跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅季軒
研究生(外文):Ji-Xuan Fu
論文名稱:尖晶石結構氧化鎳鈷/石墨烯量子點複合材料作為直接甲醇燃料電池陽極觸媒材料
論文名稱(外文):Spinel Structure NiCo2O4/Graphene Quantum Dots Composite as Anodic Catalyst for Direct Methanol Fuel Cells
指導教授:蔡毓楨
口試委員:廖建勛吳宗明
口試日期:2017-06-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:直接甲醇燃料電池陽極觸媒尖晶石結構NiCo2O4甲醇氧化
外文關鍵詞:DMFCsspinel structureNiCo2O4methanol oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
尖晶石結構的氧化鎳鈷(NiCo2O4)是近年來極力研究的電化學相關材料,其具有高孔隙度、高比表面積及良好的電化學特性;石墨烯量子點(Graphene quantum dots,GQDs)為奈米等級的石墨烯碎片,由於其量子點的發光特性及良好的電化學性質,是近期相關電化學研究中較為新穎的碳材。
本實驗分成兩部分,第一部分以水熱法來合成CuCo2O4與NiCo2O4,以應用於直接甲醇燃料電池之陽極觸媒材料,利用X光繞射分析儀(X-ray diffraction,XRD)作結晶分析,並使用場發射式掃描式電子顯微鏡(Field emission scanning electron microscope,FE-SEM)與場發射式穿透式電子顯微鏡(Field emission transmission electron microscope,FE-TEM)來觀察表面形貌及特性;在含有1 M氫氧化鉀與0.5 M甲醇的混合溶液中比較兩種陽極觸媒對於甲醇的電催化活性,其中NiCo2O4比CuCo2O4展現更優異的甲醇電催化活性與穩定性,並以此結果進行第二部分實驗。
第二部分以一步合成的水熱法來合成NiCo2O4/GQDs複合材料,以應用於直接甲醇燃料電池之陽極觸媒材料,利用X光繞射分析儀(X-ray diffraction,XRD)作結晶分析,並使用場發射式掃描式電子顯微鏡(Field emission scanning electron microscope,FE-SEM)與場發射式穿透式電子顯微鏡(Field emission transmission electron microscope,FE-TEM)來觀察表面形貌及特性;隨著GQDs含量的增加,熱重分析(thermogravimetric analysis,TGA)將被用來確認所合成觸媒之GQDs含量。NiCo2O4/GQDs複合材料在含有甲醇的鹼性溶液中,對甲醇的氧化展現優異的電觸媒活性,其中NCO/G2在含有1 M氫氧化鉀與0.5 M甲醇的混合溶液中,展現較低的起始電壓0.34 V及卓越的電流密度103.8 A/g,且具有良好的電化學穩定性,此實驗結果將對直接甲醇燃料電池之非鉑的陽極觸媒材料的發展有更進一步的幫助。
Recently, a novel material, the spinel structure of binary transition metal oxides NiCo2O4 have been applied on electrochemical researches as a result of their high porosity , high active area and excellent electrochemical performance. Graphene quantum dots (GQDs) are nanometer-sized fragments of graphene, usually applies on electrochemical researches because of the luminous characteristics of quantum dots and perfect electrochemical properties.
The study includes two parts, in part I, CuCo2O4 and NiCo2O4 were synthesized via hydrothermal method and applied to methanol oxidation. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and field emission transmission electron microscope (FE-TEM) were used to analyze the crystal structure, surface morphology and characteristics, respectively. NiCo2O4 exhibited better electrocatalytic activity and stability for methanol oxidation than CuCo2O4 in 1 M KOH with 0.5 M methanol, and conducted to part II with this result.
In part II, NiCo2O4 nanoparticles/graphene quantum dots (GQDs) were synthesized via a one-step hydrothermal method and applied to methanol oxidation. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and field emission transmission electron microscope (FE-TEM) were used to analyze the crystal structure, surface morphology and characteristics, respectively. With increasing the quantity of GQDs, thermogravimetric analysis (TGA) was also carried out to confirm the weight ratio of GQDs in the as-synthesized electrocatalyst. The NiCo2O4/GQDs exhibited excellent electrocatalytic activity for methanol oxidation in alkaline solution. NCO/G2 demonstrated a lower onset potential 0.34 V and superior current density of 103.8 A/g with good retention performance in 1 M KOH with 0.5 M methanol. The results of above analysis might be beneficial for development of direct methanol fuel cell based on non-Pt electrocatalysts.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 燃料電池簡介 2
1.3.1 燃料電池的發展 2
1.3.2 燃料電池的特點 3
1.3.3 燃料電池的種類 4
1.4 直接甲醇燃料電池 7
1.4.1 直接甲醇燃料電池基本原理 7
1.4.2 直接甲醇燃料電池基本構造 8
1.4.3 甲醇在陽極的反應途徑及毒化問題 9
1.4.4 鹼性直接甲醇燃料電池 13
1.5 直接甲醇燃料電池之陽極觸媒發展 14
1.5.1 陶瓷氧化物觸媒材料 14
1.5.2 過渡金屬族觸媒材料 15
1.5.3 單一或多重過渡金屬氧化物觸媒材料 19
1.5.4 尖晶石結構過渡金屬氧化物觸媒材料 22
1.5.5 尖晶石結構過渡金屬氧化物(NiCo2O4)/碳材複合觸媒材料 25
1.6 石墨烯量子點(Graphene quantum dots,GQDs) 28
1.6.1 石墨烯量子點性質 28
1.6.2 石墨烯量子點之製備方法 29
1.6.3 石墨烯量子點之電化學應用 30
1.7 電化學原理與方法 33
1.7.1 循環伏安法原理(Cyclic voltammetry,CV) 33
1.7.2 安培法原理(Amperometry) 34
1.8 儀器原理 35
1.8.1 場發射掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM) 35
1.8.2 穿透式電子顯微鏡(Transmission electron microscope,TEM) 36
1.8.3 X光繞射分析儀(X-ray diffraction,XRD) 37
第二章 實驗方法與步驟 39
2.1 實驗藥品 39
2.2 實驗儀器 39
2.3 實驗步驟 40
2.3.1 實驗架構圖 40
2.3.2 電極前處理 41
2.3.3 材料合成 41
2.3.4 材料微結構與特性分析架構圖 42
2.3.5 DMFC電性分析 42
第三章 結果與討論 44
3.1 CuCo2O4與NiCo2O4之探討 44
3.1.1 CuCo2O4與NiCo2O4之X光繞射分析(X-ray diffraction,XRD) 44
3.1.2 CuCo2O4與NiCo2O4之表面形貌(Field emission scanning electron microscope,FE-SEM) 45
3.1.3 CuCo2O4與NiCo2O4之表面形貌(Field emission tranmission electron microscope,FE-TEM) 47
3.1.4 CuCo2O4與NiCo2O4之元素分析(X-ray energy dispersive spectrometer,EDS) 48
3.1.5 CuCo2O4與NiCo2O4陽極觸媒之電化學特性探討 49
3.2 NiCo2O4/石墨烯量子點複合材料之探討 56
3.2.1 NiCo2O4/GQDs複合材料之X光繞射分析(X-ray diffraction,XRD) 56
3.2.2 NiCo2O4/GQDs複合材料之表面形貌(Field emission scanning electron microscope,FE-SEM) 57
3.2.3 NiCo2O4/GQDs複合材料之表面形貌(Field emission tranmission electron microscope,FE-TEM) 61
3.2.4 NiCo2O4/GQDs複合材料之元素分析(X-ray energy dispersive spectrometer,EDS) 64
3.2.5 NiCo2O4/GQDs複合材料之熱重分析(Thermo Gravimetry Analyzer,TGA) 68
3.2.6 NiCo2O4/GQDs複合陽極觸媒之電化學特性探討 69
第四章 結論及未來展望 75
4.1 結論 75
4.2 未來展望 75
第五章 參考文獻 76
[1]A. S. Aricò, S. Srinivasan, and V. Antonucci, "DMFCs: From Fundamental Aspects to Technology Development," Fuel Cells, 2001, 1, 133-161.
[2]K. Y. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, "Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells," Journal of Materials Chemistry, 2004, 14, 505-516.
[3]T. Iwasita, "Electrocatalysis of methanol oxidation," Electrochimica Acta, 2002, 47, 3663-3674.
[4]J. Larminie, A. Dicks, and M. S. McDonald, Fuel cell systems explained vol. 2: Wiley New York, 2003.
[5]鄭雅堂, "燃料電池發電技術," 汽電共生報導第十四期, 第 17-25 頁, 民國 87 年, 1998.
[6]A. S. Aricò, V. Baglio, and V. Antonucci, Direct methanol fuel cells: history, status and perspectives: Wiley-VCH, Weinheim, Germany, 2009.
[7]鄭耀宗 and 徐耀昇, "燃料電池技術進展的現況分析," 燃料電池論文集, 經濟部能源委員會, 1999, 27, 15.
[8]J. Giner and C. Hunter, "Model of a hydrogen-air fuel cell with alkaline electrolyte," J. Electrochem. Soc, 1969, 116, 124.
[9]E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, "Methods to Advance Technology of Proton Exchange Membrane Fuel Cells," Journal of The Electrochemical Society, 1998, 135, 2209-2214.
[10]A. Hamnett, "Mechanism and electrocatalysis in the direct methanol fuel cell," Catalysis Today, 1997, 38, 445-457.
[11]H. Dohle, J. Divisek, and R. Jung, "Process engineering of the direct methanol fuel cell," Journal of Power Sources, 2000, 86, 469-477.
[12]Eds. W. Vielstich, A. Lamm and H.A. Gastegier, "Handbook of Fuel Cells – Fundamentals, Technology and Applications," John Wiley, 2003, Vol. 1, p. 42.
[13]L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells – Fundamentals and Applications," Fuel Cells, 2001, 1, 5-39.
[14]M. Hogarth and T. Ralph, "Catalysis for low temperature fuel cells," Platinum Metals Review, 2002, 46, 146-164.
[15]A. L. Ocampo, M. Miranda-Hernández, J. Morgado, J. A. Montoya, and P. J. Sebastian, "Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance," Journal of Power Sources, 2006, 160, 915-924.
[16]Z. He, J. Chen, D. Liu, H. Zhou, and Y. Kuang, "Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation," Diamond and Related Materials, 2004, 13, 1764-1770.
[17]J. Ding, K.-Y. Chan, J. Ren, and F.-s. Xiao, "Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions," Electrochimica Acta, 2005, 50, 3131-3141.
[18]K.-W. Park, D.-S. Han, and Y.-E. Sung, "PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells," Journal of Power Sources, 2006, 163, 82-86.
[19]Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, and Y. Nishina, "High yield of single-wall carbon nanotubes by arc discharge using Rh–Pt mixed catalysts," Chemical Physics Letters, 1998, 294, 593-598.
[20]F. Alcaide, G. Álvarez, P. L. Cabot, H.-J. Grande, O. Miguel, and A. Querejeta, "Testing of carbon supported Pd–Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells," International Journal of Hydrogen Energy, 2001, 36, 4432-4439.
[21]B. N. Grgur, N. M. Markovic, and P. N. Ross, "Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt–Re bulk alloy electrode and comparison with other Pt binary alloys," Electrochimica Acta, 1998, 43, 3631-3635.
[22]E. M. Crabb, R. Marshall, and D. Thompsett, "Carbon Monoxide Electro‐oxidation Properties of Carbon‐Supported PtSn Catalysts Prepared Using Surface Organometallic Chemistry," Journal of The Electrochemical Society, 2000, 147, 4440-4447.
[23]J. Luo, P. N. Njoki, Y. Lin, L. Wang, and C. J. Zhong, "Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen," Electrochemistry Communications, 2006, 8, 581-587.
[24]T. Yajima, H. Uchida, and M. Watanabe, "In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt−Ru Alloy," The Journal of Physical Chemistry B, 2004, 108, 2654-2659.
[25]Z. Liu, X. Y. Ling, X. Su, and J. Y. Lee, "Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell," The Journal of Physical Chemistry B, 2004, 108, 8234-8240.
[26]盧敏彥、張美元、廖怡萱、黃俊傑, "直接甲醇燃料電池電極觸媒," 工業材料雜誌, vol. 196 期, 1993.
[27]H. Song, P. Xiao, X. Qiu, and W. Zhu, "Design and preparation of highly active carbon nanotube-supported sulfated TiO2 and platinum catalysts for methanol electrooxidation," Journal of Power Sources, 2010, 195, 1610-1614.
[28]Z.-Z. Jiang, Z.-B. Wang, Y.-Y. Chu, D.-M. Gu, and G.-P. Yin, "Ultrahigh stable carbon riveted Pt/TiO2-C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell," Energy & Environmental Science, 2011, 4, 728-735.
[29]C.-S. Chen and F.-M. Pan, "Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation," Applied Catalysis B: Environmental, 2009, 91, 663-669.
[30]S. Yang, C. Zhao, C. Ge, X. Dong, X. Liu, Y. Liu, et al., "Ternary Pt-Ru-SnO2 hybrid architectures: unique carbon-mediated 1-D configuration and their electrocatalytic activity to methanol oxidation," Journal of Materials Chemistry, 2002, 22, 7104-7107.
[31]X. Yu, L. Kuai, and B. Geng, "CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells," Nanoscale, 2012, 4, 5738-5743.
[32]Y. Y. Chu, J. Cao, Z. Dai, and X. Y. Tan, "A novel Pt/CeO2 catalyst coated with nitrogen-doped carbon with excellent performance for DMFCs," Journal of Materials Chemistry A, 2014, 2, 4038-4044.
[33]H. Huang, Q. Chen, M. He, X. Sun, and X. Wang, "A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation," Journal of Power Sources, 2013, 239, 189-195.
[34]Y. Wang, L. Li, L. Hu, L. Zhuang, J. Lu, and B. Xu, "A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages," Electrochemistry Communications, 2003, 5, 662-666.
[35]A. V. Tripković, K. D. Popović, B. N. Grgur, B. Blizanac, P. N. Ross, and N. M. Marković, "Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions," Electrochimica Acta, 2002, 47, 3707-3714.
[36]A. V. Tripković, K. D. Popović, J. D. Lović, V. M. Jovanović, and A. Kowal, "Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems," Journal of Electroanalytical Chemistry, 2004, 572, 119-128.
[37]K. Scott, E. Yu, G. Vlachogiannopoulos, M. Shivare, and N. Duteanu, "Performance of a direct methanol alkaline membrane fuel cell," Journal of Power Sources, 2008, 175, 452-457.
[38]S. J. Lue, K. P. O. Mahesh, W.-T. Wang, J.-Y. Chen, and C.-C. Yang, "Permeant transport properties and cell performance of potassium hydroxide doped poly(vinyl alcohol)/fumed silica nanocomposites," Journal of Membrane Science, 2011, 367, 256-264.
[39]J. Liu, J. Ye, C. Xu, S. P. Jiang, and Y. Tong, "Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti," Electrochemistry Communications, 2007, 9, 2334-2339.
[40]Xu, C., kang Shen, P. and Liu, Y. "Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide," Journal of Power Sources, 2007, 164, 527-531.
[41]Bambagioni, V. et al., "Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol= methanol, ethanol, glycerol)," Journal of Power Sources, 2009, 190, 241-251.
[42]Long, N. V., Hien, T. D., Asaka, T., Ohtaki, M. and Nogami, M. "Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures," International journal of hydrogen energy, 2011, 36, 8478-8491.
[43]Li, X., Huang, Q., Zou, Z., Xia, B. and Yang, H. "Low temperature preparation of carbon-supported Pd Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction," Electrochimica Acta, 2008, 53, 6662-6667.
[44]Wang, X., Tang, Y., Gao, Y. and Lu, T. "Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell," Journal of Power Sources, 2008, 175, 784-788.
[45]Xu, C., Tian, Z., Shen, P. and Jiang, S. P. "Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media, " Electrochimica Acta, 2008, 53, 2610-2618.
[46]Zhao, Y., Yang, X., Tian, J., Wang, F. and Zhan, L. "Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media," International Journal of Hydrogen Energy, 2010, 35, 3249-3257.
[47]Kumar, K. S., Haridoss, P. and Seshadri, S. "Synthesis and characterization of electrodeposited Ni–Pd alloy electrodes for methanol oxidation," Surface and Coatings Technology, 2008, 202, 1764-1770.
[48]Singh, R. and Singh, A. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions," Carbon, 2009, 47, 271-278.
[49]Singh, R., Sharma, T., Singh, A., Mishra, D. and Tiwari, S. "Perovskite-type La2−xSrxNiO4 (0≤ x≤ 1) as active anode materials for methanol oxidation in alkaline solutions," Electrochimica Acta, 2008, 53, 2322-2330.
[50]Thamer, B. M. et al. "Cobalt-incorporated, nitrogen-doped carbon nanofibers as effective non-precious catalyst for methanol electrooxidation in alkaline medium," Applied Catalysis A: General, 2015, 498, 230-240.
[51]Jin, G.-P., Ding, Y.-F. and Zheng, P.-P. "Electrodeposition of nickel nanoparticles on functional MWCNT surfaces for ethanol oxidation," Journal of Power Sources, 2007, 166, 80-86.
[52]Sheikh, A., Abd-Alftah, K. E.-A. and Malfatti, C. "On reviewing the catalyst materials for direct alcohol fuel cells (DAFCs)," Energy, 2014, 1.
[53]Heli, H., Jafarian, M., Mahjani, M. and Gobal, F. "Electro-oxidation of methanol on copper in alkaline solution," Electrochimica acta, 2004, 49, 4999-5006.
[54]Döner, A., Solmaz, R. & Kardaş, G. "Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell," Energy, 2015, 90, 1144-1151.
[55]Tritsaris, G. and Rossmeisl, J. "Methanol oxidation on model elemental and bimetallic transition metal surface," The Journal of Physical Chemistry C, 2012, 116, 11980-11986.
[56]Hameed, R. A. & El-Khatib, K. "Ni–P and Ni–Cu–P modified carbon catalysts for methanol electro-oxidation in KOH solution," International journal of hydrogen energy, 2010, 35, 2517-2529.
[57]Abdel Rahim, M. A., Abdel Hameed, R. M. and Khalil, M. W. "Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium," Journal of Power Sources, 2004, 134, 160-169.
[58]Hameed, R. A. and El-Sherif, R. M. "Microwave irradiated nickel nanoparticles on Vulcan XC-72R carbon black for methanol oxidation reaction in KOH solution," Applied Catalysis B: Environmental, 2015, 162, 217-226.
[59]Hu, C.-C. and Wen, T.-C. "Effects of the nickel oxide on the hydrogen evolution and para-nitroaniline reduction at Ni-deposited graphite electrodes in NaOH," Electrochimica acta, 1998, 43, 1747-1756.
[60]Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L. and Bell, A. T. "Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity," The Journal of Physical Chemistry C, 2015, 119, 7243-7254.
[61]Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F. and Mahjani, M. "Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode," International Journal of Hydrogen Energy, 2008, 33, 4367-4376.
[62]N. Spinner & W. E. Mustain, "Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol," Electrochimica Acta, 2011, 56, 5656-5666.
[63]J.B. Wu, Z.G. Li, X.H. Huang and Y. Lin, "Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation," Journal of Power Sources, 2013, 224, 1-5.
[64]H. Liu, J. Wang, "One-pot synthesis of ZnCo2O4 nanorod anodes for high power Lithium ions batteries," Electrochimica Acta, 2013, 92, 371-375.
[65]T. Li, X. Li, Z. Wang, H. Guo and Y. Li, "A novel NiCo2O4 anode morphology for lithium-ion batteries," J. Mater. Chem. A, 2015, 3, 11970-11975.
[66]J.X. Fu, W.T. Wong and W.R. Liu, "Temperature effects on a nano-porous ZnCo2O4 anode with excellent capability for Li-ion batteries," RSC Adv., 2015, 5, 75838-75845.
[67]Y. Zhang, L. Li, H. Su, W. Huang and X. Dong, "Binary metal oxide: advanced energy storage materials in supercapacitors," J. Mater. Chem. A, 2015, 3, 43-59.
[68]S. Liu, K. S. Hui and K. N. Hui, "Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors," ACS Appl. Mater. Interfaces, 2016, 8, 3258-3267.
[69]F. Cai, Y. Kang, H. Chen, M. Chen and Q. Li, "Hierarchical CNT@NiCo2O4 core–shell hybrid nanostructure for high-performance supercapacitors," J. Mater. Chem. A, 2014, 2, 11509-11515.
[70]N. Joshi, L. F. da Silva, H. Jadhav, J. C. M'Peko, B. B. M. Torres, K. Aguir, V. R. Mastelaro and O. N. Oliveira Jr, "One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures," RSC Adv., 2016, 6, 92655-92662.
[71]M. Hussain, Z. H.Ibupoto, M. Abbasi, X. Liu, O. Nur and M. Willander, "Synthesis of Three Dimensional Nickel Cobalt Oxide Nanoneedles on Nickel Foam, Their Characterization and Glucose Sensing Application," Sensors, 2014, 14(3), 5415-5425.
[72]L. F. Hu, L. M. Wu, M. Y. Liao and X. S. Fang, "High-Performance NiCo2O4 Nanofilm Photodetectors Fabricated by an Interfacial Self-Assembly Strategy," Adv. Mater., 2011, 23, 1988-1992.
[73]P. Silwal, L. D. Miao, I. Stern, X. L. Zhou, J. Hu and D. H. Kim, "Metal insulator transition with ferrimagnetic order in epitaxial thin films of spinel NiCo2O4," Appl. Phys. Lett., 2012, 100, 032102.
[74]M.U. A. Prathap, R. Srivastava, "Synthesis of NiCo2O4 and itsapplication in the electrocatalytic oxidation of methanol," Nano Energy, 2013, 2, 1046-1053.
[75]L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan and D. Xiao, "Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol," Journal of Power Sources, 2014, 261, 317-323.
[76]Z. Wu, Y. Zhu and X. Ji, "NiCo2O4-based materials for electrochemical supercapacitors," J. Mater. Chem. A, 2014, 2, 14759-14772.
[77]A. K. Das, R. K. Layek, N. H. Kim, D. Jung and J. H. Lee, "Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation," Nanoscale, 2014, 6, 10657-10665.
[78]T. H. Ko, K. Devarayan, M. K. Seo, H. Y. Kim and B. S. Kim, "Facile Synthesis of Core/Shell like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation," Scientific Reports, 2016, 6, 20313.
[79]K. A. Ritter and J. W. Lyding, "The influence of edge structure on electronic properties of graphene quantum dots and nanoribbons," Nat Mater, 2009, 8, 235-242.
[80]M. Thakur, S. Pandey, A. Mewada, V. Patil, E Goshi, et al., "Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity," J Drug Deliv, 2014, 282193.
[81]S. Bak, D. Kim and H. Lee, "Graphene quantum dots and their possible energy applications: A review," Current Applied Physics, 2016, 16, 1192-1201.
[82]J. Shen, Y. Zhu, X. Yang and C. Li, "Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices," Chem Commun (Camb), 2012, 48, 3686-3699.
[83]D. Pan, J. Zhang, Z. Li and M. Wu, "Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots," Advanced Materials, 2010, 22, 734-738.
[84]M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, et al. "Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells," Journal of Materials Chemistry, 2012, 22, 7461.
[85]X. Tan, Y. Li, X. Li, S. Zhou, L. Fan and S. Yang, "Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform," Chem Commun (Camb), 2015, 51, 2544-2546.
[86]J. Peng,, W. Guo, B. K. Gupta, Z. Liu, R. Romero-Abutro, L. Ge, et al., "Graphene Quantum Dots Derived from Carbon Fibers," Nano Letters, 2012, 12, 844-849.
[87]Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, et al., "Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid," Carbon, 2012, 50, 4738-4743.
[88]X. Yan, X. Cui and L. Li, "Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size," J. AM. CHEM. SOC., 2010, 132, 5944-5945.
[89]L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, et al., "Deep Ultraviolet Photoluminescence of water-Soluble Self-Passivated Graphene Quantum Dots," ASC Nano, 2012, 6, 5102-5110.
[90]S. Zhuo, M. Shao and S. T. Lee, "Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis," ASC Nano, 2012, 6, 1059-1064.
[91]X. Liu, X. Jian, H. Yang, X.i Song and Z. Liang, "A photocatalytic graphene quantum dots–Cu2O/bipolar membrane as a separator for water splitting," New J. Chem., 2016, 40, 3075-3079.
[92]N. Hashemzadeha, M. Hasanzadeh, N. Shadjou, J. E.-Ziaei, M. Khoubnasabjafari and A. Jouyban, "Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma," Journal of Pharmaceutical Analysis, 2016, 6, 235-241.
[93]M. Hasanzadeh, N. Shadjou and M. Marandi, "Graphene quantum dot functionalized by chitosan and beta-cyclodextrin as a new support nanocomposite material for efficient methanol electrooxidation," Journal of Alloys and Compounds, 2016, 688, 171-186.
[94]FIALA, Roman. Investigation of new catalysts for polymer membrane fuel cells. Prague, 2017. PhD thesis. Charles University. Faculty of Mathematics and Physics.
[95]http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
[96]http://acade.must.edu.tw/upfiles/ADUpload/c23_downmul1209823853.pdf
[97]H. G. Jiang, M. Rühle, and E. J. Lavernia, "On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials," Journal of Materials Research, vol. 14, pp. 549-559, 1999.
[98]J. Cheng, H. Yan, Y. Lu, K. Qiu, X. Hou, J. Xu, L. Han, X. Liu, J.K. Kim and Y. Luo, "Mesoporous CuCo2O4 nanograsses as multifunctional electrodes for supercapacitors and electro-catalysts," Journal of Materials Chemistry A, 2015, 3, 9769-9776.
[99]R. Ding, L. Qi, M. Jia and H. Wang, "Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction," Catalysis Science & Technology, 2013, 3, 3207-3215.
[100]C. S. Sharma, R. Awasthi, R. N. Singh and A. S. K. Sinha, "Graphene–cobaltite–Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells," Physical Chemistry Chemical Physics, 2013, 15, 20333-20344.
[101]H. Cheng, Y. Z. Su, P.Y. Kuang, G.F. Chen and Z. Q. Liu, "Hierarchical NiCo2O4 nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation," Journal of Materials Chemistry A, 2015, 3, 19314-19321.
[102]L. Qian, L. Gu, L. Yang, H. Yuan and D. Xiao, "Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation," Nanoscale, 2013, 5, 7388-7396.
[103]X. Y. Yu, X. Z. Yao, T. Luo, Y. Jia, J. H. Liu and X. J. Huang, "Facile Synthesis of Urchin-like NiCo2O4 Hollow Microspheres with Enhanced Electrochemical Properties in Energy and Environmentally Related Applications," ACS Appl. Mater. Interfaces, 2014, 6, 3689-3695.
[104]M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang and J. An, "Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation," Electrochimica Acta, 2015, 151, 99-108.
[105]E. Umeshbabu, G. Rajeshkhanna, P. Justin, G. R. Rao, "Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures," Materials Chemistry and Physics, 2015, 165, 235-244.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top