跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳珮瑜
研究生(外文):Pei-Yu Wu
論文名稱:聚醯亞胺表面無電鍍鎳金屬化及其界面特性之研究
論文名稱(外文):Study of Electroless Nickel Metallization on Polyimide Film and Its Interfacial Characterizations
指導教授:陳志銘陳志銘引用關係
指導教授(外文):Chih-Ming Chen
口試委員:顏怡文林慶炫何政恩
口試委員(外文):Yee-wen YenChing-Hsuan LinCheng-En Ho
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:89
中文關鍵詞:聚醯亞胺金屬化無電鍍鎳界面微結構奈米顆粒原子擴散
外文關鍵詞:polyimidemetallizationelectroless Niinterfacial microstructurenanoparticleatomic diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:737
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今,可穿戴式與可攜帶式的科技已經吸引廣大的關注,如通信、傳感器和媒體因其具有多功能特性,可以集結成輕薄的設備。可攜式與可穿戴式設備已在微電子產業中快速的發展,達到多功能與微小化的科技。因此軟性印刷電路板扮演重要角色,因其具有可撓曲特性以減少封裝體積。在軟性印刷電路板中,聚醯亞胺為優秀的材料,其有諸多特點如質量輕、耐熱性佳、良好的耐腐蝕性以極高的玻璃轉移溫度,能適合於高溫操作環境。然而聚醯亞胺為非導體基材,表面金屬化過程是必要的以提供電子傳輸路徑。
藉由全濕式製程(Wet method)方法,將聚醯亞胺基材直接金屬化,以取代濺鍍法的高真空操作環境其無法達到節省成本的效益。聚醯亞胺之鎳金屬化第一步驟為KOH處理形成聚醯亞胺酸鹽,隨後以NiCl2進行離子交換、NaBH4進行鎳粒子觸媒之還原,接著無電鍍鎳沉積與電鍍銅,爾後迴銲與熱處理,模擬電子產品在高溫之環境其可靠度。
本研究中,以兩種PI進行探討比較,一為商用PI,另一為改質PI,為中興大學林慶炫老師開發之帶有特殊官能基之PI,特色為能在較低濃度的鹼溶液處理下,進行均勻表面金屬化,可降低製程成本。實驗第一部分探討改質PI與商用PI,經過鹼處理後之PAA層和Ni/PI之界面特性,以及後續電鍍銅後之拉力值表現與Cu/Ni/PI之原子擴散現象,再進行迴銲與老化處理後,其界面擴散行為,第二部分以商用PI,採用不同濃度鹼處理開環,探討開環之界面形貌對拉力值的影響。開環程度藉由全反射式傅立葉轉換紅外光譜儀分析,KOH鹼處理開環前後,PI表面親水特性藉由接觸角測量儀分析,Cu/Ni/PI之界面微結構與原子擴散行為藉由穿透式電子顯微鏡觀察,金屬層與PI層之間之接附強度以拉力測試機測試。
Recently, wearable and portable technologies have attracted considerable attention because multiple functions such as communication, sensor and media, can be integrated in a small and light-weight device. The rapid development of wearable and portable devices has driven the microelectronic industries to develop new technologies to meet the demands of scale miniaturization and multi-functionality. Therefore, the flexible printed circuit board (FPCB) plays an important role in the development of wearable and portable devices due to its high flexibility in reducing packaging volume. Polyimide (PI) is a superior material as a substrate of FPCB and has many advantages such as light-weight, high thermal stability, good anti-corrosion properties and higher glass transition temperature (Tg), which is more sustainable in a high-temperature operational environment. PI is non-conductive, so metallization is necessary to offer electrical transmission routes on its surface.
Direct metallization of polyimide (PI) using wet method can replace the high-vacuum sputtering to achieve the cost-down goal. Nickel (Ni) metallization of PI was performed firstly by a KOH treatment to form potassium salts of polyamic acid, followed by an ion exchange reaction with NiCl2, the reduction of catalytic Ni nanoparticles by NaBH4, the electroless deposition of a Ni film, and finally electroplating copper. The start-up imide-ring opening reaction plays a crucial role in activating inert PI for subsequent Ni implanting and deposition.
In this study, two PI substrates were investigated and compared, one is a commercial PI and the other is a modified PI. There are two parts of experiments. One is interfacials microstructure characterizations of two type of PI, and the other is the effect of KOH concentration on the peel strength examination of the commercial PI. The ring-opening condition was examined using an attenuated total reflection-Fourier transform infrared spectroscope (ATR-FTIR). The contact angle of the PI film before and after KOH treatment was measured by a contact angle instrument using water drop. The interfacial microstructures of Cu/Ni/PI and atomic diffusion were investigated using a transmission electron microscopy (TEM). Adhesion strength between the metallization layer and the PI film was measured using a pull-off tester.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 4
2-1 軟性印刷電路板 4
2-1-1 軟性印刷電路板介紹 4
2-1-2 軟性印刷電路板材料與市場趨勢 4
2-2 聚醯亞胺 7
2-2-1 聚醯亞胺之製程 7
2-2-2 聚醯亞胺之特性 7
2-3 聚醯亞胺表面處理 8
2-3-1 乾式製程(Dry methods) 8
2-3-2 濕式製程(Wet methods) 9
2-4 表面奈米粒子金屬化 19
2-4-1 奈米粒子 19
2-4-2 奈米粒子金屬化 19
2-5 無電電鍍 30
2-5-1 無電電鍍基本原理 30
2-5-2 無電電鍍鎳基本原理 30
2-6 擴散阻障層 31
第三章 實驗方法 33
3-1 材料與藥品 33
3-1-1 Polyimide材料 33
3-1-2 藥品 34
3-2 設備與儀器 35
3-3 儀器原理 36
3-3-1 全反射式傅立葉轉換紅外光譜儀(Attenuated Total Reflection-Fourier Transform Infrared Spectroscope, ATR-FTIR) 36
3-3-2 接觸角測量儀(Contact angle measurement) 37
3-3-3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 38
3-3-4 掃描式電子顯微鏡(Scanning electron microscope, SEM) 39
3-3-5 多功能拉力測試機(pull-off tester) 40
3-4 實驗流程 41
3-4-1 Polyimide film 金屬化 41
3-4-2 電鍍銅沉積 42
第四章 結果與討論 43
Ⅰ、HN Polyimide與帶有特殊官能基Polyimide 43
4-1 金屬化表面形貌 43
4-2 鹼處理開環程度 44
4-2-1 ATR-FTIR結構鑑定 44
4-2-2 水滴接觸角分析(Contact Angle) 45
4-3 TEM剖面分析 47
4-3-1 鹼處理開環反應之界面分析 47
4-3-2 還原生成奈米鎳粒子之界面分析 52
4-3-3 無電電鍍鎳沉積之界面分析 57
4-3-4 電鍍銅沉積之界面分析 60
4-4 拉力測試 68
Ⅱ、HN Polyimide不同濃度開環之探討 70
4-5 不同濃度開環程度 70
4-5-1 ATR-FTIR開環程度 70
4-5-2 水滴接觸角分析(Contact Angle) 71
4-6 金屬化表面形貌 73
4-7 TEM剖面分析 74
4-8 拉力測試 78
第五章 結論 81
參考文獻 83
[1]W. P. Dow, G. L. Liao, S. E. Huang, and S. W. Chen, "Modification of Cu nanoparticles with a disulfide for polyimide metallization," Journal of Materials Chemistry, Vol. 20, pp. 3600-3609 (2010).
[2]S. C. Park, K. J. Min, K. H. Lee, Y. Jeong, and Y. B. Park, "Effect of annealing on the interfacial adhesion energy between electroless-plated Ni and polyimide," Metals and Materials International, Vol. 17, pp. 111-115 (2011).
[3]S. W. Suh, J. J. Kim, S. H. Kim, and B. K. Park, "Effect of PI film surface on printing of Pd (II) catalytic ink for electroless copper plating in the printed electronics," Journal of Industrial and Engineering Chemistry, Vol. 18, pp. 290-294 (2012).
[4]F. Y. Shen, S. E. Huang, and W. P. Dow, "Silver Metallization of Polyimide Surfaces Using Environmentally Friendly Reducing Agents," ECS Electrochemistry Letters, Vol. 2, pp. D45-D48 (2013).
[5]L. Giovangrandi, K. H. Gilchrist, R. H. Whittington, and G. T. Kovacs, "Low-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology," Sensors and Actuators B: Chemical, Vol. 113, pp. 545-554 (2006).
[6]J. G. Ng, M. Desmulliez, M. Lamponi, B. Moffat, A. McCarthy, H. Suyal, A. Walker, K. Prior, and D. Hand, "A direct-writing approach to the micro-patterning of copper onto polyimide," Circuit World, Vol. 35, pp. 3-17 (2009).
[7]J. Fjelstad, "Flexible circuit materials," Circuit World, Vol. 34, pp. 19-24 (2008).
[8]S. Yang, D. Wu, S. Qi, G. Cui, R. Jin, and Z. Wu, "Fabrication of highly reflective and conductive double-surface-silvered layers embedded on polymeric films through all-wet process at room temperature," The Journal of Physical Chemistry B, Vol. 113, pp. 9694-9701 (2009).
[9]H. J. Kim, Y. J. Park, J.-H. Choi, H. S. Han, and Y. T. Hong, "Surface modification of polyimide film by coupling reaction for copper metallization," Journal of Industrial and Engineering Chemistry, Vol. 15, pp. 23-30 (2009).
[10]張致吉, "因應智慧手機輕薄化趨勢,軟性電路板原材料供應商蓄勢待發," 經濟部技術處, (2015).
[11]張靖霖, "軟板製程技術與應用全覽," 亞洲智識, (2004).
[12]林定皓, "軟性電路板技術," 台灣印刷電路板協會, (2003).
[13]M. T. Bogert and R. R. Renshaw, "4-amino-0-phthalic acid and some of its derivatives. 1," Journal of the American Chemical Society, Vol. 30, pp. 1135-1144 (1908).
[14]W. Edwards and I. Robinson, "British Pat. 570858," US Pat, Vol. 2710853, (1955).
[15]廖德章,陳文祥,李名洋,林淑玲, "高性能材料的工程塑膠," 科學發展, Vol. 356, (2002).
[16]K. Akamatsu, S. Ikeda, H. Nawafune, and S. Deki, "Surface modification-based synthesis and microstructural tuning of nanocomposite layers: monodispersed copper nanoparticles in polyimide resins," Chemistry of materials, Vol. 15, pp. 2488-2491 (2003).
[17]K. Akamatsu, S. Ikeda, and H. Nawafune, "Site-selective direct silver metallization on surface-modified polyimide layers," Langmuir, Vol. 19, pp. 10366-10371 (2003).
[18]S. M. Ho, T. H. Wang, H. L. Chen, K. M. Chen, S. M. Lian, and A. Hung, "Metallization of polyimide film by wet process," Journal of applied polymer science, Vol. 51, pp. 1373-1380 (1994).
[19]K. Akamatsu, S. Ikeda, H. Nawafune, and H. Yanagimoto, "Direct patterning of copper on polyimide using ion exchangeable surface templates generated by site-selective surface modification," Journal of the American Chemical Society, Vol. 126, pp. 10822-10823 (2004).
[20]W. Liu, Z. Xu, D. Wu, Z. Wu, and T. S. Hu, "Systematic synthesis of polyimide@ inorganics core-shell microspheres via ion-exchange and interfacial reaction," Materials Letters, Vol. 177, pp. 30-33 (2016).
[21]J. Ran, J. Zhang, W. Yao, and Y. Wei, "Properties of Cu film and Ti/Cu film on polyimide prepared by ion beam techniques," Applied surface science, Vol. 256, pp. 7010-7017 (2010).
[22]L. E. Stephans, A. Myles, and R. R. Thomas, "Kinetics of alkaline hydrolysis of a polyimide surface," Langmuir, Vol. 16, pp. 4706-4710 (2000).
[23]S. J. Cho, S. P. Shrestha, and J. H. Boo, "Surface treatment for Cu metallization on polyimide film by atmospheric pressure dielectric barrier discharge plasma system," Current Applied Physics, Vol. 11, pp. S135-S139 (2011).
[24]H. Wu, A. Susanto, and K. Lian, "Thin and flexible Ni-P based current collectors developed by electroless deposition for energy storage devices," Applied surface science, Vol. 394, pp. 63-69 (2017).
[25]B. Liao, X. y. Wu, X. Zhang, H. Liang, and H. x. Zhang, "The study of polyimide modified by Ni plasma and its adhesion to Cu films," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 307, pp. 580-585 (2013).
[26]S. J. Park, T. J. Ko, J. Yoon, M. W. Moon, K. H. Oh, and J. H. Han, "Copper circuit patterning on polymer using selective surface modification and electroless plating," Applied surface science, Vol. 396, pp. 1678-1684 (2017).
[27]H. Kim, J. Kim, D. Kim, and N. E. Lee, "Adhesion Enhancement of Electroless-Deposited Cu on Flexible Polyimide Substrate Treated by O2 and N2/H2 Inductively Coupled Plasmas," Journal of The Electrochemical Society, Vol. 156, pp. D525-D530 (2009).
[28]H. S. Kim, B. O. Kim, and J. H. Seo, "A study on the adhesion properties of reactive sputtered molybdenum thin films with nitrogen gas on polyimide substrate as a Cu barrier layer," Journal of nanoscience and nanotechnology, Vol. 15, pp. 8743-8748 (2015).
[29]B. I. Noh, J. W. Yoon, and S. B. Jung, "Fabrication and adhesion strength of Cu/Ni–Cr/polyimide films for flexible printed circuits," Microelectronic Engineering, Vol. 88, pp. 1024-1027 (2011).
[30]P. Malinsky, A. Mackova, V. Hnatowicz, R. Khaibullin, V. Valeev, P. Slepicka, V. Svorcik, M. Slouf, and V. Perina, "Properties of polyimide, polyetheretherketone and polyethyleneterephthalate implanted by Ni ions to high fluences," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 272, pp. 396-399 (2012).
[31]A. Mackova, P. Malinsky, R. Miksova, H. Pupikova, R. Khaibullin, P. Slepicka, A. Gombitová, L. Kovacik, V. Svorcik, and J. Matousek, "Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 325, pp. 89-96 (2014).
[32]B. Putz, R. L. Schoeppner, O. Glushko, D. F. Bahr, and M. J. Cordill, "Improved electro-mechanical performance of gold films on polyimide without adhesion layers," Scripta materialia, Vol. 102, pp. 23-26 (2015).
[33]T. G. Woo, I. S. Park, K. H. Jung, W. Y. Jeon, and K. W. Seol, "Effect of RF sputtering power on the adhesion of Ni thin film to polyimide," Electronic Materials Letters, Vol. 7, pp. 353-358 (2011).
[34]V. Kotnur, F. Tichelaar, and G. Janssen, "Sputter deposited Ni–Ti thin films on polyimide substrate," Surface and Coatings Technology, Vol. 222, pp. 44-47 (2013).
[35]H. Matsubara, T. Yonekawa, Y. Ishino, N. Saito, H. Nishiyama, and Y. Inoue, "The observation of the nucleation and growth of electrolessly plated nickel deposited from different bath pH by TEM and QCM method," Electrochimica Acta, Vol. 52, pp. 402-407 (2006).
[36]S. Mu, D. Wu, Y. Wang, Z. Wu, X. Yang, and W. Yang, "Fabrication of nickel oxide nanocomposite layer on a flexible polyimide substrate via ion exchange technique," ACS applied materials & interfaces, Vol. 2, pp. 111-118 (2009).
[37]R. R. Thomas, "Wetting kinetics of modified polyimide surfaces: Interactions with polar solvents," Journal of colloid and interface science, Vol. 279, pp. 515-522 (2004).
[38]Y. Li, Q. Lu, X. Qian, Z. Zhu, and J. Yin, "Preparation of surface bound silver nanoparticles on polyimide by surface modification method and its application on electroless metal deposition," Applied surface science, Vol. 233, pp. 299-306 (2004).
[39]S. Ikeda, H. Yanagimoto, K. Akamatsu, and H. Nawafune, "Copper/Polyimide Heterojunctions: Controlling Interfacial Structures Through an Additive-Based, All-Wet Chemical Process Using Ion-Doped Precursors," Advanced Functional Materials, Vol. 17, pp. 889-897 (2007).
[40]D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Applied surface science, Vol. 253, pp. 1573-1580 (2006).
[41]S. Kudaikulova, A. Syzdykova, R. Iskakov, B. Zhubanov, J. Akhmetova, O. Moisseyevich, A. Kurbatov, T. Akhmetov, and M. J. Abadie, "Effect of Modification on Electrochemical Chelation of Polyimide Films," Eurasian Chemico-Technological Journal, Vol. 6, pp. 23-26 (2016).
[42]J. Akhmetova, O. Moisseyevich, A. Kurbatov, T. Akhmetov, S. Kudaikulova, B. Zhubanov, and M. J. Abadie, "Potentiometric Control of Metal Concentration for Chelation Kinetics of Modified Polyimide Films," Eurasian Chemico-Technological Journal, Vol. 6, pp. 27-30 (2016).
[43]J. J. Chen, G. Q. Lin, Y. Wang, E. Sowade, R. R. Baumann, and Z. S. Feng, "Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating," Applied surface science, Vol. 396, pp. 202-207 (2017).
[44]K. J. Min, S. C. Park, K. H. Lee, Y. Jeong, and Y. B. Park, "Interfacial adhesion characteristics between electroless-plated Ni and polyimide films modified by alkali surface pretreatment," Journal of electronic materials, Vol. 38, pp. 2455 (2009).
[45]J. Choi and T. Yoon, "Synthesis and property measurements of polyimides with substituted pyromellitic dianhydride for flexible printed circuits applications," Journal of applied polymer science, Vol. 117, pp. 736-741 (2010).
[46]Y. B. Park, K. J. Min, S. C. Park, K. H. Lee, and Y. Jeong, "Effect of wet chemical pretreatment conditions on the interfacial adhesion energy between electroless-plated Ni and polyimide films," Japanese Journal of Applied Physics, Vol. 48, pp. 08HL03 (2009).
[47]T. Wang, X. Wang, B. Yang, X. Chen, and J. Liu, "Selective patterning of conductive silver on polyimide film by localized microplasma reduction and electroless deposition," Journal of The Electrochemical Society, Vol. 164, pp. D282-D288 (2017).
[48]L. Li, Y. Ma, G. Gao, H. Wang, X. Yang, J. Xie, and W. Wang, "Pretreatment and deposition process of electroless Ni plating on polyimide film for electronic field applications," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 477, pp. 42-48 (2015).
[49]K. Akamatsu, H. Shinkai, S. Ikeda, S. Adachi, H. Nawafune, and S. Tomita, "Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix," Journal of the American Chemical Society, Vol. 127, pp. 7980-7981 (2005).
[50]K. Akamatsu, K. Nakahashi, S. Ikeda, and H. Nawafune, "Fabrication and structural characterization of nanocomposites consisting of Ni nanoparticles dispersed in polyimide films," The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, Vol. 24, pp. 377-380 (2003).
[51]Y. S. Hsiao, W. T. Whang, S. C. Wu, and K. R. Chuang, "Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics," Thin Solid Films, Vol. 516, pp. 4258-4266 (2008).
[52]Z. Wang, A. Furuya, K. Yasuda, H. Ikeda, T. Baba, M. Hagiwara, S. Toki, S. Shingubara, H. Kubota, and T. Ohmi, "Adhesion improvement of electroless copper to a polyimide film substrate by combining surface microroughening and imide ring cleavage," Journal of adhesion science and technology, Vol. 16, pp. 1027-1040 (2002).
[53]J. Huang, Z. Chen, F. Zhou, H. Wang, Y. Yuan, W. Chen, M. Gao, and Y. Zhan, "High-adhesive electroless copper plating on polyethylene surface modified with primer," Journal of Solid State Electrochemistry, Vol. 21, pp. 1559-1566 (2017).
[54]T. F. M. Chang, C. C. Wang, C. Y. Yen, S. H. Chen, C. Y. Chen, and M. Sone, "Metallization of polyimide films with enlarged area by conducting the catalyzation in supercritical carbon dioxide," Microelectronic Engineering, Vol. 153, pp. 1-4 (2016).
[55]J. D. Lin and C. L. Kuo, "Effects of hydrogen plasma treatment on microstructure evolution and electrical conductivity of electroless Ni–P coatings on polyimide and glass substrates," Surface and Coatings Technology, Vol. 209, pp. 80-89 (2012).
[56]S. J. Cherng, C. M. Chen, W. P. Dow, C. H. Lin, and S. W. Chen, "Chemical deposition of Ni/Pt Bi-layer on polyimide film as flexible counterelectrodes for dye-sensitized solar cells," Electrochemical and Solid-State Letters, Vol. 14, pp. P13-P15 (2011).
[57]H. K. Lee, S. H. Son, H. Y. Lee, and S. B. Koo, "Adhesion Enhancement of Electroplated Cu/Electroless Ni Composite Layer to (PMDA-ODA)-Type Polyimide Films," Journal of adhesion science and technology, Vol. 22, pp. 47-64 (2008).
[58]P. Y. Wu, C. H. Lin, and C. M. Chen, "Study of Surface Metallization of Polyimide Film and Interfacial Characterization," Metals, Vol. 7, pp. 189 (2017).
[59]N. Kulyk, S. Cherevko, and C. H. Chung, "Copper electroless plating in weakly alkaline electrolytes using DMAB as a reducing agent for metallization on polymer films," Electrochimica Acta, Vol. 59, pp. 179-185 (2012).
[60]W. Songping and M. Shuyuan, "Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI," Materials Chemistry and Physics, Vol. 89, pp. 423-427 (2005).
[61]S. E. Huang, F. Y. Shen, and W. P. Dow, "Influence of Reducibility of Reductants on Morphologies and Activities of Ni and Ag Nanoparticles Formed on Polyimide," Meeting Abstracts, pp. 1973-1973 (2010).
[62]Z. A. Hamid, H. Hassan, and A. Attyia, "Influence of deposition temperature and heat treatment on the performance of electroless Ni–B films," Surface and Coatings Technology, Vol. 205, pp. 2348-2354 (2010).
[63]H. Cai, L. Liu, Q. Chen, P. Lu, and J. Dong, "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Vol. 99, pp. 129-135 (2016).
[64]S. Ikeda, K. Akamatsu, H. Nawafune, T. Nishino, and S. Deki, "Formation and growth of copper nanoparticles from ion-doped precursor polyimide layers," The Journal of Physical Chemistry B, Vol. 108, pp. 15599-15607 (2004).
[65]R. Shimizu, T. Kawakami, Y. Takashima, T. Tsuruoka, and K. Akamatsu, "In situ synthesis of Cu/Ni alloy nanoparticles embedded in thin polymer layers," RSC Advances, Vol. 6, pp. 18895-18898 (2016).
[66]李寧, "化學鍍實用技術," 化學工業, (2012).
[67]Y. T. Huang, Y. Y. Zhan, S. J. Cherng, C. M. Chen, S.-P. Feng, and T. C. Wei, "Surface metallization of polyimide as a photoanode substrate for rear-illuminated dye-sensitized solar cells," Journal of The Electrochemical Society, Vol. 160, pp. H581-H586 (2013).
[68]Y. T. Kim, C. H. Jun, and D. Y. Kim, "Barrier properties of TiN/TiSi2 bilayers formed by two-step rapid thermal conversion process for Cu diffusion barrier," Thin Solid Films, Vol. 347, pp. 214-219 (1999).
[69]李育儒, "氮化鋁鈦擴散阻障層在銅金屬化製程中熱穩定性及特性之研究," (2004).
[70]T. Liang, Y. Liu, Z. Fu, T. Luo, and K. Zhang, "Diffusion and adhesion properties of Cu films on polyimide substrates," Thin Solid Films, Vol. 473, pp. 247-251 (2005).
[71]"傅立葉轉換紅外光譜分析, http://www.nvilab.com/TestTechnology/equi/11/."
[72]"接觸角測量, https://zh.wikipedia.org/wiki/%E6%8E%A5%E8%A7%B8%E8%A7%92."
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top