|
[1] Dewan, S.S. Global Markets for Enzymes in Industrial Applications. 2017; Available from: https://www.bccresearch.com/marketresearch/biotechnology/enzymes-industrial-applications-report-bio030j.html. [2] Hasan, F., Shah, A.A. and Hameed, A., "Industrial applications of microbial lipases", Enzyme and Microbial Technology, (2006) 39, 235-251. [3] Pfeffer, J., Richter, S., Nieveler, J., Hansen, C.E., Rhlid, R.B., Schmid, R.D. and Rusnak, M., "High yield expression of lipase A from Candida antarctica in the methylotrophic yeast Pichia pastoris and its purification and characterisation", Applied Microbiology and Biotechnology, (2006) 72, 931-938. [4] Joseph, B., Ramteke, P.W. and Thomas, G., "Cold active microbial lipases: Some hot issues and recent developments", Biotechnology Advances, (2008) 26, 457-470. [5] Magadum, D.B. and Yadav, G.D., "Enantioselective resolution of (R,S)-alpha-methyl-4-pyridinemethanol using immobilized biocatalyst: Optimization and kinetic modeling", Biochemical Engineering Journal, (2017) 122, 152-158. [6] Gilani, S.L., Najafpour, G.D., Heydarzadeh, H.D. and Moghadamnia, A., "Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads", Chirality, (2017) 29, 304-314. [7] Ali, C.H., Qureshi, A.S., Mbadinga, S.M., Liu, J.F., Yang, S.Z. and Mu, B.Z., "Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach", Renewable Energy, (2017) 109, 93-100. [8] Liu, X.Y., Yu, X.J., Lv, J.S., Xu, J.X., Xia, J., Wu, Z., Zhang, T. and Deng, Y.F., "A cost-effective process for the coproduction of erythritol and lipase with Yarrowia lipolytica M53 from waste cooking oil", Food and Bioproducts Processing, (2017) 103, 86-94. [9] Veteikyte, A., Siekstele, R., Tvaska, B. and Matijosyte, I., "Sequential application of waste whey as a medium component for Kluyveromyces lactis cultivation and a co-feeder for lipase immobilization by CLEA method", Applied Microbiology and Biotechnology, (2017) 101, 3617-3626. [10] Chen, G.Y., Liu, J., Yao, J.G., Qi, Y. and Yan, B.B., "Biodiesel production from waste cooking oil in a. magnetically fluidized bed reactor using whole-cell biocatalysts", Energy Conversion and Management, (2017) 138, 556-564. [11] Akanbi, T.O. and Barrow, C.J., "Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils", Food Chem, (2017) 229, 509-516. [12] Panpipat, W., Xu, X. and Guo, Z., "Improved acylation of phytosterols catalyzed by Candida antarctica lipase A with superior catalytic activity", Biochemical Engineering Journal, (2013) 70, 55-62. [13] Nyyssölä, A., Miettinen, H., Kontkanen, H., Lille, M., Partanen, R., Rokka, S., Järvenpää, E., Lantto, R. and Kruus, K., "Treatment of milk fat with sn-2 specific Pseudozyma antarctica lipase A for targeted hydrolysis of saturated medium and long-chain fatty acids", International Dairy Journal, (2015) 41, 16-22. [14] Zengin, G., Uysal, A., Aktumsek, A., Mocan, A., Mollica, A., Locatelli, M., Custodio, L., Neng, N.R., Nogueira, J.M.F., Aumeeruddy-Elalfi, Z. and Mahomoodally, M.F., "Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations", Biomedicine & Pharmacotherapy, (2017) 87, 27-36. [15] Ahmad, J., Singhal, M., Amin, S., Rizwanullah, M., Akhter, S., Kamal, M.A., Haider, N., Midoux, P. and Pichon, C., "Bile Salt Stabilized Vesicles (Bilosomes): A Novel Nano-Pharmaceutical Design for Oral Delivery of Proteins and Peptides", Current Pharmaceutical Design, (2017) 23, 1575-1588. [16] Rezvani, M., Najafpour, G.D., Mohammadi, M. and Zare, H., "Amperometric biosensor for detection of triglyceride tributyrin based on zero point charge of activated carbon", Turkish Journal of Biology, (2017) 41, 268-277. [17] Narwal, V. and Pundir, C.S., "An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode", Enzyme and Microbial Technology, (2017) 100, 11-16. [18] Kirk, O. and Christensen, M.W., "Lipases from Candida antarctica: Unique biocatalysts from a unique origin", Organic Process Research & Development, (2002) 6, 446-451. [19] Widmann, M., Juhl, P.B. and Pleiss, J., "Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A", Bmc Genomics, (2010) 11. [20] Wikmark, Y., Svedendahl Humble, M. and Backvall, J.E., "Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent", Angewandte Chemie International Edition in English, (2015) 54, 4284-4288. [21] Jan, A.H., Subileau, M., Deyrieux, C., Perrier, V. and Dubreucq, E., "Elucidation of a key position for acyltransfer activity in Candida parapsilosis lipase/acyltransferase (CpLIP2) and in Pseudozyma antarctica lipase A (CAL-A) by rational design", Biochimica Et Biophysica Acta-Proteins and Proteomics, (2016) 1864, 187-194. [22] Smith, G.P., "Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface", Science, (1985) 228, 1315-1317. [23] Lee, S.Y., Choi, J.H. and Xu, Z.H., "Microbial cell-surface display", Trends in Biotechnology, (2003) 21, 45-52. [24] Hirano, S.S. and Upper, C.D., "Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae - a pathogen, ice nucleus, and epiphyte", Microbiology and Molecular Biology Reviews, (2000) 64, 624-+. [25] Li, Q., Yan, Q., Chen, J., He, Y., Wang, J., Zhang, H., Yu, Z. and Li, L., "Molecular characterization of an ice nucleation protein variant (inaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli", Int J Biol Sci, (2012) 8, 1097-1108. [26] Jung, H.C., Kwon, S.J. and Pan, J.G., "Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis", Bmc Biotechnology, (2006) 6. [27] Jung, H.C., Ko, S., Ju, S.J., Kim, E.J., Kim, M.K. and Pan, J.G., "Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities", Journal of Molecular Catalysis B-Enzymatic, (2003) 26, 177-184. [28] Gomez Sanchez, C.E., Martinez-Trujillo, A. and Aguilar Osorio, G., "Oxygen transfer coefficient and the kinetic parameters of exo-polygalacturonase production by Aspergillus flavipes FP-500 in shake flasks and bioreactor", Lett Appl Microbiol, (2012) 55, 444-452. [29] Liu, Y.C., Chang, H. and I, Y.P., "A neural network model for estimating O-2 absorption coefficient in shake-flasks", Biotechnology Letters, (2000) 22, 1885-1888. [30] Camacho, F.G., Rodriguez, J.J.G., Miron, A.S., Garcia, M.C.C., Belarbi, E.H. and Grima, E.M., "Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks - Implications in bioprocess engineering", Process Biochemistry, (2007) 42, 1506-1515. [31] Li, C., Xia, J.-Y., Chu, J., Wang, Y.-H., Zhuang, Y.-P. and Zhang, S.-L., "CFD analysis of the turbulent flow in baffled shake flasks", Biochemical Engineering Journal, (2013) 70, 140-150. [32] Schleif, R., "AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action", Fems Microbiology Reviews, (2010) 34, 779-796. [33] Chiou, S.H. and Wu, W.T., "Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups", Biomaterials, (2004) 25, 197-204. [34] M.M. Shamel, K.B.R.a.M.H., "Operational Stability of Lipase Enzyme:Effect of Temperature and Shear", Developments in Chemical Engineering and Mineral Processing, (2005) 13 599-604. [35] Tari, C., Parulekar, S.J., Stark, B.C. and Webster, D.A., "Synthesis and excretion of alpha-amylase in vgb(+) and vgb(-) recombinant Escherichia coli: A comparative study", Biotechnology and Bioengineering, (1998) 59, 673-678. [36] Dimitrijevic, A., Velickovic, D., Bihelovic, F., Bezbradica, D., Jankov, R. and Milosavic, N., "One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite", Bioresour Technol, (2012) 107, 358-362. [37] Zamost, B.L., Nielsen, H.K. and Starnes, R.L., "THERMOSTABLE ENZYMES FOR INDUSTRIAL APPLICATIONS", Journal of Industrial Microbiology, (1991) 8, 71-81. [38] Yang, C., Wang, F., Lan, D., Whiteley, C., Yang, B. and Wang, Y., "Effects of organic solvents on activity and conformation of recombinant Candida antarctica lipase A produced by Pichia pastoris", Process Biochemistry, (2012) 47, 533-537. [39] Juan L. Ramos, E.D., Jose´-Juan Rodrı´guez-Herva, P.G., Ali Haıぴdour, F.R. and Ferna´ndez-Barrero, a.A., "Mechanisms for Solvent Tolerance in Bacteria", THE JOURNAL OF BIOLOGICAL CHEMISTRY, (1997) 272, 3887–3890. [40] Ana Segura, E.D., Gilberto Mosqueda, and Junker, J.L.R.a.F., "Multiple responses of Gram-negative bacteria to organic solvents", Environmental Microbiology, (1999) 1, 191–198. [41] Jung, H.C., Kwon, S.J. and Pan, J.G., "Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis", BMC Biotechnol, (2006) 6, 23. [42] Leon, R., Fernandes, P., Pinheiro, H.M. and Cabral, J.M.S., "Whole-cell biocatalysis in organic media", Enzyme and Microbial Technology, (1998) 23, 483-500.
|