跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/19 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林浩源
研究生(外文):Hao-Yuan Lin
論文名稱:單寧/1,6-亞己基二異氰酸酯合成PU薄膜於抗菌和氣體分離之應用
論文名稱(外文):Preparation of Tannin/1,6-Diisocyanatohexane PU Membranes for Antibacterial and Gas Separation Applications
指導教授:孫幸宜
指導教授(外文):Shing-Yi Suen
口試委員:李思禹顧野松
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:單寧16-己二異氰酸酯聚氨酯抗菌薄膜氣體滲透分離
外文關鍵詞:Tannin16-hexamethylene diisocyanatePolyurethaneAntibacterial membraneGas separation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單寧(tannin, C76H52O46, molecular weight = 1701.19 g/mol, solubility in water = 2850 g/L, pKa≈10)為多酚類天然物質,廣泛存在於多種植物中,相關研究證實其具抗氧化作用與抑菌效果。而文獻資料已成功以縮合單寧為基材,利用聚氨酯發泡操作製備出抗菌功能之聚氨酯材料,且在土壤微生物作用下可生物降解,顯見縮和單寧為合適的環保抑菌材之天然原料。本研究亦採用其衍生物,單寧為基材,希能製備以天然物質為主體的薄膜,並應用於水中抗大腸桿菌與青黴菌程序,或應用於氣體滲透分離上。本研究以單寧與1,6-己二異氰酸酯(1,6-hexamethylene diisocyanate, HDI)反應,調整單寧與HDI的莫耳比、溫度、反應時間等條件,找出最適合刮成薄膜且易於分析的高分子溶液,並以FTIR、TGA和DSC分析產物之官能基與熱性質,判斷反應之成功與否,與隨溫度改變而產生的變化,隨後再添加不同種類之軟鏈段高分子並與PU高分子溶液混合,製備出具可撓性的薄膜利於應用。實驗結果發現:溫度較高、反應時間較長、HDI較多,均可增加反應的成功率,但同時也形成較多固體產物。獲得較佳之反應條件,且也得到CA與PMMA兩種高分子的最佳添加條件後,利用不同的相轉換程序製備薄膜,最後再進行薄膜的抗大腸桿菌與青黴菌活性測試和氣體分離應用。批次抗菌的抗菌方法為將適當重量的薄膜放入37oC、20 mL大腸桿菌溶液(2-5×105 CFU/mL)中,分析24小時後大腸桿菌的生長情況,並以單寧和HDI原料做為控制組,以比較抗菌效果。而青黴菌抗菌則使用抑菌圈抗菌方法,配置好青黴菌抗菌懸浮液(3×105 CFU/mL),均勻塗在培養皿上,放入樣品薄膜等待約3天後觀察抑菌圈大小。抗菌實驗結果顯示:以單寧和HDI反應所製備得的聚氨酯薄膜亦具抗菌效果,且蒸氣誘導式的抗菌效果又比乾式稍微來的好,而抗黴菌效果方面純聚氨酯薄膜效果大於摻混高分子薄膜大於純高分子薄膜。氣體分離上CO2對N2與CO2對CH4選擇率降低,但滲透率隨之上升,分離效果差,只有N2對CH4分離效果較佳。
Tannin is a kind of natural polyphenols substance widely found in many kinds of plants. Related research has verified that it has anti-oxidation and antibacterial effect. Previous literatures had successfully used condensed tannin as the substrate in polyurethane foam operation to create antibacterial function for polyurethane material. Furthermore, this material is ecologically friendly due to the fact it can be biodegraded by microorganisms in the soil. Therefore condensed tannin is the appropriate raw material for antibacterial effect enhancement. In this study, condensed tannin derivatives was used as the substrate to prepare natural materials as the membrane and further used in three applications: Antibacterial-E. coli water treatment, Penicillium inhibition, and gas permeation separation. During the synthesis the mole ratio was adjusted by adding 1,6-hexamethylene diisocyanate (HDI) while temperature and reaction time was also adjusted to find the optimum parameters for membrane preparation. The resulting polymer solution was characterized by FTIR, TGA and DSC instruments to identify the product’s functional groups and thermal properties to determine the success of the synthesis. Then the PU polymer was blended with different types of soft chain polymers to prepare flexible membranes that are favorable for the applications. The results show that not only higher temperatures, longer reaction time, and higher mole ratio can increase the success rate of reaction, but they also encourage the formation of more solid products. After the optimum conditions for the reaction of Cellulose acetate and Polymethylmrthacrylate were obtained, the membranes were prepared by different phase conversion method.
Finally, the membranes were used in the following applications: the anti-E. coli water treatment, Penicillium inhibition zone test, and gas separation were applied to the membranes. Antibacterial method of batch is weighted the appropriate weight of the membrane and put into 37oC, 20 mL E. coli solution (2-5×105 CFU/mL),analysis of 24 hours after the growth of E. coli, tannin and HDI as a control group to compare the antibacterial effect. Finally, the membranes were used in the following applications: the anti-E. coli water treatment, Penicillium inhibition zone test, and gas separation. For antibacterial method, measured membrane amount was added into 20 mL E. coli solution (2-5×105 CFU/mL) and incubate at 37oC for 24 hours before data collection with tannin and HDI as control group to compare the antibacterial effect. The other application of Penicillium inhibition, suspension of Penicillium spores (3×105 CFU/mL) was coated on the agar supplemented culture dish, then the sample membrane was placed on the coated agar. After 3 days, inhibition zones were observed and their sizes were measured. The results of antibacterial experiments showed that the polyurethane membranes prepared by the reaction of tannin and HDI had the expected antibacterial
effect, and the vapor-induced antibacterial effect was slightly better than that of dry type. For both E. coli and Penicillium, pure polyurethane membrane was more effective in antibacterial property than that of blended polymer membranes. As for gas permeation, the selectivity of CO2 /N2 and CO2/CH4 was lower than that of N2/CH4 on the gas separation; only N2 had better effect on CH4 separation.
目錄
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
第二章 文獻回顧 3
2.1 抗菌薄膜技術 3
2.1.1 抗菌技術與機制 3
2.1.2 單寧抗菌效果 10
2.1.3 單寧及其衍生物合成反應 12
2.1.4 單寧及其衍生物的萃取法 17
2.1.5 高分子薄膜於抗菌之應用 20
2.2 氣體分離抑菌機制薄膜技術 20
2.2.1 高分子薄膜於氣體分離上之應用 20
2.2.2 混合型高分子薄膜 21
第三章 實驗方法 24
3.1儀器、實驗藥品 24
3.1.1 儀器 24
3.1.2 實驗藥品、氣體 25
3.2 PU薄膜之製備 27
3.2.1 PU鑄膜液製備 27
3.2.2 PU薄膜製備 27
3.3 PU高分子固體性質分析 27
3.3.1重量平衡 27
3.3.2 FT-IR 27
3.3.3 TGA 28
3.3.4 DSC 28
3.4 PU高分子液體性質分析 28
3.4.1重量平衡 28
3.4.2 FT-IR 28
3.4.3 GPC 28
3.5 清洗後THF性質分析 29
3.5.1 FT-IR 29
3.5.2 UV-vis 29
3.6 PU薄膜與SEM分析 29
3.6.1 薄膜SEM之影像圖 29
3.6.2 厚度分析 29
3.6.3 穿透度分析 29
3.6.4 陽離子交換分析 30
3.7 PU摻混高分子薄膜製備 30
3.7.1 PU摻混高分子可撓性測試 30
3.7.2 薄膜SEM之影像圖 30
3.8抗菌實驗 30
3.8.1 菌液培養 30
3.8.2 批次殺菌實驗 31
3.8.3 抑菌圈殺菌實驗 31
3.9 氣體滲透實驗 32
第四章 結果與討論 35
4.1 PU反應性質分析 35
4.1.1 Tannin-HDI反應性質 35
4.1.2 尋找單寧與1,6-己二異氰酸酯反應之最佳時間 35
(1) FT-IR官能基分析 39
(2) 找出最佳反應時間 39
4.1.3 尋找單寧與1,6-己二異氰酸酯反應之最佳溫度 42
(1) 找出最佳反應溫度 45
(2) 最佳條件FT-IR官能基分析 45
4.2 PU反應後定量結果分析 48
4.2.1 GPC對PU高分子分子量分析 48
(1) PS標準品檢量線 48
(2) PU高分子 48
4.2.2 TGA對PU高分子分析 51
(1) TGA之熱重分析 51
4.2.3 DSC對PU高分子分析 51
(1) DSC之熱重分析 51
4.3 清洗後THF性質結果分析 53
4.3.1 FT-IR 53
4.3.2 UV-vis 53
4.4 PU抗菌薄膜性質探討 53
4.4.1 薄膜厚度結果 53
4.4.2 薄膜中孔洞大小與結構 53
4.4.3 薄膜上之OH官能基分析 54
4.5 摻混高分子於PU薄膜後性質分析 58
4.5.1 不同高分子摻混PU後之外觀與穿透度 58
4.5.2 不同高分子摻混PU後之可撓性 58
4.5.3 不同高分子摻混PU後之SEM結構分析 58
4.6抗菌實驗 63
4.6.1 單寧抗菌實驗對批次抗菌的影響結果 63
4.6.2 HDI抗菌實驗對批次抗菌的影響結果 63
4.6.3 PU高分子薄膜之抗菌測試對批次殺菌的影響結果 63
4.6.4 不同種類抗菌薄膜對大腸桿菌抑制率影響 63
4.6.5 抗菌圈抗菌實驗結果 64
4.7氣體分離實驗 74
第五章 結論 78
參考文獻 79
參考文獻
1. https://kknews.cc/zh-tw/health/y8gkjjj.html

2. Jinjie Ge, Xinghai Shi, Meiqin Cai, Rui Wu, M. Wang, A Novel Biodegradable Antimicrobial PU Foam from Wattle Tannin. Journal of Applied Polymer Science 90 (2003) 2756-2763.

3. 環境器具衛生消毒的介紹,疾病管制局101/03

4.Tchobanoglous, G. Burton (eds.) ,Wastewater Engineering: Treatment, Disposal and Reuse, McGraw-Hill, (1991)

5.G. J. Tortora, B. R. Funke, C. L. Case, Microbiology an Introduction, Pearson Benjamin Cummings, (2004)

6.黃鈺茹, 黃登福,自來水中氯化消毒副產物之飲用安全性,自來水會刊, 第3期 (2007)

7. 王長安,抗菌食品包裝研究進展,南海出入境檢驗檢疫局,南海,中國,(2009)

8. 楊雯涵,新型奈米銀殺菌濾材去除大腸桿菌之研究,碩士論文,私立逢甲大學環境工程與科學學系研究所,台中,台灣

9. P I. O’Daniel , Z Peng, H Pi, S A. Testero , D Ding, E Spink, E Leemans, M A. Boudreau, T Yamaguchi, V A. Schroeder, W R. Wolter, L I. L larrull, W Song, E Lastochkin, M Kumarasiri, N T. Antunes, M Espahbodi, K Lichtenwalter, M A. Suckow, S Vakulenko, S Mobashery, M Chang, Discovery of a New Class of Non-β-lactam Inhibitors of Penicillin-Binding Proteins with Gram-Positive Antibacterial Activity, Am. Chem. Soc. 2014, 136, 3664−3672

10.財團法人食品工業發展研究所朱兆秀博士-奈米材料抗菌原理,2010

11.Li, Z., Zhuang, X. P., Liu,X. F., Guan, Y. L., Yao,K. D., 2002, “Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N,N-dimethylacetamide solution,” Polymer, vol.43, pp.1541-1547

12.http://life.nthu.edu.tw/~lslty/phy/plantcell-1a.htm

13.R.-E. Harkness ,V. Braun,Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier recycling,J Biol Chem. 1989 Apr 15;264(11):6177-82.

14.R. S. Kumar, R. V. Pradeepchandran, and K. N. Jayaveera,“Docking studies
of benzimidazole derivatives on peptide deformylase and heptosyltransferase waac as antibacterial agent,” International Journal of Pharmaceutical Research and Innovation, vol. 4, pp. 1–5, 2011.

15. 葉酸的生物合成及其代謝工程研究進展, 南京替斯艾麼中藥技術研究所(2006)

16.R. S. Kumar, R. V. Pradeepchandran, and K. N. Jayaveera,“Computer aided discovery of benzimidazole derivatives onpeptide deformylase as antimicrobial agent using HEX,” European Journal of Chemistry, vol. 2, pp. 558–560, 2011.

17.R. S. Kumar, R. V. Pradeepchandran, and K. N. Jayaveera,“Docking studies of benzimidazole derivatives on peptide deformylase and heptosyltransferase waac as antibacterial agent,” International Journal of Pharmaceutical Research and Innovation, vol. 4, 2011.

18. 徐進, 趙聲蘭, 陳朝銀, 細菌抗單寧作用機制及其意義, 生物學雜誌, (2008)

19. G. J. Zhao, K. T. Chung, K. Milow, W. X. Wang, S. E. Stevens, Antibacterial properties of tannic acid and related compounds against the fish pathogen Cytophaga columnaris. Journal of Aquatic Animal Health 9 (1997) 309-313.

20. N. Sahiner, S. Sagbas, M. Sahiner, C. Silan, N. Aktas, M. Turk, Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. International Journal of Biological Macromolecules 82 (2016) 150-159.

21. B. R. Min, W. E. Pinchak, R. Merkel, S. Walker, G. Tomita, R. C. Anderson, Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. (2007)

22. S. M. Ç, B. M. Yapici, A. N. Yapici, Determination of antimicrobial activity of tannic acid in pickling process (2010).

23. T. J. Kim, J. L. Silva, M. K. Kim, Y. S. Jung, Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chemistry 118 (2010) 740-746.

24. J. B. Harborne, H. Baxter and G. P. Moss, “Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants,” 2nd Edition, Taylor & Francis, London, 1999.

25. Y. Zhang, Y. Su, J. Peng, X. Zhao, J. Liu, J. Zhao, Z. Jiang, Composite nanofiltration membranes prepared by interfacial polymerization with natural
material tannic acid and trimesoyl chloride. Journal of Membrane Science 429 (2013) 235-242.
26. N. A. Negm, A. F. M. El Farargy, D. E. Mohammed, H. N. Mohamad, Environmentally Friendly Nonionic Surfactants Derived from Tannic Acid: Synthesis, Characterization and Surface Activity. Journal of Surfactants and Detergents 15 (2012) 433-443.

27. Yamaguchi, H.; Okuda, K. Holzforschung 1998, 52, 596.

28. R. Liu, J. Zheng, R. Guo, J. Luo, Y. Yuan, X. Liu, Synthesis of New Biobased Antibacterial Methacrylates Derived from Tannic Acid and Their Application in UV-Cured Coatings. Industrial & Engineering Chemistry Research 53 (2014) 10835-10840.

29. G. Fernandez-Lorente, J. M. Bolivar, J. Rocha-Martin, J. A. Curiel, R. Munoz, B. de Las Rivas, A. V. Carrascosa, J. M. Guisan, Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum. Food Chem 128 (2011) 214-7.

30. G. Nie, H. Liu, Z. Chen, P. Wang, G. Zhao, Z. Zheng, Synthesis of propyl gallate from tannic acid catalyzed by tannase from Aspergillus oryzae: Process optimization of transesterification in anhydrous media. Journal of Molecular Catalysis B: Enzymatic 82 (2012) 102-108.

31. G. H. Sayed, F. M. Ghuiba, M. I. Abdou, E. A. A. Badr, S. M. Tawfik, N. A. M. Negm, Synthesis, surface and thermodynamic parameters of some biodegradable nonionic surfactants derived from tannic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 393 (2012) 96-104.

32. 鞣質,醫學百科, http://cht.a-hospital.com/w/%E9%9E%A3%E8%B4%A8

33. A. Romani, F. Ieri, B. Turchetti, N. Mulinacci, F. F. Vincieri, P. Buzzini, Analysis of condensed and hydrolysable tannins from commercial plant extracts. Journal of Pharmaceutical and Biomedical Analysis 41 (2006) 415-420.

34. I. Miranda, L. Lima, T. Quilhó, S. Knapic, H. Pereira, The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Industrial Crops and Products 82 (2016) 81-87.

35. S. A. Santos, C. S. Freire, M. R. Domingues, A. J. Silvestre, C. Pascoal Neto, Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. J Agric Food Chem 59 (2011) 9386-93.

36. S. Maqsood, S. Benjakul, A. K. Balange, Effect of tannic acid and kiam wood
extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage. Food Chemistry 130 (2012) 408-416.
37. R. Naima, M. Oumam, H. Hannache, A. Sesbou, B. Charrier, A. Pizzi, F. Charrier – El Bouhtoury, Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Industrial Crops and Products 70 (2015) 245-252.

38. A.N. R. Abedini, Application of Membrane in gas Separation Processes: Its Suitability and Mechanisms. Petroleum & Coal 52(2) (2010) 69-80.

39.K.K.S. W.S.W. Ho, Membrane Handbook. Van Nostrand Reinhold, New York (1992).

40.B.D. Freeman, Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 32 (1999) 375-380.

41. L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62 (1991) 165-185.

42.L.M. Robeson, The upper bound revisited. Journal of Membrane Science 320 (2008) 390-400.

43. 翁子祥, 高分子薄膜與多層複合薄膜氣體分離特性之研究,博士論文, 國立中興大學環境工程研究所, 台中,台灣(2010).

44. M.M.T. S. S. Hosseini, T. S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer 49 (2008) 1594-1603.

45. S.T. T. Johnson, Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends, Polymer 40 (1999) 3223–3228.

46. H.B.M. A. Mushtaq, A. M. Shariff, H. A. Mannan, A Review: Development of Polymeric Blend Membrane for Removal of CO2 from Natural Gas, International Journal of Engineering & Technology 13 (2013) 53-60.

47. L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62 (1991) 165-185.

48.L.M. Robeson, The upper bound revisited. Journal of Membrane Science 320 (2008) 390-400.

49. S. Gogoi, N. Karak, Biobased Biodegradable Waterborne Hyperbranched Polyurethane as an Ecofriendly Sustainable Material. ACS Sustainable
Chemistry & Engineering 2 (2014) 2730-2738.

50. M. S Haider, G N. Shao, S.M. Imran, S S Park , N Abbas , M. S Tahir ,M Hussain ,W Bae , H T Kim,Aminated polyethersulfone-silver nanoparticles (AgNPs-APES)compositemembranes with controlled silver ion release for antibacterialand water treatment applicationsMaterials Science and Engineering C 62 (2016) 732–745

51. 張竣維, 銀耳三種品系酒精粗翠物對金黃色葡萄球菌、齲菌、痤瘡桿菌之抑菌研究,碩士論文,亞洲大學生物科技學系研究所,台中,台灣.

52. 羅雅眉,雙層及三層複合薄膜應用於二氧化碳及甲烷分離之研究, 碩士論文,國立中興大學化學工程研究所,台中,台灣.

53. M. Herrera-Alonso, A. A. Abdala, M. J. McAllister, I. A. Aksay and R. K. Prud'homme, Langmuir, 2007, 23, 10644-10649.

54. 葉璟穎, 製備高分子內鑲高分子薄膜於氣體分離之應用, 碩士論文, 國立中興大學化學工程研究所,台中,台灣.

55. Y.Nakai, H. Yoshimizu, Y. Tsujita, Enhancement of Gas Permeability in HPC, CTA and PMMA under Microwave. Irradiation, Polymer Journal, (2006) 376-380.

56. V. Mozaffari, M. Sadeghi, A. Fakhar, G. Khanbabaei, A. F. Ismail, Gas separation properties of polyurethane/poly(ether-block-amide) (PU/PEBA) blend membranes. Separation and Purification Technology 185 (2017) 202-214.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊