跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 23:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃盈竣
研究生(外文):Ying-Chun Huang
論文名稱:以電泳沉積法將石墨烯量子點修飾於光電極表面應用於染料敏化太陽能電池之研究
論文名稱(外文):Interface functionalization of photoelectrodes by electrophoretic deposition of graphene quantum dots for high performance dye-sensitized solar cells
指導教授:蔡毓楨
口試委員:廖建勛吳宗明
口試日期:2017-06-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:石墨烯量子點電泳沉積法染料敏化太陽能電池
外文關鍵詞:graphene quantum dotselectrophoretic depositionDye-sensitized solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究以電泳沉積法將石墨烯量子點修飾於導電玻璃之表面,製備成光電極,並組裝成染料敏化太陽能電池。本研究主要改變提供電壓的時間,控制沉積於導電玻璃表面上之石墨烯量子點的多寡,並探討對於染料敏化太陽能電池之短路電流與光電轉換效率之影響。分析包含以掃描式電子顯微鏡及原子力顯微鏡解析表面形貌,使用太陽光模擬器測試電池模組之短路電流與光電轉換效率,以及利用EIS、IMPS、IMVS了解電子傳遞之特性。研究結果指出在沉積時間為120秒時,其光電轉換效率高達9.35% 並且為最佳之光電轉換效率,相較於未修飾之電池模組(8.34%)光電轉換效率提升了12.1%,其原因可由EIS、IMPS、IMVS得知加入石墨烯量子點可以有效壓制電子的再結合,增加電子壽命及電子傳遞速率,進而提升短路電,彰顯石墨烯量子點可有效提升電池模組的光電轉換效率。
In the dye-sensitized solar cells (DSSCs), the performance of DSSCs is extremely related to photoelectrodes. Interface of fluorinated-tin oxide (FTO)/TiO2, TiO2/TiO2, and TiO2/electrolyte in the DSSCs directly influence the power conversion efficiency (PCE). In this study, graphene quantum dots (GQDs) synthesized by pyrolyzing citric acid are introduced to modify the interface between FTO and TiO2 so as to suppress charge recombination. The surface morphology of GQDs-decorated FTO is demonstrate by SEM and AFM. In addition, electrochemical impedance spectra (EIS), itensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) are applied to survey the charge recombination. The final PCE of DCCS is enhanced from 8.34% to 9.35%, accompanied by the increase of short-circuit photocurrent density, and overall improvement in PCE is 12.1%. The suppression of charge recombination and increase of charge transfer rate are both evidences of an improvement in PCE.
摘要 i
Abstract ii
總目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池 2
1.3 染敏化太陽能電池 9
1.3.1 染料敏化太陽能電池之工作原理 13
1.3.2 染料敏化太陽能電池之主要組成 15
1.3.2.1 導電基材 16
1.3.2.2 光電極 18
1.3.2.3 光敏化染料 26
1.3.2.4 電解液 28
1.3.2.5 對電極 33
1.4 塗佈技術 35
1.5 石墨烯量子點 (Graphene quantum dots, GQDs) 36
第二章 實驗方法與步驟 39
2.1 實驗藥品 39
2.2 實驗儀器 40
2.3 儀器原理 41
2.3.1 場發射掃描電子顯微鏡 (FE-SEM) 42
2.3.2 原子力電子顯微鏡 (AFM) 43
2.3.3 光電轉換效率測試 (J-V curve) 44
2.3.4 交流阻抗法 (EIS) 45
2.3.5 強度調變光電流譜/強度調變光電壓譜 (IMPS/IMVS) 48
2.4 實驗步驟 51
2.4.1 FTO導電玻璃前處理 51
2.4.2 製備石墨烯量子點修飾FTO導電玻璃 52
2.4.2.1 合成石墨烯量子點 52
2.4.2.2 製備石墨烯量子點修飾FTO導電玻璃 52
2.4.3 二氧化鈦光電極的製備 53
2.4.4 鉑對電極製備 55
2.4.5 染料敏化太陽能電池組裝 56
第三章 結果與討論 59
3.1 網印法製作二氧化鈦光電極應用於染敏化太陽能電池 59
3.1.1 網印層數之光電轉換效率分析 59
3.1.2 光電極二氧化鈦膜厚度分析 61
3.2 電泳沉積法修飾石墨烯量子點於 FTO 導電玻璃表面之表面形貌分析 62
3.2.1 不同沉積時間之表面形貌分析 (SEM) 62
3.2.2 不同沉積時間之表面粗糙度分析 (AFM) 65
3.3 石墨烯量子點修飾 FTO 導電玻璃製備染料敏化太陽能電池 69
3.3.1 行為研究 69
3.3.2 光電轉換效率分析 ( J-V 曲線圖) 71
3.3.3 電化學分析 (交流阻抗法) 74
3.3.4 強度調變光電流譜/強度調變光電壓譜分析(IMPS/IMVS) 76
第四章 結論與未來展望 81
4.1 結論 81
4.1.1 網印法製作二氧化鈦光電極應用於染敏化太陽能電池 81
4.1.2 電泳沉積法修飾石墨烯量子點於 FTO 導電玻璃表面之表面形貌 81
4.1.3 石墨烯量子點修飾 FTO 導電玻璃製備染敏化太陽能電池 82
4.2 未來展望 82
第五章 參考文獻 83
1.Grätzel, M., Photoelectrochemical cells. Nature 2001, 414, 338-344.
2.Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676-677.
3.Conibeer, G., Third-generation photovoltaics. Materials Today 2007, 10 (11), 42-50.
4.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 47). Progress in Photovoltaics: Research and Applications 2016, 24 (1), 3-11.
5.B O'regan, M. G., A low-cost, high-efficiency solar cell based on dye-sensitized. nature 1991, 353, 737-740.
6.Robertson, N., Catching the rainbow: light harvesting in dye-sensitized solar cells. Angew Chem Int Ed Engl 2008, 47 (6), 1012-4.
7.Michael M. Lee, J. T., Tsutomu Miyasaka, Takurou N. Murakami, Henry J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. SCIENCE 2012, 338, 643-647.
8.Newcomer Juices Up the Race to Harness Sunlight. Science 2013, 342 (6165), 1438-1439.
9.Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2012, 2, 591.
10.Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-9.
11.Huanping Zhou, Q. C., Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang, Interface engineering of highly efficient perovskite solar cells. SCIENCE 2014, 345, 542-546.
12.H. TSUBOMURA, M. M., Y. NOMURA & T. AMAMIYA, Dye sensitised zinc oxide_aqueous electrolyte: platinum photocell. Nature 1976, 261, 403-403.
13.M. K. Nazeeruddin, A. K., Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratze, Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X =C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02 Electrodes. Journal of America Chemical Society 1993, 115(14), 6382-6390.
14.MK Nazeeruddin, P. P., M Grätzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. 1997, 18, 1705-1706.
15.Grätzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1-3), 3-14.
16.Grätzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry 2005, 44, 6841-6851.
17.Chiba, Y. e. a., Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics 2006, 45, L638.
18.Yella, A. e. a., Porphyrin-sensitized solar cells with cobalt(II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 45, 629-634.
19.Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Gratzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry 2014, 6 (3), 242-7.
20.Bella, F.; Gerbaldi, C.; Barolo, C.; Gratzel, M., Aqueous dye-sensitized solar cells. Chem Soc Rev 2015, 44 (11), 3431-73.
21.Gong, J.; Liang, J.; Sumathy, K., Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5848-5860.
22.Wagner, K.; Griffith, M. J.; James, M.; Mozer, A. J.; Wagner, P.; Triani, G.; Officer, D. L.; Wallace, G. G., Significant Performance Improvement of Porphyrin-Sensitized TiO2Solar Cells under White Light Illumination. The Journal of Physical Chemistry C 2011, 115 (1), 317-326.
23.Chang, H.; Lo, Y.-J., Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy 2010, 84 (10), 1833-1837.
24.Li, Y., Hagen, J., Schaffrath, W., Otschik, P. & Haarer, D, Titanium dioxide films for photovoltaic cells derived from a sol—gel process. Solar energy materials and solar cells 1999, 56.
25.Sheehan, S.; Surolia, P. K.; Byrne, O.; Garner, S.; Cimo, P.; Li, X.; Dowling, D. P.; Thampi, K. R., Flexible glass substrate based dye sensitized solar cells. Solar Energy Materials and Solar Cells 2015, 132, 237-244.
26.Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X., Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters 2007, 90 (26), 263501.
27.Alex B. F. Martinson, J. W. E., Joseph T. Hupp, and Michael J. Pellin, ZnO Nanotube Based Dye-Sensitized Solar Cells. Nano letters 2007, 7, 2183-2187.
28.Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 2009, 21 (41), 4087-4108.
29.Idriss Bedja, S. H., and Prashant V. Kamat, Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium(II) Complex. J. Phys. Chem. 1994, 98, 4133-4140.
30.Suzanne Ferrere, A. Z., and Brian A. Gregg, Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 1997, 101, 4490-4493.
31.P. Guo, M. A. A., RU(II) sensitized Nb2O5 solar cell made by the sol-gel process. Thin Solid Films 1999, 351, 290-294.
32.A. Turkovi6, Z. C. O., Dye-sensitized solar cell with Ce02 and mixed CeO2Sn02 photoanodes. Solar Energy Materials and Solar Cells 1997, 45, 275-281
33.El Zayat, M., Saed, A. & El-Dessouki, M, Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes. Chemistry of Materials 1998, 23, 259-266.
34.Dambournet, D.; Belharouak, I.; Amine, K., Tailored Preparation Methods of TiO2Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties†. Chemistry of Materials 2010, 22 (3), 1173-1179.
35.Marchand, R., Brohan, L. & Tournoux, M., TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Materials Research Bulletin 1980, 15, 1129-1133.
36.N.-G. Park, J. v. d. L., and A. J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. 104 2000, J. Phys. Chem. B, 8989-8994.
37.Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003, 48.
38.Chang, H.; Yang, Y. J.; Hsu, C. M.; Hsu, C. C.; Cheng, I. C.; Chen, J. Z., Atmospheric-Pressure-Plasma-Jet Particulate TiO2 Scattering Layer Deposition Processes for Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology 2014, 3 (10), Q177-Q181.
39.Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S., Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells. Chemical communications 2007, (2), 138-40.
40.Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A., Bilayer nanoporous electrodes for dye sensitized solar cells. Chemical communications 2000, (22), 2231-2232.
41.Shuming Yang, Y. H., Chunhui Huang, and Xinsheng Zhao, Enhanced Energy Conversion Efficiency of the Sr2+-Modified Nanoporous TiO2 Electrode Sensitized with a Ruthenium Complex. Chem. Mater. 2002, 14, 1500-1504.
42.Yishay Diamant, S. G. C., Ophira Melamed, and Arie Zaban, Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cell: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core. J. Phys. Chem. B 2003, 107, 1977-1981.
43.Q.-B. Meng, K. T., X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir : the ACS journal of surfaces and colloids 2003, 19, 3572-3574.
44.Jianning Ding, Y. L., Hongwei Hu, Li Bai, Shuai Zhang and Ningyi Yuan, The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes. Nanoscale Research Letters 2013.
45.Zhang, S.; Lan, Z.; Wu, J.; Chen, X.; Zhang, C., Preparation of novel TiO2 quantum dot blocking layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells. Journal of Alloys and Compounds 2016, 656, 253-258.
46.Que, L.; Lan, Z.; Wu, W.; Wu, J.; Lin, J.; Huang, M., Titanium dioxide quantum dots: Magic materials for high performance underlayers inserted into dye-sensitized solar cells. Journal of Power Sources 2014, 268, 670-676.
47.Kim, K.; Noh, Y.; Song, O., Properties of Dye Sensitized Solar Cells with Adding Nano Carbon Black into Blocking Layer. Journal of the Korean Ceramic Society 2015, 52 (4), 294-298.
48.Chen, T.; Hu, W.; Song, J.; Guai, G. H.; Li, C. M., Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells. Advanced Functional Materials 2012, 22 (24), 5245-5250.
49.Kim, S. R.; Parvez, M. K.; Chhowalla, M., UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters 2009, 483 (1-3), 124-127.
50.Roy-Mayhew, J. D.; Aksay, I. A., Graphene materials and their use in dye-sensitized solar cells. Chemical reviews 2014, 114 (12), 6323-48.
51.Anders Hagfeldt, G. B., Licheng Sun, Lars Kloo, and Henrik Pettersson, Dye-Sensitized Solar Cells. Chemical reviews 2010, 110, 6595-6663.
52.Grätzel, M., Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of chemical research 2009, 42, 1788-1798.
53.Mishra, A.; Fischer, M. K.; Bauerle, P., Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed Engl 2009, 48 (14), 2474-99.
54.Nazeeruddin, M. K. e. a., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 2001, 123, 1613-1624.
55.Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2003, 2 (6), 402-7.
56.Wang, P. e. a., Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. Journal of the American Chemical Society 2005, 127, 6850-6856.
57.Nazeeruddin, M. K., Humphry-Baker, R., Liska, P. & Grätzel, M., Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B 2003, 107 (8981-8987).
58.Nazeeruddin, M. K. e. a., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 2005, 127, 16835-16847.
59.K Kalyanasundaram, M. G., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews 1998, 177 (1), 347-414.
60.Cisneros, R.; Beley, M.; Fauvarque, J.-F.; Lapicque, F., Investigation of electron transfer processes involved in DSSC’s by wavelength dependent electrochemical impedance spectroscopy (λ-EIS). Electrochimica Acta 2015, 171, 49-58.
61.Brian A. Gregg, F. o. P., Suzanne Ferrere, and Clark L. Fields, Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces. J. Phys. Chem. B 2001, 105, 1422-1429.
62.G. Schlichthörl , N. G. P., and A. J. Frank, Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J. Phys. Chem. B 1999, 103, 782-791.
63.Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G., Electrolytes in dye-sensitized solar cells. Chemical reviews 2015, 115 (5), 2136-73.
64.Wang, Y.-C.; Huang, K.-C.; Dong, R.-X.; Liu, C.-T.; Wang, C.-C.; Ho, K.-C.; Lin, J.-J., Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (14), 6982.
65.Bella, F.; Bongiovanni, R., Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 16, 1-21.
66.Huang, X.; Liu, Y.; Deng, J.; Yi, B.; Yu, X.; Shen, P.; Tan, S., A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells. Electrochimica Acta 2012, 80, 219-226.
67.Tang, Z.; Wu, J.; Li, Q.; Lan, Z.; Fan, L.; Lin, J.; Huang, M., The preparation of poly(glycidyl acrylate)–polypyrrole gel-electrolyte and its application in dye-sensitized solar cells. Electrochimica Acta 2010, 55 (17), 4883-4888.
68.Cao, F., Oskam, G. & Searson, P. C. A, A Solid State, Dye Sensitized Photoelectrochemical Cell. The Journal of Physical Chemistry 1995, 99, 17071-17073.
69.Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.-i.; Murata, K., High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2003, 79 (4), 459-469.
70.Wang, H.; Sun, K.; Tao, F.; Stacchiola, D. J.; Hu, Y. H., 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed Engl 2013, 52 (35), 9210-4.
71.Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications 2008, 10 (10), 1555-1558.
72.Lee, K. S.; Lee, H. K.; Wang, D. H.; Park, N. G.; Lee, J. Y.; Park, O. O.; Park, J. H., Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chemical communications 2010, 46 (25), 4505-7.
73.A. Zaban, J. Z., Y. Diamant, O. Melemed, and J. Bisquert, Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations. J. Phys. Chem. B 2003, 107, 6022-6025.
74.Murakami, T. N.; Grätzel, M., Counter electrodes for DSC: Application of functional materials as catalysts. Inorganica Chimica Acta 2008, 361 (3), 572-580.
75.Hauch, A. G., A, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 2001, 46, 3457–3466.
76.Tsoukleris, D. S.; Arabatzis, I. M.; Chatzivasiloglou, E.; Kontos, A. I.; Belessi, V.; Bernard, M. C.; Falaras, P., 2-Ethyl-1-hexanol based screen-printed titania thin films for dye-sensitized solar cells. Solar Energy 2005, 79 (4), 422-430.
77.Ritter, K. A.; Lyding, J. W., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 2009, 8 (3), 235-42.
78.Libin Tang, R. J., Xueming Li, Gongxun Bai, Chao Ping Liu, Jianhua Hao, Jingyu Lin, Hongxing Jiang, Kar Seng Teng, Zhibin Yang, and Shu Ping Lau, Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N‑Doped Graphene Quantum Dots. ASC Nano 2014, 8, 6312–6320.
79.Tang, L.; Ji, R.; Li, X.; Teng, K. S.; Lau, S. P., Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots. Particle & Particle Systems Characterization 2013, 30 (6), 523-531.
80.Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 2013, 5 (10), 4015-39.
81.Shen, J.; Zhu, Y.; Yang, X.; Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical communications 2012, 48 (31), 3686-99.
82.Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 2012, 50 (12), 4738-4743.
83.Yan, X.; Cui, X.; Li, B.; Li, L. S., Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 2010, 10 (5), 1869-73.
84.Lee, E.; Ryu, J.; Jang, J., Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based DSSCs. Chemical communications 2013, 49 (85), 9995-7.
85.Fang, X.; Li, M.; Guo, K.; Li, J.; Pan, M.; Bai, L.; Luoshan, M.; Zhao, X., Graphene quantum dots optimization of dye-sensitized solar cells. Electrochimica Acta 2014, 137, 634-638.
86.Salam, Z.; Vijayakumar, E.; Subramania, A.; Sivasankar, N.; Mallick, S., Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells 2015, 143, 250-259.
87.蔡毓楨、薛富盛、呂福興、吳宗明, 原子力顯微鏡實作訓練教材. 五南圖書出版有限公司 2007.
88.Orazem, M. E. T., B., Electrochemical impedance spectroscopy. John Wiley & Sons 2011, 48.
89.Wu, W. Q.; Lei, B. X.; Rao, H. S.; Xu, Y. F.; Wang, Y. F.; Su, C. Y.; Kuang, D. B., Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci Rep 2013, 3, 1352.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊