[1] P.R.V. Hamann, D.L. Serpa, A.S. Barreto da Cunha, B.R. de Camargo, K.O. Osiro, M. Valle de Sousa, C.R. Felix, R.N.G. Miller, E.F. Noronha, Evaluation of plant cell wall degrading enzyme production by Clostridium thermocellum B8 in the presence of raw agricultural wastes, Int. Biodeterior. Biodegrad., 105 (2015) 97-105.
[2] J.M. Xiaorong Wu, Ron Madl, Donghai Wang, Biofuels from Lignocellulosic Biomass, Sustain. Biotechnol. , (2010) 19-41.
[3] R.H. Doi, A. Kosugi, Cellulosomes: Plant-cell-wall-degrading enzyme complexes, Nat. Rev. Microbiol., 2 (2004) 541-551.
[4] L.R. Lynd, W.H. van Zyl, J.E. McBride, M. Laser, Consolidated bioprocessing of cellulosic biomass: an update, Curr. Opin. Biotechnol., 16 (2005) 577-583.
[5] J. Zaldivar, J. Nielsen, L. Olsson, Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration, Appl. Microbiol. Biotechnol., 56 (2001) 17-34.
[6] B.S. Dien, M.A. Cotta, T.W. Jeffries, Bacteria engineered for fuel ethanol production: current status, Appl. Microbiol. Biotechnol., 63 (2003) 258-266.
[7] R.H. Doi, A. Kosugi, Cellulosomes: plant-cell-wall-degrading enzyme complexes, Nat. Rev. Microbiol., 2 (2004) 541-551.
[8] S.D. Jeon, J.E. Lee, S.J. Kim, S.W. Kim, S.O. Han, Analysis of selective, high protein-protein binding interaction of cohesin-dockerin complex using biosensing methods, Biosens. Bioelectron., 35 (2012) 382-389.
[9] H.Y. Cho, H. Yukawa, M. Inui, R.H. Doi, S.L. Wong, Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800, Appl. Environ. Microbiol., 70 (2004) 5704-5707.
[10] E.S. Edward A. Bayer, Raphael Lamed, Organization and Distribution of the Cellulosome in Clostridium thermocellum, J. Bacteriol., 163 (1985) 552-559.
[11] E.S. Raphael Lamed, Rina Kenig, Edward A. Bayer, The cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities, Biotechnol. Bioeng. Symp., (1983) 163-181.
[12] A.P. Kumar, R.P. Singh, Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking, Bioresour Technol, 99 (2008) 8803-8809.
[13] M. Desvaux, Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia, FEMS Microbiol Rev, 29 (2005) 741-764.
[14] J.F. Robyt, Polysaccharides I, Essentials of Carbohydrate Chemistry, Springer New York, New York, NY, 1998, pp. 157-227.
[15] G. Koch, Raw Material for Pulp, Handbook of Pulp, Wiley-VCH Verlag GmbH2008, pp. 21-68.
[16] L.R. Lynd, P.J. Weimer, W.H. van Zyl, I.S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev, 66 (2002) 506-577.
[17] K.S. Siddiqui, A.A.N. Saqib, M.H. Rashid, M.I. Rajoka, Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger, Enzyme Microb. Tech., 27 (2000) 467-474.
[18] P. Beguin, J.P. Aubert, The biological degradation of cellulose, FEMS Microbiol Rev, 13 (1994) 25-58.
[19] V.S. Bisaria, T.K. Ghose, Biodegradation of Cellulosic Materials - Substrates, Microorganisms, Enzymes and Products, Enzyme Microb. Tech., 3 (1981) 90-104.
[20] M.K. Bhat, S. Bhat, Cellulose degrading enzymes and their potential industrial applications, Biotechnol. Adv., 15 (1997) 583-620.
[21] V.S. Bisaria, S. Mishra, Regulatory aspects of cellulase biosynthesis and secretion, Crit Rev Biotechnol, 9 (1989) 61-103.
[22] J.D. Bok, D.A. Yernool, D.E. Eveleigh, Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana, Appl. Environ. Microbiol., 64 (1998) 4774-4781.
[23] A.K. Goyal, D.E. Eveleigh, Cloning, sequencing and analysis of the ggh-A gene encoding a 1,4-beta-D-glucan glucohydrolase from Microbispora bispora, Gene, 172 (1996) 93-98.
[24] J.E. Rixon, L.M.A. Ferreira, A.J. Durrant, J.I. Laurie, G.P. Hazlewood, H.J. Gilbert, Characterization of the Gene Celd and Its Encoded Product 1,4-Beta-D-Glucan Glucohydrolase-D from Pseudomonas-Fluorescens Subsp Cellulosa, Biochem. J., 285 (1992) 947-955.
[25] (!!! INVALID CITATION !!!).
[26] K. Poutanen, J. Puls, Hydrolysis of Xylans by Xylanolytic Enzymes of Trichoderma-Reesei, Abstr. Pap. Am. Chem. S., 195 (1988) 126-CELL.
[27] R. Lamed, E. Setter, R. Kenig, E.A. Bayer, The Cellulosome - a Discrete Cell-Surface Organelle of Clostridium-Thermocellum Which Exhibits Separate Antigenic, Cellulose-Binding and Various Cellulolytic Activities, Biotechnol. Bioeng., (1983) 163-181.
[28] R. Lamed, E.A. Bayer, The Cellulosome of Clostridium-Thermocellum, Adv Appl Microbiol, 33 (1988) 1-46.
[29] Y. Shoham, R. Lamed, E.A. Bayer, The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides, Trends Microbiol, 7 (1999) 275-281.
[30] C.M.G.A. Fontes, H.J. Gilbert, Cellulosomes: Highly Efficient Nanomachines Designed to Designed to Deconstruct Plant Cell Wall Complex Carbohydrates, Annu. Rev. Biochem., 79 (2010) 655-681.
[31] C.Y. Ho, J.J. Chang, S.C. Lee, T.Y. Chin, M.C. Shih, W.H. Li, C.C. Huang, Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast, Appl. Energ., 100 (2012) 27-32.
[32] N.D. Gold, V.J. Martin, Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis, J. Bacteriol., 189 (2007) 6787-6795.
[33] K. Tsuge, K. Matsui, M. Itaya, One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid, Nucleic Acids Res, 31 (2003) e133.
[34] T. Nishizaki, K. Tsuge, M. Itaya, N. Doi, H. Yanagawa, Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis, Appl Environ Microbiol, 73 (2007) 1355-1361.
[35] J.L. Linville, M. Rodriguez, J.R. Mielenz, C.D. Cox, Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum, Bioresource Technol., 147 (2013) 605-613.
[36] 薛乃綺, 人工纖維素分解酵素複合體於枯草桿菌與其酵素和支架蛋白間的相互作用分析, 國立中興大學碩士論文, (2016).[37] G.L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem., 31 (1959) 426 - 428.
[38] K.S. Shin, I.K. Oh, C.J. Kim, Production and purification of Remazol brilliant blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus, Appl. Environ. Microbiol., 63 (1997) 1744-1748.
[39] J. van Lieshout, M. Faijes, J. Nieto, J. van der Oost, A. Planas, Hydrolase and glycosynthase activity of endo-1,3-beta-glucanase from the thermophile Pyrococcus furiosus, Archaea, 1 (2004) 285-292.
[40] M.L. Fardeau, C. Faudon, J.L. Cayol, M. Magot, B.K.C. Patel, B. Ollivier, Effect of thiosulphate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp isolated from oil field water, Res Microbiol, 147 (1996) 159-165.
[41] M.R. Bray, A.J. Clarke, Essential Carboxy Groups in Xylanase-A, Biochem. J., 270 (1990) 91-96.
[42] C.C. Lin, T.T. Liu, S.C. Kan, C.Z. Zang, C.W. Yeh, J.Y. Wu, J.H. Chen, C.J. Shieh, Y.C. Liu, Production of D-hydantoinase via surface display and self-cleavage system, J. Biosci. Bioeng., 116 (2013) 562-566.
[43] M. Lemaire, H. Ohayon, P. Gounon, T. Fujino, P. Beguin, Olpb, a New Outer Layer Protein of Clostridium-Thermocellum, and Binding of Its S-Layer-Like Domains to Components of the Cell-Envelope, J. Bacteriol., 177 (1995) 2451-2459.
[44] K. Tsuge, K. Matsui, M. Itaya, One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid, Nucleic Acids Res., 31 (2003).
[45] J. Hu, S. Li, B. Liu, Properties of immobilized pepsin on Modified PMMA microspheres, Biotechnol. J., 1 (2006) 75-79.
[46] G.Y. Lee, J.H. Jung, D.H. Seo, J. Hansin, S.J. Ha, J. Cha, Y.S. Kim, C.S. Park, Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp. FMB-1 on Saccharomyces cerevisiae, Bioresource Technol., 102 (2011) 9179-9184.
[47] H. Yavuz, S. Akgol, Y. Arica, A. Denizli, Concanavalin a immobilized affinity adsorbents for reversible use in yeast invertase adsorption, Macromol. Biosci., 4 (2004) 674-679.
[48] C. Lambertz, M. Garvey, J. Klinger, D. Heesel, H. Klose, R. Fischer, U. Commandeur, Challenges and advances in the heterologous expression of cellulolytic enzymes: a review, Biotechnol. Biofuels, 7 (2014).
[49] M. Garvey, H. Klose, R. Fischer, C. Lambertz, U. Commandeur, Cellulases for biomass degradation: comparing recombinant cellulase expression platforms, Trends Biotechnol., 31 (2013) 581-593.
[50] Y.M. Dai, K.T. Chen, C.C. Chen, Study of the microwave lipid extraction from microalgae for biodiesel production, Chem. Eng. J., 250 (2014) 267-273.
[51] T. Lan Thanh Bien, S. Tsuji, K. Tanaka, S. Takenaka, K. Yoshida, Secretion of heterologous thermostable cellulases in Bacillus subtilis, J. Gen. Appl. Microbiol., 60 (2014) 175-182.
[52] J.S. Van Dyk, B.I. Pletschke, A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy, Biotechnol. Adv., 30 (2012) 1458-1480.
[53] J. Medve, J. Karlsson, D. Lee, F. Tjerneld, Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes, Biotechnol. Bioeng., 59 (1998) 621-634.
[54] T.T. Teeri, Crystalline cellulose degradation: New insight into the function of cellobiohydrolases, Trends Biotechnol., 15 (1997) 160-167.
[55] K. Kiyoshi, M. Furukawa, T. Seyama, T. Kadokura, A. Nakazato, S. Nakayama, Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum, Bioresource Technol., 186 (2015) 325-328.
[56] D.O. Hooks, M. Venning-Slater, J.P. Du, B.H.A. Rehm, Polyhydroyxalkanoate Synthase Fusions as a Strategy for Oriented Enzyme Immobilisation, Molecules, 19 (2014) 8629-8643.
[57] G. Gefen, M. Anbar, E. Morag, R. Lamed, E.A. Bayer, Enhanced cellulose degradation by targeted integration of a cohesin-fused beta-glucosidase into the Clostridium thermocellum cellulosome, Proc. Natl. Acad. Sci. U.S.A., 109 (2012) 10298-10303.
[58] W. Han, W. Clarke, S. Pratt, Composting of waste algae: A review, Waste Manage., 34 (2014) 1148-1155.
[59] C.C. Lin, C.H. Wei, C.I. Chen, C.J. Shieh, Y.C. Liu, Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm, Bioresource Technol., 135 (2013) 640-643.
[60] C.C. Fu, T.C. Hung, J.Y. Chen, C.H. Su, W.T. Wu, Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction, Bioresource Technol., 101 (2010) 8750-8754.
[61] Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv., 25 (2007) 294-306.
[62] C.H. Hsieh, W.T. Wu, Cultivation of microalgae for oil production with a cultivation strategy of urea limitation, Bioresource Technol., 100 (2009) 3921-3926.
[63] E. Sanchez, K. Ojeda, M. El-Halwagi, V. Kafarov, Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration, Chem. Eng. J., 176 (2011) 211-216.
[64] A.L. Ahmad, N.H.M. Yasin, C.J.C. Derek, J.K. Lim, Microalgae as a sustainable energy source for biodiesel production: A review, Renew. Sust. Energ. Rev., 15 (2011) 584-593.
[65] I. Rawat, R.R. Kumar, T. Mutanda, F. Bux, Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Appl. Energ., 2013, pp. 444-467.
[66] H.G. Gerken, B. Donohoe, E.P. Knoshaug, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, 237 (2013) 239-253.
[67] M. Morweiser, O. Kruse, B. Hankamer, C. Posten, Developments and perspectives of photobioreactors for biofuel production, Appl. Microbiol. Biotechnol., 87 (2010) 1291-1301.
[68] M.L. Ghirardi, J.P. Zhang, J.W. Lee, T. Flynn, M. Seibert, E. Greenbaum, A. Melis, Microalgae: a green source of renewable H-2, Trends Biotechnol., 18 (2000) 506-511.
[69] J.B. Holm-Nielsen, T. Al Seadi, P. Oleskowicz-Popiel, The future of anaerobic digestion and biogas utilization, Bioresource Technol., 100 (2009) 5478-5484.
[70] A. Vergara-Fernandez, G. Vargas, N. Alarcon, A. Velasco, Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system, Biomass Bioenerg., 32 (2008) 338-344.
[71] C.Y. Chen, M.D. Bai, J.S. Chang, Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria, Biochem. Eng. J., 81 (2013) 170-176.
[72] M. Girfoglio, M. Rossi, R. Cannio, Cellulose Degradation by Sulfolobus solfataricus Requires a Cell-Anchored Endo-beta-1-4-Glucanase, J. Bacteriol., 194 (2012) 5091-5100.
[73] M.K. Bhat, Cellulases and related enzymes in biotechnology, Biotechnol. Adv., 18 (2000) 355-383.
[74] W.H. Schwarz, The cellulosome and cellulose degradation by anaerobic bacteria, Appl. Microbiol. Biotechnol., 56 (2001) 634-649.
[75] Y.M. Ko, C.I. Chen, C.C. Lin, S.C. Kan, C.Z. Zang, C.W. Yeh, W.F. Chang, C.J. Shieh, Y.C. Liu, Enhanced D-hydantoinase activity performance via immobilized cobalt ion affinity membrane and its kinetic study, Biochem. Eng. J., 79 (2013) 200-205.
[76] Y. Sun, L. Lin, H.B. Deng, J.Z. Li, B.H. He, R.C. Sun, P.K. Ouyang, Structural Changes of Bamboo Cellulose in Formic Acid, Bioresources, 3 (2008) 297-315.
[77] D.H. Northcote, K.J. Goulding, The chemical composition and structure of the cell wall of Chlorella pyrenoidosa, Biochem. J., 70 (1958) 391–397.
[78] H.R. Bungay, Confessions of a bioenergy advocate, Trends Biotechnol, 22 (2004) 67-71.
[79] N.R. Mohamad, N.H. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol Biotechnol Equip, 29 (2015) 205-220.
[80] J. Szczodrak, Z. Targonski, Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose, Biotechnol Bioeng, 31 (1988) 300-303.