跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明潔
研究生(外文):Ming-Chieh Lee
論文名稱:使用重組大腸桿菌包含從 Caldimonas manganoxidans 轉來的 PhaZcma 和 ORFcma 去降解塑膠
論文名稱(外文):Bacterial biodegradation of various polyesters by recombinant Escherichia coli harboring PhaZcma and ORFcma from Caldimonas manganoxidans
指導教授:李思禹
指導教授(外文):Si-Yu Li
口試委員:黃介辰張嘉修魏毓宏趙雲鵬
口試委員(外文):Chieh-Chen HuangJo-Shu ChangYu-Hong WeiYun-Peng Chao
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:80
中文關鍵詞:Caldimonas manganoxidansPhaZcmaORFcma
外文關鍵詞:Caldimonas manganoxidansPhaZcmaORFcmadegradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
於本研究室先前的研究中發現,嗜熱菌 Caldimonas manganoxidans JCM 10698(BCRC 17858)有良好生產及降解PHB的能力。在本研究中,將來自 C. manganoxidans 的 phaZCma (1355-2842 of accession no. AB038647) 及開放讀序框架(ORFCma, 1-1233 of AB038647)在大腸桿菌 BL21(DE3)中共同表現。ORFCma 作為ABC Transporter protein 助於 PHB 解聚酶 PhaZCma 的分泌及幫助細胞生長。利用全細胞的大腸桿菌其包含 pORFPHAZ 質體來探討降解 PHB 的效率和特異性。結果顯示,在81小時內 PHB 薄膜可以在 C. manganoxidans 的胞外被分解,而大腸桿菌BL21(DE3)/pPHAZ只需35小時就可以在胞外分解PHB。在28小時內,大腸桿菌BL21(DE3)/pPHAZ降解80%的PHB薄膜,而當PhaZCma 和 ORFCma一起表現時僅需18小時就可以達到相同的降解效果。在大腸桿菌中PhaZCma 被發現在細胞外異源表現,表示大腸桿菌中的蛋白質分泌系統是透過 PhaZCma。從3-羥基丁酸酯濃度和降解溶液的濁度可以得出結論,PhaZCma具有外切酶和內切酶兩種活性。重組PhaZCma已經證明能夠降解至少四種不同的聚酯,即聚 poly(3-hydroxybutyrate) (PHB),poly(lactic acid) (PLA),polycaprolactone (PCL),poly(butylene succinate-co-adipate) (PBSA),和 PBSA-flax seed blends。
In this study, phaZCma (1355-2842 of accession no. AB038647) and an open reading frame (ORFCma, 1-1233 of AB038647) from Caldimonas manganoxidans were co-expressed in E. coli BL21(DE3). ORFCma is proposed to be an periplasmic binding protein from the ABC transporter superfamily and that may assist the secretion of the PHB depolymerase PhaZCma as well as cell growth. The degradation rate and the substrate specificity of whole-cell E. coli/pORFPHAZ were investigated. The results showed that while PHB films can be completely degraded by extra-cellular fraction of C. manganoxidans in 81 h, only 35 h was required for extra-cellular fraction of E. coli BL21(DE3)/pPhaZ. Further improvement was achieved as 80% of the film was degraded by E. coli BL21(DE3)/pPHAZ in 28 h while only 18 h was needed by co-expressing ORFCma with PhaZCma. PhaZCma that was heterologously expressed in E. coli was found in the extra-cellular compartment, indicating that the protein secretion system in E. coli can be employed by PhaZCma. By testing the time course of 3-hydroxybutyrate concentration and the turbidity of degradation solutions, it can be concluded that PhaZCma had both exo- and endo-enzymatic activities. Recombinant PhaZCma has demonstrated the ability to degrade at-least four different polyesters, i.e., poly(3-hydroxybutyrate) (PHB), poly(lactic acid) (PLA), polycaprolactone (PCL), poly(butylene succinate-co-adipate) (PBSA), and PBSA-flax seed blends.
中文摘要 i
Abstract ii
Table of Contents iii
List of Tables v
List of Schemes vi
List of Figures vii
List of Abbreviations ix
Chapter 1: Introduction 1
1.1 Background 1
1.2 Motivation 2
Chapter 2: Past Literatures 3
2.1 Biodegradable plastics 3
2.2 Biodegradation of polyesters and PHB 4
2.3 PHB depolymerase (PhaZ) 6
2.4 Recycled monomer applications 7
2.5 ABC Transport system 9
Chapter 3: Materials and Methods 10
3.1 Bacterial strains and plasmids used in this study 10
3.2 Medium and growth conditions 10
3.3 DNA Purification 10
3.4 Gel electrophoresis 10
3.5 Plasmid construction 11
3.6 SDS-PAGE analysis 12
3.7 PHB, PCL, PLA, PBSA, and PET degradation sample preparation 13
3.8 Biodegradation experiments 13
3.9 Analytical methods 15
3.10 ORFCma analysis 15
3.11 Growth curve of recombinant strains 16
Chapter 4: Results 17
4.1 Intracellular and extracellular degradation of PHB films by C. manganoxidans 17
4.2 Cloning of pORFPHAZ and construction of pORF and pPHAZ 17
4.3 SDS-PAGE analysis 17
4.4 Intra- and extra- cellular degradation experiments on PHB film 18
4.5 ORFCma analyzation 18
4.6 Whole cell degradation experiments on PHB film 19
4.7 PhaZCma exhibits both endo- and exo- enzymatic degradation 20
4.8 Whole cell degradation experiments on various polyesters and PET samples 21
4.9 Whole cell degradation experiments on modifed PBSA film by recombinant strains 22
Chapter 5: Discussion 23
Chapter 6: Future Prospect 29
References 30
Tables 38
Schemes 42
Figures 52
Appendix I: List of chemicals 68
Appendix II: List of instruments 70
Appendix III: List of calibration curves 71
Appendix IV: Sequencing and Alignment 72
pPHAZORF 72
pORF 76
pPHAZ 79
Akar, A., Akkaya, E.U., Yesiladali, S.K., Çelikyilmaz, G., Çokgor, E.U., Tamerler, C., Orhon, D., Çakar, Z.P. 2006. Accumulation of polyhydroxyalkanoates by Microlunatus phosphovorus under various growth conditions. Journal of Industrial Microbiology and Biotechnology, 33(3), 215-220.
Anderson, A.J., Dawes, E.A. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological reviews, 54(4), 450-472.
Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., Jiménez, A., Yoon, K., Ahn, J., Kang, S. 2015. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym. Lett, 9, 583-596.
Ashby, R.D., Solaiman, D.K., Foglia, T.A. 2004. Bacterial poly (hydroxyalkanoate) polymer production from the biodiesel co-product stream. Journal of Polymers and the Environment, 12(3), 105-112.
Bachmann, B.M., Seebach, D. 1999. Investigation of the enzymatic cleavage of diastereomeric oligo (3-hydroxybutanoates) containing two to eight HB units. A model for the stereoselectivity of PHB depolymerase from Alcaligenes faecalis T1. Macromolecules, 32(6), 1777-1784.
Behrends, A., Klingbeil, B., Jendrossek, D. 1996. Poly(3-hydroxybutyrate) depolymerases bind to their substrate by a C-terminal located substrate binding site. FEMS Microbiology Letters, 143(2), 191-194.
Brigham, C.J., Reimer, E.N., Rha, C., Sinskey, A.J. 2012. Examination of PHB Depolymerases in Ralstonia eutropha: Further Elucidation of the Roles of Enzymes in PHB Homeostasis. AMB Express, 2(1), 26.
Burgos, N., Tolaguera, D., Fiori, S., Jiménez, A. 2014. Synthesis and characterization of lactic acid oligomers: Evaluation of performance as poly (lactic acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227-235.
Calabia, B.P., Tokiwa, Y. 2006. A novel PHB depolymerase from a thermophilic Streptomyces sp. Biotechnology letters, 28(6), 383-388.
Chen, G.-Q. 2009. A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chemical Society Reviews, 38(8), 2434-2446.
Chen, G.-Q. 2010. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. in: Plastics from bacteria, Springer, pp. 17-37.
Chen, Y., Tsai, Y.-H., Chou, I., Tseng, S.-H., Wu, H.-S. 2014. Application of biodegradable polyhydroxyalkanoates as surgical films for ventral hernia repair in mice. International Journal of Polymer Science, 2014.
Chien, C.-C., Chen, C.-C., Choi, M.-H., Kung, S.-S., Wei, Y.-H. 2007. Production of poly-β-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. Journal of biotechnology, 132(3), 259-263.
Chou, K.-C., Shen, H.-B. 2010. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Natural Science, 2, 1090-1103.
Chou, K.-C., Shen, H.-B. 2006. Large-scale predictions of Gram-negative bacterial protein subcellular locations. Journal of Proteome Research, 5, 3240-3248.
Coordinators, N.R. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 44(Database issue), D7-D19.
Gao, X., Chen, J.-C., Wu, Q., Chen, G.-Q. 2011. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Current opinion in biotechnology, 22(6), 768-774.
García-Hidalgo, J., Hormigo, D., Prieto, M.A., Arroyo, M., de la Mata, I. 2012. Extracellular production of Streptomyces exfoliatus poly (3-hydroxybutyrate) depolymerase in Rhodococcus sp. T104: determination of optimal biocatalyst conditions. Applied microbiology and biotechnology, 93(5), 1975-1988.
Grant, C., Pramer, D. 1962. Minor element composition of yeast extract. Journal of bacteriology, 84(4), 869.
Handrick, R., Reinhardt, S., Kimmig, P., Jendrossek, D. 2004. The “intracellular” poly (3-hydroxybutyrate)(PHB) depolymerase of Rhodospirillum rubrum is a periplasm-located protein with specificity for native PHB and with structural similarity to extracellular PHB depolymerases. Journal of bacteriology, 186(21), 7243-7253.
Hiraishi, T., Komiya, N., Maeda, M. 2010. Y443F mutation in the substrate-binding domain of extracellular PHB depolymerase enhances its PHB adsorption and disruption abilities. Polymer Degradation and Stability, 95(8), 1370-1374.
Hiraishi, T., Komiya, N., Matsumoto, N., Abe, H., Fujita, M., Maeda, M. 2009. Degradation and adsorption characteristics of PHB depolymerase as revealed by kinetics of mutant enzymes with amino acid substitution in substrate-binding domain. Biomacromolecules, 11(1), 113-119.
Hiraishi, T., Taguchi, S. 2013. Protein engineering of enzymes involved in bioplastic metabolism. Protein engineering—technology and application, InTech, Rijeka, Croatia, 133-165.
Hiraishi, T., Yamashita, K., Sakono, M., Nakanishi, J., Tan, L.T., Sudesh, K., Abe, H., Maeda, M. 2012. Display of functionally active PHB depolymerase on Escherichia coli cell surface. Macromol Biosci, 12(2), 218-24.
Holst, O., Manelius, Å., Krahe, M., Märkl, H., Raven, N., Sharp, R. 1997. Thermophiles and fermentation technology. Comparative Biochemistry and Physiology Part A: Physiology, 118(3), 415-422.
Hoshino, A., Isono, Y. 2002. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly (L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation, 13(2), 141-147.
Hsiao, L.-J., Lin, J.-H., Sankatumvong, P., Wu, T.-M., Li, S.-Y. 2016. The Feasibility of Thermophilic Caldimonas manganoxidans as a Platform for Efficient PHB Production. Applied biochemistry and biotechnology, 180(5), 852-871.
Hsu, K.-J., Tseng, M., Don, T.-M., Yang, M.-K. 2012. Biodegradation of poly (β-hydroxybutyrate) by a novel isolate of Streptomyces bangladeshensis 77T-4. Bot. Studies, 53, 307-313.
Jendrossek, D. 1998. Microbial degradation of polyesters: a review on extracellular poly(hydroxyalkanoic acid) depolymerases. Polymer Degradation and Stability, 59(1), 317-325.
Jendrossek, D., Handrick, R. 2002. Microbial degradation of polyhydroxyalkanoates. Annual Review of Microbiology, 56(1), 403-432.
Jones, P.M., George, A.M. 2013. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Critical reviews in biochemistry and molecular biology, 48(1), 39-50.
Kadouri, D., Jurkevitch, E., Okon, Y. 2003. Involvement of the reserve material poly-β-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Applied and environmental microbiology, 69(6), 3244-3250.
Kasuya, K.-i., Inoue, Y., Yamada, K., Doi, Y. 1995. Kinetics of surface hydrolysis of poly [(R)-3-hydroxybutyrate] film by PHB depolymerase from Alcaligenes faecalis T1. Polymer degradation and stability, 48(1), 167-174.
Kasuya, K.-i., Ohura, T., Masuda, K., Doi, Y. 1999. Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases. International Journal of Biological Macromolecules, 24(4), 329-336.
Khanna, S., Srivastava, A.K. 2005. Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochemistry, 40(6), 2173-2182.
Kim, B.S., Lee, S.Y., Chang, H.N. 1992. Production of poly-β-hydroxybutyrate by fed-batch culture of recombinantEscherichia coli. Biotechnology letters, 14(9), 811-816.
Kinoshita, E., Kinoshita‐Kikuta, E., Ujihara, H., Koike, T. 2009. Mobility shift detection of phosphorylation on large proteins using a Phos‐tag SDS‐PAGE gel strengthened with agarose. Proteomics, 9(16), 4098-4101.
Knoll, M., Hamm, T.M., Wagner, F., Martinez, V., Pleiss, J. 2009. The PHA Depolymerase Engineering Database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC bioinformatics, 10(1), 89.
Li, Y.-H., Ou-Yang, F.-Y., Yang, C.-H., Li, S.-Y. 2015. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. Bioresource Technology, 187, 189-197.
Liguori, R., Faraco, V. 2016. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresource Technology, 215, 13-20.
Loh, X.J., Goh, S.H., Li, J. 2007. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials, 28(28), 4113-4123.
Mao, H., Liu, H., Gao, Z., Su, T., Wang, Z. 2015. Biodegradation of poly(butylene succinate) by Fusarium sp. FS1301 and purification and characterization of poly(butylene succinate) depolymerase. Polymer Degradation and Stability, 114, 1-7.
Martin, O., Averous, L. 2001. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219.
Martínez, V., Dinjaski, N., de Eugenio, L.I., de la Peña, F., Prieto, M.A. 2014. Cell system engineering to produce extracellular polyhydroxyalkanoate depolymerase with targeted applications. International journal of biological macromolecules, 71, 28-33.
Masaki, K., Kamini, N.R., Ikeda, H., Iefuji, H. 2005. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Applied and environmental microbiology, 71(11), 7548-7550.
Matsuda, E., Abe, N., Tamakawa, H., Kaneko, J., Kamio, Y. 2005. Gene cloning and molecular characterization of an extracellular poly (L-lactic acid) depolymerase from Amycolatopsis sp. strain K104-1. Journal of bacteriology, 187(21), 7333-7340.
Nakajima-Kambe, T., Ichihashi, F., Matsuzoe, R., Kato, S., Shintani, N. 2009. Degradation of aliphatic–aromatic copolyesters by bacteria that can degrade aliphatic polyesters. Polymer Degradation and Stability, 94(11), 1901-1905.
Nakajima-Kambe, T., Onuma, F., Kimpara, N., Nakahara, T. 1995. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS microbiology letters, 129(1), 39-42.
Nawaz, A., Hasan, F., Shah, A.A. 2015. Degradation of poly(ε-caprolactone) (PCL) by a newly isolated Brevundimonas sp. strain MRL-AN1 from soil. FEMS Microbiology Letters, 362(1), 1-7.
Nobes, G., Marchessault, R., Chanzy, H., Briese, B., Jendrossek, D. 1996. Splintering of poly (3-hydroxybutyrate) single crystals by PHB-depolymerase A from Pseudomonas lemoignei. Macromolecules, 29(26), 8330-8333.
Ojumu, T., Yu, J., Solomon, B. 2004. Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. African Journal of Biotechnology, 3(1), 18-24.
Papaneophytou, C.P., Pantazaki, A.A., Kyriakidis, D.A. 2009. An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8. Applied Microbiology and Biotechnology, 83(4), 659-668.
Patnaik, P.R. 2005. Perspectives in the Modeling and Optimization of PHB Production by Pure and Mixed Cultures. Critical Reviews in Biotechnology, 25(3), 153-171.
Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth, 8(10), 785-786.
Pranamuda, H., Tokiwa, Y., Tanaka, H. 1995. Microbial degradation of an aliphatic polyester with a high melting point, poly (tetramethylene succinate). Applied and environmental microbiology, 61(5), 1828-1832.
Quiocho, F.A., Ledvina, P.S. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Molecular microbiology, 20(1), 17-25.
Rath, A., Glibowicka, M., Nadeau, V.G., Chen, G., Deber, C.M. 2009. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proceedings of the National Academy of Sciences, 106(6), 1760-1765.
Reddy, M., Mohan, S. 2015. Polyhydroxyalkanoates production by newly isolated bacteria Serratia ureilytica using volatile fatty acids as substrate: Bio-electro kinetic analysis. J Microb Biochem Technol, 7, 026-32.
Roy, A., Kucukural, A., Zhang, Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725-738.
Sanchez, J.G., Tsuchii, A., Tokiwa, Y. 2000. Degradation of polycaprolactone at 50° C by a thermotolerant Aspergillus sp. Biotechnology letters, 22(10), 849-853.
Santhanam, A., Sasidharan, S. 2010. Microbial production of polyhydroxy alkanotes (PHA) from, Alcaligens.
Scherer, T.M., Fuller, R.C., Goodwin, S., Lenz, R.W. 2000. Enzymatic hydrolysis of oligomeric models of poly-3-hydroxybutyrate. Biomacromolecules, 1(4), 577-583.
Shah, A.A., Hasan, F., Hameed, A., Ahmed, S. 2008. Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246-265.
Shah, A.A., Nawaz, A., Kanwal, L., Hasan, F., Khan, S., Badshah, M. 2015. Degradation of poly(ε-caprolactone) by a thermophilic bacterium Ralstonia sp. strain MRL-TL isolated from hot spring. International Biodeterioration & Biodegradation, 98, 35-42.
Shen, H.-B., Chou, K.-C. 2006. Ensemble classifier for protein folding pattern recognition. Bioinformatics, 22, 1717-1722.
Shen, H.-B., Chou, K.-C. 2010. Gneg-mPLoc: A top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. Journal of Theoretical Biology, 264, 326-333.
Shinomiya, M., Iwata, T., Kasuya, K.-i., Doi, Y. 1997. Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiology Letters, 154(1), 89-94.
Shinozaki, Y., Morita, T., Cao, X.-h., Yoshida, S., Koitabashi, M., Watanabe, T., Suzuki, K., Sameshima-Yamashita, Y., Nakajima-Kambe, T., Fujii, T. 2013a. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Applied microbiology and biotechnology, 97(7), 2951-2959.
Shinozaki, Y., Morita, T., Cao, X.-h., Yoshida, S., Koitabashi, M., Watanabe, T., Suzuki, K., Sameshima-Yamashita, Y., Nakajima-Kambe, T., Fujii, T., Kitamoto, H.K. 2013b. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Applied Microbiology and Biotechnology, 97(7), 2951-2959.
Shivakumar, S., Jagadish, S.J., Zatakia, H., Dutta, J. 2011. Purification, characterization and kinetic studies of a novel poly(beta) hydroxybutyrate (PHB) depolymerase PhaZ(Pen) from Penicillium citrinum S2. Appl Biochem Biotechnol, 164(8), 1225-36.
Smith, R.L., Maguire, M.E. 1998. Microbial magnesium transport: unusual transporters searching for identity. Molecular microbiology, 28(2), 217-226.
Sorrentino, A., Gorrasi, G., Vittoria, V. 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84-95.
Spekreijse, J., Holgueras Ortega, J., Sanders, J.P.M., Bitter, J.H., Scott, E.L. 2016. Conversion of polyhydroxyalkanoates to methyl crotonate using whole cells. Bioresource Technology, 211, 267-272.
Suzuki, K., Noguchi, M.T., Shinozaki, Y., Koitabashi, M., Sameshima-Yamashita, Y., Yoshida, S., Fujii, T., Kitamoto, H.K. 2014. Purification, characterization, and cloning of the gene for a biodegradable plastic-degrading enzyme from Paraphoma-related fungal strain B47-9. Applied Microbiology and Biotechnology, 98(10), 4457-4465.
Takeda, M., Kamagata, Y., Ghiorse, W.C., Hanada, S., Koizumi, J.-i. 2002. Caldimonas manganoxidans gen. nov., sp. nov., a poly (3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. International journal of systematic and evolutionary microbiology, 52(3), 895-900.
Takeda, M., Kitashima, K., Adachi, K., Hanaoka, Y., Suzuki, I., Koizumi, J.-i. 2000. Cloning and expression of the gene encoding thermostable poly (3-hydroxybutyrate) depolymerase. Journal of bioscience and bioengineering, 90(4), 416-421.
Tansengco, M.L., Tokiwa, Y. Thermophilic microbial degradation of polyethylene succinate. World Journal of Microbiology and Biotechnology, 14(1), 133-138.
Teeraphatpornchai, T., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nakayama, M., Nomura, N., Nakahara, T., Uchiyama, H. 2003. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics. Biotechnology letters, 25(1), 23-28.
Tokiwa, Y., Calabia, B. 2006. Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology, 72(2), 244-251.
Tokiwa, Y., Calabia, B.P. 2004. Review degradation of microbial polyesters. Biotechnology letters, 26(15), 1181-1189.
Tokiwa, Y., Calabia, B.P., Ugwu, C.U., Aiba, S. 2009. Biodegradability of plastics. International journal of molecular sciences, 10(9), 3722-3742.
Tokiwa, Y., Suzuki, T. 1978. Hydrolysis of polyesters by Rhizopus delemar lipase. Agricultural and Biological Chemistry, 42(5), 1071-1072.
Tsuji, H., Miyauchi, S. 2001. Poly (L-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly (L-lactide) without free amorphous region. Polymer degradation and stability, 71(3), 415-424.
Uchida, H., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Tokiwa, Y., Nakahara, T. 2000. Properties of a bacterium which degrades solid poly (tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS microbiology letters, 189(1), 25-29.
US, V.G., Shivakumar, S. 2015. Poly (-β-hydroxybutyrate)(PHB) depolymerase PHAZ Pen from Penicillium expansum: purification, characterization and kinetic studies. 3 Biotech, 5(6), 901-909.
Valappil, S.P., Boccaccini, A.R., Bucke, C., Roy, I. 2007a. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie van leeuwenhoek, 91(1), 1-17.
Valappil, S.P., Misra, S.K., Boccaccini, A.R., Keshavarz, T., Bucke, C., Roy, I. 2007b. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Journal of Biotechnology, 132(3), 251-258.
Wang, J., Yu, H.-Q. 2007. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Applied microbiology and biotechnology, 75(4), 871-878.
Wang, N., Wu, X.S., Hannia, L.-U., Donahue, E., Siddiqui, A. 1997. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: I. Synthesis and characterization. Journal of Biomaterials Science, Polymer Edition, 8(12), 905-917.
Wang, Y., Inagawa, Y., Saito, T., Kasuya, K.-i., Doi, Y., Inoue, Y. 2002. Enzymatic hydrolysis of bacterial poly (3-hydroxybutyrate-co-3-hydroxypropionate) s by poly (3-hydroxyalkanoate) depolymerase from Acidovorax sp. TP4. Biomacromolecules, 3(4), 828-834.
Weber, K., Osborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry, 244(16), 4406-4412.
Xu, F., Huang, S., Liu, Y., Zhang, Y., Chen, S. 2014. Comparative study on the production of poly (3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Applied microbiology and biotechnology, 98(9), 3965-3974.
Yang, C.-H., Liu, E.-J., Chen, Y.-L., Ou-Yang, F.-Y., Li, S.-Y. 2016. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli. Microbial Cell Factories, 15(1), 1-10.
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y. 2015a. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12, 7-8.
Yang, X., Clénet, J., Xu, H., Odelius, K., Hakkarainen, M. 2015b. Two step extrusion process: From thermal recycling of PHB to plasticized PLA by reactive extrusion grafting of PHB degradation products onto PLA chains. Macromolecules, 48(8), 2509-2518.
Young, J., Holland, I.B. 1999. ABC transporters: bacterial exporters-revisited five years on. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1461(2), 177-200.
Zhang, Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.
Zinn, M., Witholt, B., Egli, T. 2001. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Advanced drug delivery reviews, 53(1), 5-21.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top