|
[1]C. K. Hu, R. Rosenberg, and K. Y. Lee, "Electromigration path in Cu thin-film lines," Applied Physics Letters, Vol. 74, pp. 2945-2947 (1999). [2]S. H. Brongersma, E. Kerr, I. Vervoort, A. Saerens, and K. Maex, "Grain growth, stress, and impurities in electroplated copper," Journal of Materials Research, Vol. 17, pp. 582-589 (2002). [3]K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Wen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Applied Physics Letters, Vol. 81, pp. 3774-3776 (2002). [4]J. Neuner, I. Zienert, A. Peeva, A. Preuße, P. Kücher, and J. W. Bartha, "Microstructure in copper interconnects–Influence of plating additive concentration," Microelectronic Engineering, Vol. 87, pp. 254-257 (2010). [5]T. C. Liu, C. M. Liu, Y. S. Huang, C. Chen, and K. N. Tu, "Eliminate Kirkendall voids in solder reactions on nanotwinned copper," Scripta Materialia, Vol. 68, pp. 241-244 (2013). [6]Y. S. Huang, C. M. Liu, W. L. Chiu, and C. Chen, "Grain growth in electroplated (111)-oriented nanotwinned Cu," Scripta Materialia, Vol. 89, pp. 5-8 (2014). [7]C. M. Liu, H. W. Lin, Y. S. Huang, Y. C. Chu, C. Chen, D. R. Lyu, K. N. Chen, and K. N. Tu, "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu," Scientific Reports, Vol. 5, pp. 9734 (2015). [8]K. N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectronics Reliability, Vol. 51, pp. 517-523 (2011). [9]P. Dixit, C. W. Tan, L. Xu, N. Lin, J. Miao, J. H. L. Pang, P. Backus, and R. Preisser, "Fabrication and characterization of fine pitch on-chip copper interconnects for advanced wafer level packaging by a high aspect ratio through AZ9260 resist electroplating," Journal of Micromechanics and Microengineering, Vol. 17, pp. 1078 (2007). [10]C. Gu, H. Xu, and T. Y. Zhang, "Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating," Journal of Micromechanics and Microengineering, Vol. 19, pp. 065011 (2009). [11]N. T. Nguyen, E. Boellaard, N. P. Pham, V. G. Kutchoukov, G. Craciun, and P. M. Sarro, "Through-wafer copper electroplating for three-dimensional interconnects," Journal of Micromechanics and Microengineering, Vol. 12, pp. 395 (2002). [12]H. Wang, P. Cheng, H. Wang, R. Liu, L. Sun, Q. Rao, Z. Wang, T. Gu, and G. Ding, "Effect of current density on microstructure and mechanical property of Cu micro-cylinders electrodeposited in through silicon vias," Materials Characterization, Vol. 109, pp. 164-172 (2015). [13]A. Chrzanowska and R. Mroczka, "Influence of chloride anions and polyethylene glycol on the morphology of electrodeposited copper layers," Electrochimica Acta, Vol. 78, pp. 316-323 (2012). [14]A. Chrzanowska, R. Mroczka, and M. Florek, "Effect of interaction between dodecyltrimethylammonium chloride (DTAC) and bis (3-sulphopropyl) disulphide (SPS) on the morphology of electrodeposited copper," Electrochimica Acta, Vol. 106, pp. 49-62 (2013). [15]E. Shinada, T. Nagoshi, T. F. M. Chang, and M. Sone, "Crystallographic study on self-annealing of electroplated copper at room temperature," Materials Science in Semiconductor Processing, Vol. 16, pp. 633-639 (2013). [16]S. Lagrange, S. H. Brongersma, M. Judelewicz, A. Saerens, I. Vervoort, E. Richard, R. Palmans, and K. Maex, "Self-annealing characterization of electroplated copper films," Microelectronic Engineering, Vol. 50, pp. 449-457 (2000). [17]K. B. Yin, Y. D. Xia, C. Y. Chan, W. Q. Zhang, Q. J. Wang, X. N. Zhao, A. D. Li, Z. G. Liu, M. W. Bayes, and K. W. Yee, "The kinetics and mechanism of room-temperature microstructural evolution in electroplated copper foils," Scripta Materialia, Vol. 58, pp. 65-68 (2008). [18]J. M. Paik, Y. J. Park, M. S. Yoon, J. H. Lee, and Y. C. Joo, "Anisotropy of grain boundary energies as cause of abnormal grain growth in electroplated copper films," Scripta Materialia, Vol. 48, pp. 683-688 (2003). [19]S. P. Hau-Riege and C. V. Thompson, "In situ transmission electron microscope studies of the kinetics of abnormal grain growth in electroplated copper films," Applied Physics Letters, Vol. 76, pp. 309-311 (2000). [20]M. Moriyama, K. Matsunaga, T. Morita, S. Tsukimoto, and M. Murakami, "The effect of strain distribution on abnormal grain growth in Cu thin films," Materials Transactions, Vol. 45, pp. 3033-3038 (2004). [21]Q. Huang, A. Avekians, S. Ahmed, C. Parks, B. Baker-O'Neal, S. Kitayaporn, A. Sahin, Y. Sun, and T. Cheng, "Impurities in the electroplated sub-50 nm Cu lines: The effects of the plating additives," Journal of The Electrochemical Society, Vol. 161, pp. D388-D394 (2014). [22]M. Kang and A. A. Gewirth, "Influence of additives on copper electrodeposition on physical vapor deposited (PVD) copper substrates," Journal of The Electrochemical Society, Vol. 150, pp. C426-C434 (2003). [23]W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, "Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating," Journal of The Electrochemical Society, Vol. 152, pp. C769-C775 (2005). [24]P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, "Damascene copper electroplating for chip interconnections," IBM Journal of Research and Development, Vol. 42, pp. 567-574 (1998). [25]P. M. Vereecken, R. A. Binstead, H. Deligianni, and P. C. Andricacos, "The chemistry of additives in damascene copper plating," IBM Journal of Research and Development, Vol. 49, pp. 3-18 (2005). [26]T. P. Moffat, D. Wheeler, and D. Josell, "Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements: Influence of SPS," Journal of The Electrochemical Society, Vol. 151, pp. C262-C271 (2004). [27]M. Tan and J. N. Harb, "Additive behavior during copper electrodeposition in solutions containing Cl−, PEG, and SPS," Journal of The Electrochemical Society, Vol. 150, pp. C420-C425 (2003). [28]Z. V. Feng, X. Li, and A. A. Gewirth, "Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study," The Journal of Physical Chemistry B, Vol. 107, pp. 9415-9423 (2003). [29]W. P. Dow, H. S. Huang, M. Y. Yen, and H. C. Huang, "Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating," Journal of The Electrochemical Society, Vol. 152, pp. C425-C434 (2005). [30]K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, "Copper damascene electrodeposition and additives," Journal of Electroanalytical Chemistry, Vol. 559, pp. 137-142 (2003). [31]J. Kelly, T. Nogami, O. van der Straten, J. Demarest, J. Li, C. Penny, T. Vo, C. Parks, P. DeHaven, C. K. Hu and E. Liniger "Electrolyte additive chemistry and feature size-dependent impurity incorporation for Cu interconnects," Journal of The Electrochemical Society, Vol. 159, pp. D563-D569 (2012). [32]W. Zhang, S. H. Brongersma, T. Conard, W. Wu, M. Van Hove, W. Vandervorst, and K. Maex, "Impurity incorporation during copper electrodeposition in the curvature-enhanced accelerator coverage regime," Electrochemical and Solid-State Letters, Vol. 8, pp. C95-C97 (2005). [33]C. K. Hu, M. Angyal, B. C. Baker, G. Bonilla, C. Cabral, D. F. Canaperi, S. Choi, L. Clevenger, D. Edelstein, L. Gignac, E. Huang, J. Kelly, B. Y. Kim, V. Kyei-Fordjour, S. L. Manikonda, J. Maniscalco, S. Mittal, T. Nogami, C. Parks, R. Rosenberg, A. Simon, Y. Xu, T. A. Vo and C. Witt "Effect of impurity on Cu electromigration," AIP Conference Proceedings, pp. 57-67 (2010). [34]M. Stangl, M. Lipták, J. Acker, V. Hoffmann, S. Baunack, and K. Wetzig, "Influence of incorporated non-metallic impurities on electromigration in copper damascene interconnect lines," Thin Solid Films, Vol. 517, pp. 2687-2690 (2009). [35]S. Muranaka, M. Sueyoshi, K. Mori, K. Maekawa, M. Fujisawa, and K. Asai, "Effect of impurities and microstructure of Cu electroplated film on reliability of Cu interconnects using CuAl alloy seed," Microelectronic Engineering, Vol. 105, pp. 91-94 (2013). [36]K. N. Chen, A. Fan, C. S. Tan, and R. Reif, "Bonding parameters of blanket copper wafer bonding," Journal of Electronic Materials, Vol. 35, pp. 230-234 (2006). [37]C. Yu, Y. Yang, H. Lu, and J. M. Chen, "Effects of Current Stressing on Formation and Evolution of Kirkendall Voids at Sn–3.5Ag/Cu Interface," Journal of Electronic Materials, Vol. 39, pp. 1309-1314 (2010). [38]J. Yu and J. Y. Kim, "Effects of residual S on Kirkendall void formation at Cu/Sn–3.5 Ag solder joints," Acta Materialia, Vol. 56, pp. 5514-5523 (2008). [39]C. Yu, J. Chen, Z. Cheng, Y. Huang, J. Chen, J. Xu, and H. Lu, "Fine grained Cu film promoting Kirkendall voiding at Cu3Sn/Cu interface," Journal of Alloys and Compounds, Vol. 660, pp. 80-84 (2016). [40]H. Li, R. An, C. Wang, Y. Tian, and Z. Jiang, "Effect of Cu grain size on the voiding propensity at the interface of SnAgCu/Cu solder joints," Materials Letters, Vol. 144, pp. 97-99 (2015). [41]J. Y. Wu, H. Lee, C. H. Wu, C. F. Lin, W. P. Dow, and C. M. Chen, "Effects of Electroplating Additives on the Interfacial Reactions between Sn and Cu Electroplated Layers," Journal of The Electrochemical Society, Vol. 161, pp. D522-D527 (2014). [42]T. Y. Yu, H. Lee, H. L. Hsu, W. P. Dow, H. K. Cheng, K. C. Liu, and C. M. Chen, "Effects of Cu Electroplating Formulas on the Interfacial Microstructures of Sn/Cu Joints," Journal of The Electrochemical Society, Vol. 163, pp. D734-D741 (2016). [43]H. Lee, T. Y. Yu, H. K. Cheng, K. C. Liu, P. F. Chan, W. P. Dow, and C. M. Chen, "Impurity Incorporation in the Cu Electrodeposit and Its Effects on the Microstructural Evolution of the Sn/Cu Solder Joints," Journal of The Electrochemical Society, Vol. 164, pp. D457-D462 (2017). [44]Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D. W. Henderson, E. J. Cotts, and N. Dimitrov, "Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper–solder interface," Journal of Applied Electrochemistry, Vol. 38, pp. 1695-1705 (2008). [45]Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D. W. Henderson, S. Bliznakov, E. J. Cotts, and N. Dimitrov, "Improving copper electrodeposition in the microelectronics industry," Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, pp. 2105-2110 (2008). [46]C. Yu, Y. Yang, J. Chen, J. Xu, J. Chen, and H. Lu, "Effect of deposit thickness during electroplating on Kirkendall voiding at Sn/Cu joints," Materials Letters, Vol. 128, pp. 9-11 (2014). [47]C. K. Lin, C. Chen, D. T. Chu, and K. N. Tu, "Communication—Formation of Porous Cu3Sn by High-Temperature Current Stressing," ECS Journal of Solid State Science and Technology, Vol. 5, pp. P461-P463 (2016). [48]L. D. Chen, M. L. Huang, and S. M. Zhou, "Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect," Journal of Alloys and Compounds, Vol. 504, pp. 535-541 (2010). [49]K. Yamanaka, Y. Tsukada, and K. Suganuma, "Electromigration effect on solder bump in Cu/Sn–3Ag–0.5 Cu/Cu system," Scripta Materialia, Vol. 55, pp. 867-870 (2006). [50]S. H. Lee and C. M. Chen, "Electromigration in a Sn-3 wt.% Ag-0.5 wt.% Cu-3 wt.% Bi Solder Stripe Between Two Cu Electrodes Under Current Stressing," Journal of Electronic Materials, Vol. 40, pp. 1943-1949 (2011). [51]Y. Jung and J. Yu, "Electromigration induced Kirkendall void growth in Sn-3.5 Ag/Cu solder joints," Journal of Applied Physics, Vol. 115, pp. 083708 (2014). [52]T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, "Growth behavior of compound layers in Sn/Cu/Sn diffusion couples during annealing at 433–473K," Materials Science and Engineering: A, Vol. 396, pp. 115-123 (2005). [53]A. Paul, C. Ghosh, and W. J. Boettinger, "Diffusion parameters and growth mechanism of phases in the Cu-Sn system," Metallurgical and Materials Transactions A, Vol. 42, pp. 952-963 (2011). [54]S. Kumar, C. A. Handwerker, and M. A. Dayananda, "Intrinsic and interdiffusion in Cu-Sn system," Journal of Phase Equilibria and Diffusion, Vol. 32, pp. 309-319 (2011). [55]L. Zhang, X. y. Fan, C. w. He, and Y. h. Guo, "Intermetallic compound layer growth between SnAgCu solder and Cu substrate in electronic packaging," Journal of Materials Science: Materials in Electronics, Vol. 24, pp. 3249-3254 (2013). [56]J. W. Yoon and S. B. Jung, "Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-3.5 Ag-0.75 Cu solder and Cu substrate," Journal of Materials Science, Vol. 39, pp. 4211-4217 (2004). [57]K. Zeng and K. N. Tu, "Six cases of reliability study of Pb-free solder joints in electronic packaging technology," Materials Science and Engineering: R: reports, Vol. 38, pp. 55-105 (2002). [58]X. Hu, T. Xu, L. M. Keer, Y. Li, and X. Jiang, "Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints," Materials Science and Engineering: A, Vol. 673, pp. 167-177 (2016). [59]C. Yang, F. Le, and S. W. Ricky Lee, "Experimental investigation of the failure mechanism of Cu–Sn intermetallic compounds in SAC solder joints," Microelectronics Reliability, Vol. 62, pp. 130-140 (2016). [60]M. H. Lu and K. C. Hsieh, "Sn-Cu intermetallic grain morphology related to Sn layer thickness," Journal of Electronic Materials, Vol. 36, pp. 1448-1454 (2007).
|