K.R. Hebert, S. Adhikari and J.E. Houser, Chemical Mechanism of Suppression of Copper Electrodeposition by Poly(ethylene glycol). Journal of The Electrochemical Society, 2005. 152(5): p. C324-C329.
34.Z.V. Feng, X. Li and A.A. Gewirth, Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study. The Journal of Physical Chemistry B, 2003. 107(35): p. 9415-9423.
35.T.P. Moffat, D. Wheeler and D. Josell Electrodeposition of Copper in the SPS-PEG-Cl Additive System: I. Kinetic Measurements: Influence of SPS. Journal of The Electrochemical Society, 2004. 151(4): p. C262-C271.
36.H. Koichi, W. Yasuhiro, F. Akihiko, U. Daisuke, K. Koichiro, N. Tomoko, S. Masahiko, C. Mitsuyasu, T. Sotaro, S. Jun, H. Muneaki, N. Akira and K. Hiroshi, Copper Plating Method on Flat Surface for High Frequency Signal Transfer. Japanese Journal of Applied Physics, 2005. 44(9R): p. 6719.
37.S.J. Bleiker, A.C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme and F. Niklaus, High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015. 5(1): p. 21-27.
38.C.B. Yates, C.T. Cheng and A.M. Wolski, Process for the manufacture of high quality very low profile copper foil and copper foil produced thereby. 1999, US Patent 5863410.

Chapter 3
1.T. Watanabe, An approach to grain boundary design of strong and ductile polycrystals. Res Mech. Int. J. Struct. Mech. Mater. Sci., 1984. 11: p. 47-84.
2.T. Watanabe, Grain Boundary Design for Desirable Mechanical Properties. J. Phys. Colloques, 1988. 49(C5): p. 507-519.
3.L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper. Science, 2004. 304(5669): p. 422-426.
4.K. Lu, L. Lu and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science, 2009. 324(5925): p. 349-352.
5.L. Lu, X. Chen, X. Huang and K. Lu, Revealing the Maximum Strength in Nanotwinned Copper. Science, 2009. 323(5914): p. 607-610.
6.D. Jang, C. Cai and J.R. Greer, Influence of Homogeneous Interfaces on the Strength of 500 nm Diameter Cu Nanopillars. Nano Letters, 2011. 11(4): p. 1743-1746.
7.Y. Zhang, Y.S. Li, N.R. Tao and K. Lu, High strength and high electrical conductivity in bulk nanograined Cu embedded with nanoscale twins. Applied Physics Letters, 2007. 91(21): p. 211901.
8.K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen and K.N. Tu, Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science, 2008. 321(5892): p. 1066-1069.
9.X.H. Chen, L. Lu and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of Applied Physics, 2007. 102(8): p. 083708.
10.T. LaGrange, B.W. Reed, M. Wall, J. Mason, T. Barbee and M. Kumar, Topological view of the thermal stability of nanotwinned copper. Applied Physics Letters, 2013. 102(1): p. 011905.
11.D. Xu, H.P. Chen and K.N. Tu, Improved Interconnect Properties For Nano‐Twinned Copper: Microstructure And Stability. AIP Conference Proceedings, 2010. 1300(1): p. 23-32.
12.H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen and K.N. Tu, Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper. Science, 2012. 336(6084): p. 1007-1010.
13.T.-C. Liu, C.-M. Liu, Y.-S. Huang, C. Chen and K.-N. Tu, Eliminate Kirkendall voids in solder reactions on nanotwinned copper. Scripta Materialia, 2013. 68(5): p. 241-244.
14.W.-L. Chiu, C.-M. Liu, Y.-S. Haung and C. Chen, Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization. Applied Physics Letters, 2014. 104(17): p. 171902.
15.C.M. Liu, H.W. Lin, Y.S. Huang, Y.C. Chu, C. Chen, D.R. Lyu, K.N. Chen and K.N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Sci Rep, 2015. 5: p. 9734.
16.C. Chen, C.M. Liu, H.w. Lin, Y.S. Huang, Y.C. Chu, D.R. Lyu, K.N. Chen and K.N. Tu. Low-temperature and low-pressure direct copper-to-copper bonding by highly (111)-oriented nanotwinned Cu. in 2016 Pan Pacific Microelectronics Symposium (Pan Pacific). 2016.
17.K. Lu, The Future of Metals. Science, 2010. 328(5976): p. 319-320.
18.C.-T. Ko and K.-N. Chen, Wafer-level bonding/stacking technology for 3D integration. Microelectronics Reliability, 2010. 50(4): p. 481-488.
19.K.N. Tu, Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523.
20.J.B. Goodenough and K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 2013. 135(4): p. 1167-1176.
21.S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn and T. Schimmel, Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition. Small, 2009. 5(20): p. 2265-2270.
22.C. Lin, G. Yuan, H. Jiang and F. Xie, Ultra-Long Periodically-Twinned Copper Nanowires Evolving from Dendrites in Interfacial Electrodeposition. Journal of Nanoscience and Nanotechnology, 2010. 10(7): p. 4300-4307.
23.M. Hasegawa, M. Mieszala, Y. Zhang, R. Erni, J. Michler and L. Philippe, Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta, 2015. 178: p. 458-467.
24.T.-C. Liu, C.-M. Liu, H.-Y. Hsiao, J.-L. Lu, Y.-S. Huang and C. Chen, Fabrication and Characterization of (111)-Oriented and Nanotwinned Cu by Dc Electrodeposition. Crystal Growth & Design, 2012. 12(10): p. 5012-5016.
25.Y. Hirasawa and N. Takahashi, Method of manfacturing electrodeposited copper foil and electrodeposited copper foil. 2001, EP Patent 1065298.
26.O. Nakano, T. Kataoka, S. Taenaka, N. Uchida and N. Hanzawa, Electrodeposited copper foil. 2003, US Patent 6544663.
27.W. Wang, Y. Dai, J. Li and B. Liu, An Atomic-Level Mechanism of Annealing Twinning in Copper Observed by Molecular Dynamics Simulation. Crystal Growth & Design, 2011. 11(7): p. 2928-2934.
28.J.R. Hancock, -, The frequency of annealing twins in copper and copper-base alloys. The University of Arizona.
29.Y.T. Zhu, X.Z. Liao and X.L. Wu, Deformation twinning in nanocrystalline materials. Progress in Materials Science, 2012. 57(1): p. 1-62.
30.C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li and S.X. Li, Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Materialia, 2006. 54(3): p. 655-665.
31.I.J. Beyerlein, X. Zhang and A. Misra, Growth Twins and Deformation Twins in Metals. Annual Review of Materials Research, 2014. 44(1): p. 329-363.
32.J.-Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun and E. Ma, Double-inverse grain size dependence of deformation twinning in nanocrystalline Cu. Physical Review B, 2010. 81(17): p. 172104.
33.L. Velasco and A.M. Hodge, The mobility of growth twins synthesized by sputtering: Tailoring the twin thickness. Acta Materialia, 2016. 109: p. 142-150.
34.Y. Liu, D. Bufford, S. Rios, H. Wang, J. Chen, J.Y. Zhang and X. Zhang, A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. Journal of Applied Physics, 2012. 111(7): p. 073526.

Chapter 4
1.J.A. Switzer, C.-J. Hung, E.W. Bohannan, M.G. Shumsky, T.D. Golden and D.C. Van Aken, Electrodeposition of quantum-confined metal/semiconductor nanocomposites. Advanced Materials, 1997. 9(4): p. 334-338.
2.J.A. Switzer, C.-J. Hung, L.-Y. Huang, E.R. Switzer, D.R. Kammler, T.D. Golden and E.W. Bohannan, Electrochemical Self-Assembly of Copper/Cuprous Oxide Layered Nanostructures. Journal of the American Chemical Society, 1998. 120(14): p. 3530-3531.
3.E.W. Bohannan, L.-Y. Huang, F.S. Miller, M.G. Shumsky and J.A. Switzer, In Situ Electrochemical Quartz Crystal Microbalance Study of Potential Oscillations during the Electrodeposition of Cu/Cu2O Layered Nanostructures. Langmuir, 1999. 15(3): p. 813-818.
4.J. Eskhult, M. Herranen and L. Nyholm, On the origin of the spontaneous potential oscillations observed during galvanostatic deposition of layers of Cu and Cu2O in alkaline citrate solutions. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 35-49.
5.S. Leopold, J.C. Arrayet, J.L. Bruneel, M. Herranen, J.-O. Carlsson, F. Argoul and L. Servant, In Situ CRM Study of the Self-Oscillating Cu-(II)-Lactate and Cu-(II)-Tartrate Systems. Journal of The Electrochemical Society, 2003. 150(7): p. C472-C477.
6.S. Leopold, M. Herranen and J.-O. Carlsson Spontaneous Potential Oscillations in the Cu(II)/Tartrate and Lactate Systems, Aspects of Mechanisms and Film Deposition. Journal of The Electrochemical Society, 2001. 148(8): p. C513-C517.
7.S. Leopold, M. Herranen, J.O. Carlsson and L. Nyholm, In situ pH measurement of the self-oscillating Cu(II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor. Journal of Electroanalytical Chemistry, 2003. 547(1): p. 45-52.
8.E. Mishina, K. Nagai, D. Barsky and S. Nakabayashi, Optical properties of a self-assembled Cu/Cu2O multilayered structure studied in situ during deposition. Physical Chemistry Chemical Physics, 2002. 4(1): p. 127-133.
9.J.A. Switzer, B.M. Maune, E.R. Raub and E.W. Bohannan, Negative Differential Resistance in Electrochemically Self-Assembled Layered Nanostructures. The Journal of Physical Chemistry B, 1999. 103(3): p. 395-398.
10.Y. Wang, Y. Cao, M. Wang, S. Zhong, M.-Z. Zhang, Y. Feng, R.-W. Peng, X.-P. Hao and N.-B. Ming, Spontaneous formation of periodic nanostructured film by electrodeposition: Experimental observations and modeling. Physical Review E, 2004. 69(2): p. 021607.
11.M.Z. Zhang, M. Wang, Z. Zhang, J.M. Zhu, R.W. Peng and N.B. Ming, Periodic structures of randomly distributed Cu/Cu2O nanograins and periodic variations of cell voltage in copper electrodeposition. Electrochimica Acta, 2004. 49(14): p. 2379-2383.
12.S. Zhong, Y. Wang, M. Wang, M.-Z. Zhang, X.-B. Yin, R.-W. Peng and N.-B. Ming, Formation of nanostructured copper filaments in electrochemical deposition. Physical Review E, 2003. 67(6): p. 061601.
13.N.T.M. Hai, J. Furrer, E. Barletta, N. Luedi and P. Broekmann, Copolymers of Imidazole and 1,4-Butandiol Diglycidyl Ether as an Efficient Suppressor Additive for Copper Electroplating. Journal of the Electrochemical Society, 2014. 161(9): p. D381-D387.
14.N.T.M. Hai, F. Janser, N. Luedi and P. Broekmann, Tailored Design of Suppressor Additives for Copper Plating by Combining Functionalities. ECS Electrochemistry Letters, 2013. 2(11): p. D52-D54.
15.N.T.M. Hai, J. Odermatt, V. Grimaudo, K.W. Krämer, A. Fluegel, M. Arnold, D. Mayer and P. Broekmann, Potential Oscillations in Galvanostatic Cu Electrodeposition: Antagonistic and Synergistic Effects among SPS, Chloride, and Suppressor Additives. The Journal of Physical Chemistry C, 2012. 116(12): p. 6913-6924.
16.T. Nagai, S. Nakanishi, Y. Mukouyama, Y.H. Ogata and Y. Nakato, Periodic and chaotic oscillations of the electrochemical potential of p-Si in contact with an aqueous (CuSO4+HF) solution, caused by electroless Cu deposition. Chaos, 2006. 16(3): p. 037106.
17.S. Nakanishi, S.-i. Sakai, K. Nishimura and Y. Nakato, Layer-by-Layer Electrodeposition of Copper in the Presence of o-Phenanthroline, Caused by a New Type of Hidden NDR Oscillation with the Effective Electrode Surface Area as the Key Variable. The Journal of Physical Chemistry B, 2005. 109(40): p. 18846-18851.
18.N.T.M. Hai, D. Lechner, F. Stricker, J. Furrer and P. Broekmann, Combined Secondary Ion Mass Spectrometry Depth Profiling and Focused Ion Beam Analysis of Cu Films Electrodeposited under Oscillatory Conditions. ChemElectroChem, 2015. 2(5): p. 664-671.
19.Z.V. Feng, X. Li and A.A. Gewirth, Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study. The Journal of Physical Chemistry B, 2003. 107(35): p. 9415-9423.
20.K.R. Hebert, S. Adhikari and J.E. Houser, Chemical Mechanism of Suppression of Copper Electrodeposition by Poly(ethylene glycol). Journal of The Electrochemical Society, 2005. 152(5): p. C324-C329.
21.P. Moreno-García, V. Grimaudo, A. Riedo, M. Tulej, M.B. Neuland, P. Wurz and P. Broekmann, Towards Structural Analysis of Polymeric Contaminants in Electrodeposited Cu films. Electrochimica Acta, 2016. 199: p. 394-402.

Chapter 5
1.O. Nakano, T. Kataoka, S. Taenaka, N. Uchida and N. Hanzawa, Electrodeposited copper foil. 2003, US Patent 6544663.
2.Y. Hirasawa and N. Takahashi, Method of manfacturing electrodeposited copper foil and electrodeposited copper foil. 2001, EP Patent 1065298.
3.C. Chen, K.N. Tu and T. LIU, Electrodeposited Nano-Twins Copper Layer and Method of Fabricating the Same. 2013, US Patent 0122326.
4.C.-C. Chen, C.-H. Yang, Y.-S. Wu and C.-E. Ho, Depth-dependent self-annealing behavior of electroplated Cu. Surface and Coatings Technology, 2016.
5.D. Field, L. Bradford, M. Nowell and T. Lillo, The role of annealing twins during recrystallization of Cu. Acta Materialia, 2007. 55(12): p. 4233-4241.
6.C.-L. Lu, H.-W. Lin, C.-M. Liu, Y.-S. Huang, T.-L. Lu, T.-C. Liu, H.-Y. Hsiao, C. Chen, J.-C. Kuo and K.-N. Tu, Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Materials, 2014. 6(10): p. e135.
7.M. Belhadjamor, M. El Mansori, S. Belghith and S. Mezlini, Anti-fingerprint properties of engineering surfaces: a review. Surface Engineering, 2016: p. 1-32.

Chapter 6
1.C.-T. Ko and K.-N. Chen, Wafer-level bonding/stacking technology for 3D integration. Microelectronics Reliability, 2010. 50(4): p. 481-488.
2.K.N. Tu, Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523.
3.C. Tz-Cheng, Z. Kejun, R. Stierman, D. Edwards and K. Ano. Effect of thermal aging on board level drop reliability for Pb-free BGA packages. in 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546). 2004.
4.J.-W. Yoon, S.-W. Kim, J.-M. Koo, D.-G. Kim and S.-B. Jung, Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn-Cu solder. Journal of Electronic Materials, 2004. 33(10): p. 1190-1199.
5.T. Havlik, D. Orac, M. Petranikova, A. Miskufova, F. Kukurugya and Z. Takacova, Leaching of copper and tin from used printed circuit boards after thermal treatment. Journal of Hazardous Materials, 2010. 183(1–3): p. 866-873.
6.K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano and K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. Journal of Applied Physics, 2005. 97(2): p. 024508.
7.K.N. Tu and U. Gösele, Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Applied Physics Letters, 2005. 86(9): p. 093111.
8.M. Onishi and H. Fujibuchi, Reaction-Diffusion in the Cu–Sn System. Transactions of the Japan Institute of Metals, 1975. 16(9): p. 539-547.
9.Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts and N. Dimitrov, Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper–solder interface. Journal of Applied Electrochemistry, 2008. 38(12): p. 1695-1705.
10.F. Wafula, Y. Liu, L. Yin, S. Bliznakov, P. Borgesen, E.J. Cotts and N. Dimitrov, Impact of Key Deposition Parameters on the Voiding Sporadically Occurring in Solder Joints with Electroplated Copper. Journal of The Electrochemical Society, 2010. 157(2): p. D111-D118.
11.J.-Y. Wu, H. Lee, C.-H. Wu, C.-F. Lin, W.-P. Dow and C.-M. Chen, Effects of Electroplating Additives on the Interfacial Reactions between Sn and Cu Electroplated Layers. Journal of The Electrochemical Society, 2014. 161(10): p. D522-D527.
12.Y. Yang, H. Lu, C. Yu and Y. Li, Void formation at the interface in Sn/Cu solder joints. Microelectronics Reliability, 2011. 51(12): p. 2314-2318.
13.J. Yu and J.Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn–3.5Ag solder joints. Acta Materialia, 2008. 56(19): p. 5514-5523.
14.T.-Y. Yu, H. Lee, H.-L. Hsu, W.-P. Dow, H.-K. Cheng, K.-C. Liu and C.-M. Chen, Effects of Cu Electroplating Formulas on the Interfacial Microstructures of Sn/Cu Joints. Journal of The Electrochemical Society, 2016. 163(13): p. D734-D741.
15.H. Lee, T.-Y. Yu, H.-K. Cheng, K.-C. Liu, P.-F. Chan, W.-P. Dow and C.-M. Chen, Impurity Incorporation in the Cu Electrodeposit and Its Effects on the Microstructural Evolution of the Sn/Cu Solder Joints. Journal of The Electrochemical Society, 2017. 164(7): p. D457-D462.
16.H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen and K.N. Tu, Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper. Science, 2012. 336(6084): p. 1007-1010.
17.T.-C. Liu, C.-M. Liu, Y.-S. Huang, C. Chen and K.-N. Tu, Eliminate Kirkendall voids in solder reactions on nanotwinned copper. Scripta Materialia, 2013. 68(5): p. 241-244.
18.W.-L. Chiu, C.-M. Liu, Y.-S. Haung and C. Chen, Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization. Applied Physics Letters, 2014. 104(17): p. 171902.
19.L. Xu, D. Xu, K.N. Tu, Y. Cai, N. Wang, P. Dixit, J.H.L. Pang and J. Miao, Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. Journal of Applied Physics, 2008. 104(11): p. 113717.
20.K. Lu, L. Lu and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science, 2009. 324(5925): p. 349-352.
21.A. Suzuki and Y. Mishin, Atomic mechanisms of grain boundary diffusion: Low versus high temperatures. Journal of Materials Science, 2005. 40(12): p. 3155-3161.
22.C.-C. Chen, C.-H. Yang, Y.-S. Wu and C.-E. Ho, Depth-dependent self-annealing behavior of electroplated Cu. Surface and Coatings Technology, 2016.
23.S. Kim and J. Yu, Recrystallization-induced void migration in electroplated Cu films. Scripta Materialia, 2012. 67(4): p. 312-315.

Chapter 7
1.D. Josell and T.P. Moffat, Extreme Bottom-up Filling of Through Silicon Vias and Damascene Trenches with Gold in a Sulfite Electrolyte. Journal of the Electrochemical Society, 2013. 160(12): p. D3035-D3039.
2.D. Josell and T.P. Moffat, Superconformal Cu Electrodeposition from Cu(II)-EDTA Complexed Alkaline Electrolyte. Journal of the Electrochemical Society, 2014. 161(10): p. D558-D563.
3.D. Josell and T.P. Moffat, Superconformal Copper Electrodeposition in Complexed Alkaline Electrolyte. Journal of the Electrochemical Society, 2014. 161(5): p. D287-D292.
4.D. Josell and T.P. Moffat, Bottom-Up Electrodeposition of Zinc in Through Silicon Vias. Journal of The Electrochemical Society, 2015. 162(3): p. D129-D135.
5.D. Josell and T.P. Moffat, Superconformal Bottom-Up Nickel Deposition in High Aspect Ratio Through Silicon Vias. Journal of the Electrochemical Society, 2016. 163(7): p. D322-D331.
6.D. Josell and T.P. Moffat, Superconformal Bottom-Up Gold Deposition in High Aspect Ratio Through Silicon Vias. Journal of the Electrochemical Society, 2017. 164(6): p. D327-D334.
7.D. Josell, M. Silva and T.P. Moffat, Superconformal Bottom-Up Cobalt Deposition in High Aspect Ratio Through Silicon Vias. Journal of the Electrochemical Society, 2016. 163(14): p. D809-D817.
8.C.H. Lee, J.E. Bonevich, J.E. Davies and T.P. Moffat, Superconformal Electrodeposition of Co and Co-Fe Alloys Using 2-Mercapto-5-benzimidazolesulfonic Acid. Journal of the Electrochemical Society, 2009. 156(8): p. D301-D309.
9.T.P. Moffat and D. Josell, Extreme Bottom-Up Superfilling of Through-Silicon-Vias by Damascene Processing: Suppressor Disruption, Positive Feedback and Turing Patterns. Journal of the Electrochemical Society, 2012. 159(4): p. D208-D216.
10.N.T.M. Hai, J. Furrer, E. Barletta, N. Luedi and P. Broekmann, Copolymers of Imidazole and 1,4-Butandiol Diglycidyl Ether as an Efficient Suppressor Additive for Copper Electroplating. Journal of the Electrochemical Society, 2014. 161(9): p. D381-D387.
11.T. Dobrovolska, D.A. López-Sauri, L. Veleva and I. Krastev, Oscillations and spatio-temporal structures during electrodeposition of AgCd alloys. Electrochimica Acta, 2012. 79: p. 162-169.
12.D.A. Lopez-Sauri, L. Veleva and G. Perez-Angel, Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium. Phys Chem Chem Phys, 2015. 17(34): p. 22266-71.
13.N.T.M. Hai, F. Janser, N. Luedi and P. Broekmann, Tailored Design of Suppressor Additives for Copper Plating by Combining Functionalities. ECS Electrochemistry Letters, 2013. 2(11): p. D52-D54.
14.N.T.M. Hai, J. Odermatt, V. Grimaudo, K.W. Krämer, A. Fluegel, M. Arnold, D. Mayer and P. Broekmann, Potential Oscillations in Galvanostatic Cu Electrodeposition: Antagonistic and Synergistic Effects among SPS, Chloride, and Suppressor Additives. The Journal of Physical Chemistry C, 2012. 116(12): p. 6913-6924.
15.S. Nakanishi, S.-i. Sakai, K. Nishimura and Y. Nakato, Layer-by-Layer Electrodeposition of Copper in the Presence of o-Phenanthroline, Caused by a New Type of Hidden NDR Oscillation with the Effective Electrode Surface Area as the Key Variable. The Journal of Physical Chemistry B, 2005. 109(40): p. 18846-18851.
16.E.W. Bohannan, L.-Y. Huang, F.S. Miller, M.G. Shumsky and J.A. Switzer, In Situ Electrochemical Quartz Crystal Microbalance Study of Potential Oscillations during the Electrodeposition of Cu/Cu2O Layered Nanostructures. Langmuir, 1999. 15(3): p. 813-818.
17.S. Leopold, M. Herranen, J.O. Carlsson and L. Nyholm, In situ pH measurement of the self-oscillating Cu(II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor. Journal of Electroanalytical Chemistry, 2003. 547(1): p. 45-52.
18.J.A. Switzer, C.-J. Hung, L.-Y. Huang, E.R. Switzer, D.R. Kammler, T.D. Golden and E.W. Bohannan, Electrochemical Self-Assembly of Copper/Cuprous Oxide Layered Nanostructures. Journal of the American Chemical Society, 1998. 120(14): p. 3530-3531.
19.J.A. Switzer, B.M. Maune, E.R. Raub and E.W. Bohannan, Negative Differential Resistance in Electrochemically Self-Assembled Layered Nanostructures. The Journal of Physical Chemistry B, 1999. 103(3): p. 395-398.
20.S.-i. Sakai, S. Nakanishi and Y. Nakato, Mechanisms of Oscillations and Formation of Nano-Scale Layered Structures in Induced Co-Deposition of Some Iron-Group Alloys (Ni−P, Ni−W, and Co−W), Studied by an In Situ Electrochemical Quartz Crystal Microbalance Technique. The Journal of Physical Chemistry B, 2006. 110(24): p. 11944-11949.
21.S. Wen and J.A. Szpunar, Cathodic Potential Oscillations of Sn(II) Reduction and Hydrogen Evolution in Acid Stannous Sulfate Solutions. Journal of The Electrochemical Society, 2006. 153(3): p. E45-E51.
22.S. Nakanishi, S.-i. Sakai, T. Nagai and Y. Nakato, Macroscopically Uniform Nanoperiod Alloy Multilayers Formed by Coupling of Electrodeposition with Current Oscillations. The Journal of Physical Chemistry B, 2005. 109(5): p. 1750-1755.
23.K. Fukami, S. Nakanishi, T. Tada, H. Yamasaki, S.-i. Sakai, S. Fukushima and Y. Nakato, Self-Organized Periodic Growth of Stacked Hexagonal Wafers in Synchronization with a Potential Oscillation in Zinc Electrodeposition. Journal of The Electrochemical Society, 2005. 152(7): p. C493-C497.
24.Y.D. Chiu and W.P. Dow, Accelerator Screening by Cyclic Voltammetry for Microvia Filling by Copper Electroplating. Journal of the Electrochemical Society, 2013. 160(12): p. D3021-D3027.
25.Y. Zhang, G. Ding, H. Wang, P. Cheng and R. Liu, Optimization of innovative approaches to the shortening of filling times in 3D integrated through-silicon vias (TSVs). Journal of Micromechanics and Microengineering, 2015. 25(4): p. 045009.
26.T.P. Moffat, J.E. Bonevich, W.H. Huber, A. Stanishevsky, D.R. Kelly, G.R. Stafford and D. Josell, Superconformal Electrodeposition of Copper in 500–90 nm Features. Journal of The Electrochemical Society, 2000. 147(12): p. 4524-4535.
27.S.-M. Huang, C.-W. Liu and W.-P. Dow, Effect of Convection-Dependent Adsorption of Additives on Microvia Filling in an Acidic Copper Plating Solution. Journal of The Electrochemical Society, 2012. 159(3): p. D135-D141.
28.W.-P. Dow, H.-S. Huang, M.-Y. Yen and H.-C. Huang, Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating. Journal of The Electrochemical Society, 2005. 152(6): p. C425-C434.

Appendix
1.E. Alekseev and D. Pavlidis, Large-signal microwave performance of GaN-based NDR diode oscillators. Solid-State Electronics, 2000. 44(6): p. 941-947.
2.L. Solymar, D. Walsh and R.R.A. Syms, Electrical Properties of Materials, ed. Edition. 2014: Oxford University Press.
3.A. Eftekhari, R.C. Alkire, Y. Gogotsi and P. Simon, Nanostructured Materials in Electrochemistry. 2008: Wiley.
4.M. Eiswirth, M. Lübke, K. Krischer, W. Wolf, J.L. Hudson and G. Ertl, Structural effects on the dynamics of an electrocatalytic oscillator. Chemical Physics Letters, 1992. 192(2): p. 254-258.
5.G. Horányi and C. Visy, Potential oscillations in the course of galvanostatic oxidation of hydrogen at platinum electrode in the presence of electrosorbing cations. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979. 103(3): p. 353-361.
6.T. Kodera, T. Yamazaki, M. Masuda and R. Ohnishi, Limit cycle in electrochemical oscillation—potential oscillation during anodic oxidation of H2. Electrochimica Acta, 1988. 33(4): p. 537-540.
7.F. Plenge, H. Varela and K. Krischer, Asymmetric Target Patterns in One-Dimensional Oscillatory Media with Genuine Nonlocal Coupling. Physical Review Letters, 2005. 94(19): p. 198301.
8.W. Wolf, M. Lübke, M.T.M. Koper, K. Krischer, M. Eiswirth and G. Ertl, Experimental and theoretical description of potentiostatic current oscillations during H2 oxidation. Journal of Electroanalytical Chemistry, 1995. 399(1): p. 185-196.
9.T. Yamazaki and T. Kodera, Potential oscillation during anodic oxidation of hydrogen at a platinum electrode—I. experimental. Electrochimica Acta, 1989. 34(7): p. 969-975.
10.T. Yamazaki, T. Kodera, R. Ohnishi and M. Masuda, Potential oscillation during anodic oxidation of hydrogen at a platinum electrode—II. Kinetic analysis. Electrochimica Acta, 1990. 35(2): p. 431-435.
11.W. Li and K. Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions: IX . Effect of Benzotriazole on Potential Oscillations. Journal of The Electrochemical Society, 1993. 140(6): p. 1642-1650.
12.W. Li, X. Wang and K. Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions: VII . Experimental Potential/Current Oscillations. Journal of The Electrochemical Society, 1990. 137(4): p. 1184-1188.
13.C. Moina and D. Posadas, Salt formation during the anodic dissolution of iron in (NH4)2SO4 at pH = 2—II. Transient behaviour. Electrochimica Acta, 1989. 34(6): p. 789-794.
14.M. Pagitsas and D. Sazou, The improved Franck—FitzHugh model for the electrodissolution of iron in sulphuric acid solutions: linear stability and bifurcation analysis. Derivation of the kinetic equations for the forced Franck—FitzHugh model. Electrochimica Acta, 1991. 36(8): p. 1301-1308.
15.A.J. Pearlstein and J.A. Johnson, Global and Conditional Stability of the Steady and Periodic Solutions of the Franck‐FitzHugh Model of Electrodissolution of Fe in H 2 SO 4. Journal of The Electrochemical Society, 1989. 136(5): p. 1290-1299.
16.Y. Wang, J.L. Hudson and N.I. Jaeger, On the Franck‐FitzHugh Model of the Dynamics of Iron Electrodissolution in Sulfuric Acid. Journal of The Electrochemical Society, 1990. 137(2): p. 485-488.
17.S.Y. Zhao, S.H. Chen, H.Y. Ma, D.G. Li and F.J. Kong, Current oscillations during electrodissolution of iron in perchloric acid solutions. Journal of Applied Electrochemistry, 2002. 32(2): p. 231-235.
18.F. Argoul and A. Arneodo, Experimental evidence for deterministic chaos in electrochemical deposition. J. Phys. France, 1990. 51(21): p. 2477-2487.
19.K. Fukami, S. Nakanishi, T. Tada, H. Yamasaki, S.-i. Sakai, S. Fukushima and Y. Nakato, Self-Organized Periodic Growth of Stacked Hexagonal Wafers in Synchronization with a Potential Oscillation in Zinc Electrodeposition. Journal of The Electrochemical Society, 2005. 152(7): p. C493-C497.
20.J. St‐Pierre and D.L. Piron, A Model for the Potential Oscillations of the Zinc Electrode Polarized Cathodically in an Alkaline Medium. Journal of The Electrochemical Society, 1987. 134(7): p. 1689-1695.
21.J. St‐Pierre and D.L. Piron, Mechanism of Cathodic Potential Oscillations of the Zinc Electrode in Alkaline Solutions. Journal of The Electrochemical Society, 1990. 137(8): p. 2491-2498.
22.R.M. Suter and P.-z. Wong, Nonlinear oscillations in electrochemical growth of Zn dendrites. Physical Review B, 1989. 39(7): p. 4536-4540.
23.S. Wang, K.-Q. Zhang, Q.-Y. Xu, M. Wang, R.-W. Peng, Z. Zhang and N.-b. Ming, Oscillations in Electrochemical Deposition of Zinc. Journal of the Physical Society of Japan, 2003. 72(6): p. 1574-1580.
24.M. Schell, F.N. Albahadily, J. Safar and Y. Xu, Characterization of oscillatory states in the electrochemical oxidation of formaldehyde and formate/formic acid. The Journal of Physical Chemistry, 1989. 93(12): p. 4806-4810.
25.A. Karantonis, D. Koutsaftis and N. Kouloumbi, Bistability, oscillations and bifurcations of the electrocatalytic oxidation of HCHO on Pt. Chemical Physics Letters, 2006. 422(1–3): p. 78-82.
26.J.C. Bell, N.I. Jaeger and J.L. Hudson, Coupled oscillating cobalt electrodes. The Journal of Physical Chemistry, 1992. 96(21): p. 8671-8676.
27.D. Sazou and M. Pagitsas, Study of relaxation current oscillations observed during the transition from the active to the passive state of a cobalt electrode in phosphoric acid solutions. Journal of Electroanalytical Chemistry, 1992. 323(1): p. 247-260.
28.S. Wen and J.A. Szpunar, Cathodic Potential Oscillations of Sn(II) Reduction and Hydrogen Evolution in Acid Stannous Sulfate Solutions. Journal of The Electrochemical Society, 2006. 153(3): p. E45-E51.
29.T. Tada, K. Fukami, S. Nakanishi, H. Yamasaki, S. Fukushima, T. Nagai, S.-i. Sakai and Y. Nakato, Tuning of the spacing and thickness of metal latticeworks by modulation of self-organized potential oscillations in tin (Sn) electrodeposition. Electrochimica Acta, 2005. 50(25–26): p. 5050-5055.
30.D.L. Piron, I. Nagatsugawa and C. Fan, Cathodic Potential Oscillation of Sn(II)/Sn Electrodes in KOH Solution under Constant Current Conditions. Journal of The Electrochemical Society, 1991. 138(11): p. 3296-3299.
31.S. Nakanishi, K. Fukami, T. Tada and Y. Nakato, Metal Latticeworks Formed by Self-Organization in Oscillatory Electrodeposition. Journal of the American Chemical Society, 2004. 126(31): p. 9556-9557.
32.K. Fukami, S. Nakanishi, H. Yamasaki, T. Tada, K. Sonoda, N. Kamikawa, N. Tsuji, H. Sakaguchi and Y. Nakato, General Mechanism for the Synchronization of Electrochemical Oscillations and Self-Organized Dendrite Electrodeposition of Metals with Ordered 2D and 3D Microstructures. The Journal of Physical Chemistry C, 2007. 111(3): p. 1150-1160.
33.J. Lee, J. Christoph, P. Strasser, M. Eiswirth and G. Ertl, Spatio-temporal interfacial potential patterns during the electrocatalyzed oxidation of formic acid on Bi-modified Pt. The Journal of Chemical Physics, 2001. 115(3): p. 1485-1492.
34.Y. Mukouyama, M. Kikuchi, G. Samjeské, M. Osawa and H. Okamoto, Potential Oscillations in Galvanostatic Electrooxidation of Formic Acid on Platinum: A Mathematical Modeling and Simulation. The Journal of Physical Chemistry B, 2006. 110(24): p. 11912-11917.
35.S. Nakabayashi and A. Kira, Forced electrochemical non-linear oscillator assembled on rotating ring-disk electrodes. The Journal of Physical Chemistry, 1992. 96(3): p. 1021-1023.
36.F. Raspel, R.J. Nichols and D.M. Kolb, Current oscillations during formic acid oxidation on Pt(100). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990. 286(1): p. 279-283.
37.P. Strasser, M. Eiswirth and G. Ertl, Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. II. Model calculations. The Journal of Chemical Physics, 1997. 107(3): p. 991-1003.
38.P. Strasser, M. Lübke, F. Raspel, M. Eiswirth and G. Ertl, Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. I. Experimental. The Journal of Chemical Physics, 1997. 107(3): p. 979-990.
39.D. Haim, O. Lev, L.M. Pismen and M. Sheintuch, Modeling periodic and chaotic dynamics in anodic nickel dissolution. The Journal of Physical Chemistry, 1992. 96(6): p. 2676-2681.
40.O. Lev, M. Sheintuch, L.M. Pisemen and C. Yarnitzkyt, Standing and propagating wave oscillations in the anodic dissolution of nickle. Nature, 1988. 336(6198): p. 458-459.
41.O. Lev, A. Wolffberg, M. Sheintuch and L.M. Pismen, Bifurcations to periodic and chaotic motions in anodic nickel dissolution. Chemical Engineering Science, 1988. 43(6): p. 1339-1353.
42.R. Saliba, C. Mingotaud, F. Argoul and S. Ravaine, Spontaneous oscillations in gold electrodeposition. Electrochemistry Communications, 2002. 4(8): p. 629-632.
43.K. Fukami, S. Nakanishi, Y. Sawai, K. Sonoda, K. Murakoshi and Y. Nakato, In Situ Probing of Dynamic Nanostructural Change of Electrodeposits in the Course of Oscillatory Growth Using SERS. The Journal of Physical Chemistry C, 2007. 111(8): p. 3216-3219.
44.M.T.M. Koper, T.J. Schmidt, N.M. Marković and P.N. Ross, Potential Oscillations and S-Shaped Polarization Curve in the Continuous Electro-oxidation of CO on Platinum Single-crystal Electrodes. The Journal of Physical Chemistry B, 2001. 105(35): p. 8381-8386.
45.S. Malkhandi, A. Bonnefont and K. Krischer, Strictly potentiostatic current oscillations during bulk CO electro-oxidation on platinum in the presence of inhibiting anions. Electrochemistry Communications, 2005. 7(7): p. 710-716.
46.S. Cattarin, F. Decker and D. Dini, Anodic Silicon Dissolution in Acidic Fluoride Electrolyte. A Probe Beam Deflection Investigation. The Journal of Physical Chemistry B, 1998. 102(24): p. 4779-4784.
47.J.N. Chazalviel, C. da Fonseca and F. Ozanam, In Situ Infrared Study of the Oscillating Anodic Dissolution of Silicon in Fluoride Electrolytes. Journal of The Electrochemical Society, 1998. 145(3): p. 964-973.
48.J.N. Chazalviel and F. Ozanam, A Theory for the Resonant Response of an Electrochemical System: Self‐Oscillating Domains, Hidden Oscillation, and Synchronization Impedance. Journal of The Electrochemical Society, 1992. 139(9): p. 2501-2508.
49.J.N. Chazalviel and F. Ozanam, Current oscillations in the anodic dissolution of silicon: On the origin of a sustained oscillation on the macroscopic scale. Electrochimica Acta, 2010. 55(3): p. 656-665.
50.H.J. Lewerenz and G. Schlichthörl, Light-induced oscillating reactions of silicon in ammonium fluoride solutions. Journal of Electroanalytical Chemistry, 1992. 327(1): p. 85-92.
51.M.E. De Almeidi Lima, J. Bouteillon and J.P. Diard, Study of the electrochemical reduction of lead chloride on a liquid lead electrode in NaCl-KCl melt. Journal of Applied Electrochemistry, 1992. 22(6): p. 577-580.
52.A. Chen and B. Miller, Potential Oscillations during the Electrocatalytic Oxidation of Sulfide on a Microstructured Ti/Ta2O5-IrO2 Electrode. The Journal of Physical Chemistry B, 2004. 108(7): p. 2245-2251.
53.B. Miller and A. Chen, Oscillatory instabilities during the electrochemical oxidation of sulfide on a Pt electrode. Journal of Electroanalytical Chemistry, 2006. 588(2): p. 314-323.
54.F.N. Albahadily, J. Ringland and M. Schell, Mixed‐mode oscillations in an electrochemical system. I. A Farey sequence which does not occur on a torus. The Journal of Chemical Physics, 1989. 90(2): p. 813-821.
55.J.F. Cooper, R.H. Muller and C.W. Tobias, Periodic Phenomena during Anodic Dissolution of Copper at High Current Densities. Journal of The Electrochemical Society, 1980. 127(8): p. 1733-1744.
56.H.D. Dewald, P. Parmananda and R.W. Rollins, Periodic and Chaotic Current Oscillations at a Copper Electrode in an Acetate Electrolyte. Journal of The Electrochemical Society, 1993. 140(7): p. 1969-1973.
57.Z.H. Gu, J. Chen and T.Z. Fahidy, The magnetic field effect on the pre-oscillatory formation kinetics of anodic oxide layers. Electrochimica Acta, 1993. 38(17): p. 2631-2634.
58.Z.H. Gu, J. Chen, T.Z. Fahidy and A. Olivier, The effect of process parameters on the anodic dissolution of copper into NaCl/KSCN electrolytes. Journal of Electroanalytical Chemistry, 1994. 367(1): p. 7-14.
59.Z.H. Gu, A. Olivier and T.Z. Fahidy, The effect of magnetic fields on the anodic dissolution of copper in NaCl?KSCN electrolytes. Electrochimica Acta, 1990. 35(6): p. 933-943.
60.M. Schell and F.N. Albahadily, Mixed‐mode oscillations in an electrochemical system. II. A periodic–chaotic sequence. The Journal of Chemical Physics, 1989. 90(2): p. 822-828.
61.L.T. Tsitsopoulos, T.T. Tsotsis and I.A. Webster, An ellipsometric investigation of reaction rate oscillations during the electrochemical anodization of Cu in H3PO4 solutions. Surface Science, 1987. 191(1): p. 225-238.
62.N.T.M. Hai, J. Furrer, E. Barletta, N. Luedi and P. Broekmann, Copolymers of Imidazole and 1,4-Butandiol Diglycidyl Ether as an Efficient Suppressor Additive for Copper Electroplating. Journal of the Electrochemical Society, 2014. 161(9): p. D381-D387.
63.N.T.M. Hai, F. Janser, N. Luedi and P. Broekmann, Tailored Design of Suppressor Additives for Copper Plating by Combining Functionalities. ECS Electrochemistry Letters, 2013. 2(11): p. D52-D54.
64.N.T.M. Hai, J. Odermatt, V. Grimaudo, K.W. Krämer, A. Fluegel, M. Arnold, D. Mayer and P. Broekmann, Potential Oscillations in Galvanostatic Cu Electrodeposition: Antagonistic and Synergistic Effects among SPS, Chloride, and Suppressor Additives. The Journal of Physical Chemistry C, 2012. 116(12): p. 6913-6924.
65.T. Nagai, S. Nakanishi, Y. Mukouyama, Y.H. Ogata and Y. Nakato, Periodic and chaotic oscillations of the electrochemical potential of p-Si in contact with an aqueous (CuSO4+HF) solution, caused by electroless Cu deposition. Chaos, 2006. 16(3): p. 037106.
66.S. Nakanishi, S.-i. Sakai, K. Nishimura and Y. Nakato, Layer-by-Layer Electrodeposition of Copper in the Presence of o-Phenanthroline, Caused by a New Type of Hidden NDR Oscillation with the Effective Electrode Surface Area as the Key Variable. The Journal of Physical Chemistry B, 2005. 109(40): p. 18846-18851.
67.Y. Jia, Y. Zhao, Y. He, C. Pan, C. Ji, W. Bi and Q. Gao, Chemisorbed Sulfate-Driven Oscillatory Electro-Oxidation of Thiourea on Gold. The Journal of Physical Chemistry C, 2015. 119(44): p. 24837-24843.
68.L. Xu, Q. Gao, J. Feng and J. Wang, Oscillations and period-doubling bifurcations in the electrochemical oxidation of thiourea. Chemical Physics Letters, 2004. 397(1–3): p. 265-270.
69.S.G. Corcoran and K. Sieradzki, Chaos during the Growth of an Artificial Pit. Journal of The Electrochemical Society, 1992. 139(6): p. 1568-1573.
70.I. Krastev, T. Valkova and A. Zielonka, Internal stress in multilayer silver–bismuth coatings. Journal of Applied Electrochemistry, 2005. 35(6): p. 539-544.
71.Y. Nagamine and M. Hara, Bifurcations of spatiotemporal stripe patterns formed by Ag/Sb co-electrodeposition. Physica A: Statistical Mechanics and its Applications, 2003. 327(3–4): p. 249-263.
72.Y. Nagamine and M. Hara, Surface-element analysis of spatiotemporal stripe patterns formed by Ag and Sb coelectrodeposition. Physical Review E, 2005. 72(1): p. 016201.
73.S. Nakabayashi, I. Krastev, R. Aogaki and K. Inokuma, Electrochemical instability of Ag/Sb co-deposition coupled with a magnetohydrodynamic flow. Chemical Physics Letters, 1998. 294(1–3): p. 204-208.
74.N. Seiichiro, I. Kiyoshi, N. Aiko and K. Ivan, Colliding Spiral Waves Propagating on the Electrode. Chemistry Letters, 2000. 29(2): p. 88-89.
75.M.T.M. Koper and P. Gaspard, Mixed-mode and chaotic oscillations in a simple model of an electrochemical oscillator. The Journal of Physical Chemistry, 1991. 95(13): p. 4945-4947.
76.M.T.M. Koper, P. Gaspard and J.H. Sluyters, A one-parameter bifurcation analysis of the indium/thiocyanate electrochemical oscillator. The Journal of Physical Chemistry, 1992. 96(14): p. 5674-5675.
77.M.C.H. McKubre and D.D. Macdonald, The Dissolution and Passivation of Zinc in Concentrated Aqueous Hydroxide. Journal of The Electrochemical Society, 1981. 128(3): p. 524-530.
78.I. Mogi, H. Kikuya, K. Watanabe, S. Awaji and M. Motokawa, Magnetic Field Effects on the Current Oscillations in Anodic Zinc Dissolution. Chemistry Letters, 1996(8): p. 673-674.
79.E.W. Bohannan, L.-Y. Huang, F.S. Miller, M.G. Shumsky and J.A. Switzer, In Situ Electrochemical Quartz Crystal Microbalance Study of Potential Oscillations during the Electrodeposition of Cu/Cu2O Layered Nanostructures. Langmuir, 1999. 15(3): p. 813-818.
80.J. Eskhult, M. Herranen and L. Nyholm, On the origin of the spontaneous potential oscillations observed during galvanostatic deposition of layers of Cu and Cu2O in alkaline citrate solutions. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 35-49.
81.E. Mishina, K. Nagai, D. Barsky and S. Nakabayashi, Optical properties of a self-assembled Cu/Cu2O multilayered structure studied in situ during deposition. Physical Chemistry Chemical Physics, 2002. 4(1): p. 127-133.
82.J.A. Switzer, C.-J. Hung, L.-Y. Huang, E.R. Switzer, D.R. Kammler, T.D. Golden and E.W. Bohannan, Electrochemical Self-Assembly of Copper/Cuprous Oxide Layered Nanostructures. Journal of the American Chemical Society, 1998. 120(14): p. 3530-3531.
83.J.A. Switzer, B.M. Maune, E.R. Raub and E.W. Bohannan, Negative Differential Resistance in Electrochemically Self-Assembled Layered Nanostructures. The Journal of Physical Chemistry B, 1999. 103(3): p. 395-398.
84.S. Zhong, Y. Wang, M. Wang, M.-Z. Zhang, X.-B. Yin, R.-W. Peng and N.-B. Ming, Formation of nanostructured copper filaments in electrochemical deposition. Physical Review E, 2003. 67(6): p. 061601.
85.M.Z. Zhang, M. Wang, Z. Zhang, J.M. Zhu, R.W. Peng and N.B. Ming, Periodic structures of randomly distributed Cu/Cu2O nanograins and periodic variations of cell voltage in copper electrodeposition. Electrochimica Acta, 2004. 49(14): p. 2379-2383.
86.Y. Wang, Y. Cao, M. Wang, S. Zhong, M.-Z. Zhang, Y. Feng, R.-W. Peng, X.-P. Hao and N.-B. Ming, Spontaneous formation of periodic nanostructured film by electrodeposition: Experimental observations and modeling. Physical Review E, 2004. 69(2): p. 021607.
87.S. Leopold, M. Herranen, J.O. Carlsson and L. Nyholm, In situ pH measurement of the self-oscillating Cu(II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor. Journal of Electroanalytical Chemistry, 2003. 547(1): p. 45-52.
88.S. Leopold, M. Herranen and J.-O. Carlsson Spontaneous Potential Oscillations in the Cu(II)/Tartrate and Lactate Systems, Aspects of Mechanisms and Film Deposition. Journal of The Electrochemical Society, 2001. 148(8): p. C513-C517.
89.S. Leopold, J.C. Arrayet, J.L. Bruneel, M. Herranen, J.-O. Carlsson, F. Argoul and L. Servant, In Situ CRM Study of the Self-Oscillating Cu-(II)-Lactate and Cu-(II)-Tartrate Systems. Journal of The Electrochemical Society, 2003. 150(7): p. C472-C477.
90.S. Cattarin and H. Tributsch, Interfacial Reactivity and Oscillating Behavior of Chalcopyrite Cathodes during H 2 O 2 Reduction: I . Electrochemical Phenomena. Journal of The Electrochemical Society, 1990. 137(11): p. 3475-3483.
91.S. Cattarin and H. Tributsch, Non-linear and pulse phenomena during H2O2 reduction at chalcopyrite (photo)cathodes. Electrochimica Acta, 1993. 38(1): p. 115-122.
92.M.T.M. Koper and D. Vanmaekelbergh, The Origin of Oscillations during Hydrogen Peroxide Reduction on GaAs Semiconductor Electrodes. The Journal of Physical Chemistry, 1995. 99(11): p. 3687-3696.
93.Y. Mukouyama, M. Hasegawa and S. Nakanishi, Electrochemical Oscillation during H2O2 Reduction in Basic Solutions. ECS Transactions, 2015. 64(45): p. 49-55.
94.Y. Mukouyama, S. Nakanishi, T. Chiba, K. Murakoshi and Y. Nakato, Mechanisms of Two Electrochemical Oscillations of Different Types, Observed for H2O2 Reduction on a Pt Electrode in the Presence of a Small Amount of Halide Ions. The Journal of Physical Chemistry B, 2001. 105(30): p. 7246-7253.
95.S. Nakanishi, Y. Mukouyama, K. Karasumi, A. Imanishi, N. Furuya and Y. Nakato, Appearance of an Oscillation through the Autocatalytic Mechanism by Control of the Atomic-Level Structure of Electrode Surfaces in Electrochemical H2O2 Reduction at Pt Electrodes. The Journal of Physical Chemistry B, 2000. 104(17): p. 4181-4188.
96.S. Nakanishi, Y. Mukouyama and Y. Nakato, Catalytic Effect of Adsorbed Iodine Atoms on Hydrogen Peroxide Reduction at Single-Crystal Pt Electrodes, Causing Enhanced Current Oscillations. The Journal of Physical Chemistry B, 2001. 105(24): p. 5751-5756.
97.Y. Mukouyama, S. Nakanishi, H. Konishi, Y. Ikeshima and Y. Nakato, New-Type Electrochemical Oscillation Caused by Electrode−Surface Inhomogeneity and Electrical Coupling as Well as Solution Stirring through Electrochemical Gas Evolution Reaction. The Journal of Physical Chemistry B, 2001. 105(44): p. 10905-10911.
98.W. Lee, J.-C. Kim and U. Gösele, Spontaneous Current Oscillations during Hard Anodization of Aluminum under Potentiostatic Conditions. Advanced Functional Materials, 2010. 20(1): p. 21-27.
99.S. Nakanishi, S.-i. Sakai, T. Nagai and Y. Nakato, Macroscopically Uniform Nanoperiod Alloy Multilayers Formed by Coupling of Electrodeposition with Current Oscillations. The Journal of Physical Chemistry B, 2005. 109(5): p. 1750-1755.
100.S. Nakanishi, S.-i. Sakai, M. Hatou, Y. Mukouyama and Y. Nakato, Oscillatory Peroxodisulfate Reduction on Pt and Au Electrodes under High Ionic Strength Conditions, Caused by the Catalytic Effect of Adsorbed OH. The Journal of Physical Chemistry B, 2002. 106(9): p. 2287-2293.
101.G. Flätgen, K. Krischer and G. Ertl, Spatio-temporal pattern formation during the reduction of peroxodisulfate in the bistable and oscillatory regime: a surface plasmon microscopy study. Journal of Electroanalytical Chemistry, 1996. 409(1): p. 183-194.
102.E. Harvey, D.N. Buckley and S.N.G. Chu, Oscillatory Behavior during the Anodization of InP. Electrochemical and Solid-State Letters, 2002. 5(4): p. G22-G25.
103.S.-i. Sakai, S. Nakanishi and Y. Nakato, Mechanisms of Oscillations and Formation of Nano-Scale Layered Structures in Induced Co-Deposition of Some Iron-Group Alloys (Ni−P, Ni−W, and Co−W), Studied by an In Situ Electrochemical Quartz Crystal Microbalance Technique. The Journal of Physical Chemistry B, 2006. 110(24): p. 11944-11949.
104.P. Strasser, M. Lübke, C. Eickes and M. Eiswirth, Modeling galvanostatic potential oscillations in the electrocatalytic iodate reduction system. Journal of Electroanalytical Chemistry, 1999. 462(1): p. 19-33.
105.Z.L. Li, B. Ren, X.M. Xiao, Y. Zeng, X. Chu and Z.Q. Tian, Further Insight into the Origin of Potential Oscillations during the Iodate Reduction in Alkaline Solution with Mass Transfer. The Journal of Physical Chemistry A, 2002. 106(28): p. 6570-6573.
106.Z. Li, J. Cai and S. Zhou, New insight into the potential oscillations during iodate reduction in alkaline solution. Journal of the Chemical Society, Faraday Transactions, 1997. 93(19): p. 3519-3522.
107.L.V. Taveira, J.M. Macak, K. Sirotna, L.F.P. Dick and P. Schmuki, Voltage Oscillations and Morphology during the Galvanostatic Formation of Self-Organized TiO2 Nanotubes. Journal of The Electrochemical Society, 2006. 153(4): p. B137-B143.
108.D.A. Lopez-Sauri, L. Veleva and G. Perez-Angel, Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium. Phys Chem Chem Phys, 2015. 17(34): p. 22266-71.
109.T. Dobrovolska, D.A. López-Sauri, L. Veleva and I. Krastev, Oscillations and spatio-temporal structures during electrodeposition of AgCd alloys. Electrochimica Acta, 2012. 79: p. 162-169.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top