|
1.Grätzel, M., Photoelectrochemical cells. Nature 2001, 414, 338-344. 2.Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676-677. 3.Conibeer, G., Third-generation photovoltaics. Materials Today 2007, 10 (11), 42-50. 4.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 47). Progress in Photovoltaics: Research and Applications 2016, 24 (1), 3-11. 5.B O'regan, M. G., A low-cost, high-efficiency solar cell based on dye-sensitized. nature 1991, 353, 737-740. 6.Robertson, N., Catching the rainbow: light harvesting in dye-sensitized solar cells. Angew Chem Int Ed Engl 2008, 47 (6), 1012-4. 7.Michael M. Lee, J. T., Tsutomu Miyasaka, Takurou N. Murakami, Henry J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. SCIENCE 2012, 338, 643-647. 8.Newcomer Juices Up the Race to Harness Sunlight. Science 2013, 342 (6165), 1438-1439. 9.Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2012, 2, 591. 10.Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-9. 11.Huanping Zhou, Q. C., Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang, Interface engineering of highly efficient perovskite solar cells. SCIENCE 2014, 345, 542-546. 12.H. TSUBOMURA, M. M., Y. NOMURA & T. AMAMIYA, Dye sensitised zinc oxide_aqueous electrolyte: platinum photocell. Nature 1976, 261, 403-403. 13.M. K. Nazeeruddin, A. K., Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratze, Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X =C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02 Electrodes. Journal of America Chemical Society 1993, 115(14), 6382-6390. 14.MK Nazeeruddin, P. P., M Grätzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. 1997, 18, 1705-1706. 15.Grätzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1-3), 3-14. 16.Grätzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry 2005, 44, 6841-6851. 17.Chiba, Y. e. a., Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics 2006, 45, L638. 18.Yella, A. e. a., Porphyrin-sensitized solar cells with cobalt(II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 45, 629-634. 19.Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Gratzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry 2014, 6 (3), 242-7. 20.Bella, F.; Gerbaldi, C.; Barolo, C.; Gratzel, M., Aqueous dye-sensitized solar cells. Chem Soc Rev 2015, 44 (11), 3431-73. 21.Gong, J.; Liang, J.; Sumathy, K., Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5848-5860. 22.Wagner, K.; Griffith, M. J.; James, M.; Mozer, A. J.; Wagner, P.; Triani, G.; Officer, D. L.; Wallace, G. G., Significant Performance Improvement of Porphyrin-Sensitized TiO2Solar Cells under White Light Illumination. The Journal of Physical Chemistry C 2011, 115 (1), 317-326. 23.Chang, H.; Lo, Y.-J., Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy 2010, 84 (10), 1833-1837. 24.Li, Y., Hagen, J., Schaffrath, W., Otschik, P. & Haarer, D, Titanium dioxide films for photovoltaic cells derived from a sol—gel process. Solar energy materials and solar cells 1999, 56. 25.Sheehan, S.; Surolia, P. K.; Byrne, O.; Garner, S.; Cimo, P.; Li, X.; Dowling, D. P.; Thampi, K. R., Flexible glass substrate based dye sensitized solar cells. Solar Energy Materials and Solar Cells 2015, 132, 237-244. 26.Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X., Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters 2007, 90 (26), 263501. 27.Alex B. F. Martinson, J. W. E., Joseph T. Hupp, and Michael J. Pellin, ZnO Nanotube Based Dye-Sensitized Solar Cells. Nano letters 2007, 7, 2183-2187. 28.Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 2009, 21 (41), 4087-4108. 29.Idriss Bedja, S. H., and Prashant V. Kamat, Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium(II) Complex. J. Phys. Chem. 1994, 98, 4133-4140. 30.Suzanne Ferrere, A. Z., and Brian A. Gregg, Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 1997, 101, 4490-4493. 31.P. Guo, M. A. A., RU(II) sensitized Nb2O5 solar cell made by the sol-gel process. Thin Solid Films 1999, 351, 290-294. 32.A. Turkovi6, Z. C. O., Dye-sensitized solar cell with Ce02 and mixed CeO2Sn02 photoanodes. Solar Energy Materials and Solar Cells 1997, 45, 275-281 33.El Zayat, M., Saed, A. & El-Dessouki, M, Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes. Chemistry of Materials 1998, 23, 259-266. 34.Dambournet, D.; Belharouak, I.; Amine, K., Tailored Preparation Methods of TiO2Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties†. Chemistry of Materials 2010, 22 (3), 1173-1179. 35.Marchand, R., Brohan, L. & Tournoux, M., TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Materials Research Bulletin 1980, 15, 1129-1133. 36.N.-G. Park, J. v. d. L., and A. J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. 104 2000, J. Phys. Chem. B, 8989-8994. 37.Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003, 48. 38.Chang, H.; Yang, Y. J.; Hsu, C. M.; Hsu, C. C.; Cheng, I. C.; Chen, J. Z., Atmospheric-Pressure-Plasma-Jet Particulate TiO2 Scattering Layer Deposition Processes for Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology 2014, 3 (10), Q177-Q181. 39.Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S., Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells. Chemical communications 2007, (2), 138-40. 40.Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A., Bilayer nanoporous electrodes for dye sensitized solar cells. Chemical communications 2000, (22), 2231-2232. 41.Shuming Yang, Y. H., Chunhui Huang, and Xinsheng Zhao, Enhanced Energy Conversion Efficiency of the Sr2+-Modified Nanoporous TiO2 Electrode Sensitized with a Ruthenium Complex. Chem. Mater. 2002, 14, 1500-1504. 42.Yishay Diamant, S. G. C., Ophira Melamed, and Arie Zaban, Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cell: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core. J. Phys. Chem. B 2003, 107, 1977-1981. 43.Q.-B. Meng, K. T., X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir : the ACS journal of surfaces and colloids 2003, 19, 3572-3574. 44.Jianning Ding, Y. L., Hongwei Hu, Li Bai, Shuai Zhang and Ningyi Yuan, The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes. Nanoscale Research Letters 2013. 45.Zhang, S.; Lan, Z.; Wu, J.; Chen, X.; Zhang, C., Preparation of novel TiO2 quantum dot blocking layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells. Journal of Alloys and Compounds 2016, 656, 253-258. 46.Que, L.; Lan, Z.; Wu, W.; Wu, J.; Lin, J.; Huang, M., Titanium dioxide quantum dots: Magic materials for high performance underlayers inserted into dye-sensitized solar cells. Journal of Power Sources 2014, 268, 670-676. 47.Kim, K.; Noh, Y.; Song, O., Properties of Dye Sensitized Solar Cells with Adding Nano Carbon Black into Blocking Layer. Journal of the Korean Ceramic Society 2015, 52 (4), 294-298. 48.Chen, T.; Hu, W.; Song, J.; Guai, G. H.; Li, C. M., Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells. Advanced Functional Materials 2012, 22 (24), 5245-5250. 49.Kim, S. R.; Parvez, M. K.; Chhowalla, M., UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters 2009, 483 (1-3), 124-127. 50.Roy-Mayhew, J. D.; Aksay, I. A., Graphene materials and their use in dye-sensitized solar cells. Chemical reviews 2014, 114 (12), 6323-48. 51.Anders Hagfeldt, G. B., Licheng Sun, Lars Kloo, and Henrik Pettersson, Dye-Sensitized Solar Cells. Chemical reviews 2010, 110, 6595-6663. 52.Grätzel, M., Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of chemical research 2009, 42, 1788-1798. 53.Mishra, A.; Fischer, M. K.; Bauerle, P., Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed Engl 2009, 48 (14), 2474-99. 54.Nazeeruddin, M. K. e. a., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 2001, 123, 1613-1624. 55.Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2003, 2 (6), 402-7. 56.Wang, P. e. a., Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. Journal of the American Chemical Society 2005, 127, 6850-6856. 57.Nazeeruddin, M. K., Humphry-Baker, R., Liska, P. & Grätzel, M., Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B 2003, 107 (8981-8987). 58.Nazeeruddin, M. K. e. a., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 2005, 127, 16835-16847. 59.K Kalyanasundaram, M. G., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews 1998, 177 (1), 347-414. 60.Cisneros, R.; Beley, M.; Fauvarque, J.-F.; Lapicque, F., Investigation of electron transfer processes involved in DSSC’s by wavelength dependent electrochemical impedance spectroscopy (λ-EIS). Electrochimica Acta 2015, 171, 49-58. 61.Brian A. Gregg, F. o. P., Suzanne Ferrere, and Clark L. Fields, Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces. J. Phys. Chem. B 2001, 105, 1422-1429. 62.G. Schlichthörl , N. G. P., and A. J. Frank, Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J. Phys. Chem. B 1999, 103, 782-791. 63.Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G., Electrolytes in dye-sensitized solar cells. Chemical reviews 2015, 115 (5), 2136-73. 64.Wang, Y.-C.; Huang, K.-C.; Dong, R.-X.; Liu, C.-T.; Wang, C.-C.; Ho, K.-C.; Lin, J.-J., Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (14), 6982. 65.Bella, F.; Bongiovanni, R., Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 16, 1-21. 66.Huang, X.; Liu, Y.; Deng, J.; Yi, B.; Yu, X.; Shen, P.; Tan, S., A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells. Electrochimica Acta 2012, 80, 219-226. 67.Tang, Z.; Wu, J.; Li, Q.; Lan, Z.; Fan, L.; Lin, J.; Huang, M., The preparation of poly(glycidyl acrylate)–polypyrrole gel-electrolyte and its application in dye-sensitized solar cells. Electrochimica Acta 2010, 55 (17), 4883-4888. 68.Cao, F., Oskam, G. & Searson, P. C. A, A Solid State, Dye Sensitized Photoelectrochemical Cell. The Journal of Physical Chemistry 1995, 99, 17071-17073. 69.Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.-i.; Murata, K., High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2003, 79 (4), 459-469. 70.Wang, H.; Sun, K.; Tao, F.; Stacchiola, D. J.; Hu, Y. H., 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed Engl 2013, 52 (35), 9210-4. 71.Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications 2008, 10 (10), 1555-1558. 72.Lee, K. S.; Lee, H. K.; Wang, D. H.; Park, N. G.; Lee, J. Y.; Park, O. O.; Park, J. H., Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chemical communications 2010, 46 (25), 4505-7. 73.A. Zaban, J. Z., Y. Diamant, O. Melemed, and J. Bisquert, Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations. J. Phys. Chem. B 2003, 107, 6022-6025. 74.Murakami, T. N.; Grätzel, M., Counter electrodes for DSC: Application of functional materials as catalysts. Inorganica Chimica Acta 2008, 361 (3), 572-580. 75.Hauch, A. G., A, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 2001, 46, 3457–3466. 76.Tsoukleris, D. S.; Arabatzis, I. M.; Chatzivasiloglou, E.; Kontos, A. I.; Belessi, V.; Bernard, M. C.; Falaras, P., 2-Ethyl-1-hexanol based screen-printed titania thin films for dye-sensitized solar cells. Solar Energy 2005, 79 (4), 422-430. 77.Ritter, K. A.; Lyding, J. W., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 2009, 8 (3), 235-42. 78.Libin Tang, R. J., Xueming Li, Gongxun Bai, Chao Ping Liu, Jianhua Hao, Jingyu Lin, Hongxing Jiang, Kar Seng Teng, Zhibin Yang, and Shu Ping Lau, Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N‑Doped Graphene Quantum Dots. ASC Nano 2014, 8, 6312–6320. 79.Tang, L.; Ji, R.; Li, X.; Teng, K. S.; Lau, S. P., Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots. Particle & Particle Systems Characterization 2013, 30 (6), 523-531. 80.Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 2013, 5 (10), 4015-39. 81.Shen, J.; Zhu, Y.; Yang, X.; Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical communications 2012, 48 (31), 3686-99. 82.Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 2012, 50 (12), 4738-4743. 83.Yan, X.; Cui, X.; Li, B.; Li, L. S., Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 2010, 10 (5), 1869-73. 84.Lee, E.; Ryu, J.; Jang, J., Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based DSSCs. Chemical communications 2013, 49 (85), 9995-7. 85.Fang, X.; Li, M.; Guo, K.; Li, J.; Pan, M.; Bai, L.; Luoshan, M.; Zhao, X., Graphene quantum dots optimization of dye-sensitized solar cells. Electrochimica Acta 2014, 137, 634-638. 86.Salam, Z.; Vijayakumar, E.; Subramania, A.; Sivasankar, N.; Mallick, S., Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells 2015, 143, 250-259. 87.蔡毓楨、薛富盛、呂福興、吳宗明, 原子力顯微鏡實作訓練教材. 五南圖書出版有限公司 2007. 88.Orazem, M. E. T., B., Electrochemical impedance spectroscopy. John Wiley & Sons 2011, 48. 89.Wu, W. Q.; Lei, B. X.; Rao, H. S.; Xu, Y. F.; Wang, Y. F.; Su, C. Y.; Kuang, D. B., Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci Rep 2013, 3, 1352.
|