[1]J. C. Maxwell., “A Treatise on Electricity and Magnetism”, Clarendon Press, UK, 1881.
[2]S. Kakaç, A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer”,52 , pp.3187-3196, 2009.
[3]S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 1995, pp. 99-105.
[4]S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke., “Anomalously thermal conductivity enhancement in nanotube suspensions”, Applied physic letters, 79, 2001, pp. 2252-2254
[5]Y. Xuan, Q. Li., “Heat transfer enhancement of nanofluids”, International Journal of Heat and Fluid Transfer, 21, pp.58-64, 2000.
[6]吳光中、宋婷婷和張毅, “Fluent 基礎入門與案例精通”, 電子工業出版社, 北京, 2012
[7]張惠和康士庭, “FLUENT 14 流場分析自學手冊”, 人民郵電出版社, 北京, 2014.
[8]王福軍, “計算流體動力學分析-CFD軟件原理與應用”, 清華大學出版社, 2004.
[9]R. B. Bird, W.E. Stewart,E.N. Lightfoot, “Transport Phenomena”, John Wiley & Sons Inc., 2002.
[10]H. K. Versteeg, W. Malalasekera, “An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley”, New York, 1995.
[11]H. Schlichting, “Boundary Layer Theory”, 8th ed., McGrawHill, New York, 1979.
[12]江帆和黃鵬, “Fluent 高級應用與實例分析”, 清華大學出版社, 2008.
[13]Fluent Inc., “FLUENT User’s Guide”, Fluent Inc., 2003.
[14]B. E. Launder, D. B. Spalding, “Lectures in Mathematical Models of Turbulence. Academic Press”, London, 1972.
[15]周俊波和劉洋, “FLUENT6.3劉場分析從入門到精通,機械工業出版社”,北京, 2012.
[16]S. V. Patanker, D. B. Spalding, “A calculation processure for heat, mass, and momentum transfer in three-dimensional parabolic flows”, International Journal of Heat and Fluid Transfer, 15, pp.1787-1806, 1972.
[17]J. P. Van Doormal, G. G Raithby, “Enhancement of the SIMPLE method for predicting incompressible fluid flows”, Numerical Heat Transfer, 7, pp.147-163, 1984.
[18]S. V. Pantankar, “Numerical Heat Transfer and Fluid Flow”, Washington, 1980.
[19]R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-splitting”, Journal of Computational Physics, 62, pp.40-65, 1986.
[20]C. W. Nan, R. Birringer, D. R. Clarke, H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance”, Journal of Applied physics, 81, pp.6692-6699, 1997.
[21]L. Yang, K. Du, “A comprehensive review on heat transfer characteristics of TiO2 nanofluids, International Journal of Heat and Mass Transfer, 108, pp.11-31, 2017.
[22]W. Yu, S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluid: a renovated Maxwell model”, Journal of Applied Physics, 78, pp.5898-5908, 2003.
[23]M. Gupta, V. Singh, R. Kumar , Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications”, Renewable and Sustainable Energy Reviews,74 , pp.638-670, 2017.
[24]Y. Xuan, E. Roetzel, “Conceptions for heat transfer correlation of nanofluids”, International Journal of Heat and Mass Transfer, 43, pp.3701-3707, 2000.
[25]I. Behroyan, P. Ganesan, S. He, S. Sivasankaran, “Turbulent force convection of Cu-water nanofluid: CFD model comparsion”, International Communications in Heat and Mass Transfer, 67,pp. 163-172, 2015.
[26]M. K. Moraveji , R.M. Ardehali, “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink”, International Communications in Heat and Mass Transfer, 44, pp.157–164, 2013.
[27]X. Q. Wang, A.S. Mujumdar, “A review on nanofluids-part I: theoretical and numerical investigations”, Brailian Journal of Chemical, 25, pp.613-630, 2008.
[28]M. K. Moraveji, R.M. Ardehali, A. Ijam, “CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink”, International Communications in Heat and Mass Transfer, 40, pp. 58-66, 2013.
[29]T. Yang, S. Cheng, Q. Wu, K. She, “Copper staves for prolonging blast funnace carnpaign life”, University of Science and Technology Beijing, pp.106-110, 1999.
[30]Shinichi S, “Cast copper cooling stave for blast furnace”, Ironmaking Conference Proceedings, Nashiille: The Iron and Steel Society, pp.201-210.
[31]L. Wu , X. Xu, W. Zhou, Y. Su, X. Li, Heat transfer analysis of blast furnace stave, International Journal of Heat and Mass Transfer, 51, pp.2824-2833, 2008.
[32]H. B. Zuo, J. Hong, J. L. Zhang, F. G. Li, M. Shen, J. Y. Tie, “Numerical simulation of temperature field of BF cooling stave so different materials under different conditions”, Journal of Wuhan University of Science and Technology, 37, pp.102-105, 2014.
[33]N. Q. Xie, S. S. Cheng, “Analysis of effect of gas temperature on cooling stave of blast furnace”, Journal of Iron and Steel Research International, 17, pp.1-6, 2010.
[34]A. Kumar, S. N. Bansal, R. Chandraker, “Computational modeling of blast furnace cooling stave based on heat transfer analysis”, Materials Physics and Mechanics, 15, pp.46-65, 2012.
[35]A. Shrivastava, R .L. Himte, “A comprehensive modeling and analysis of blast furnace cooling stave”, International Journal of Engineering Research & Technology (IJERT), 1, pp.1-8, 2012.
[36]C. P. Yeh, C. K. Ho, R. J. Yang, “Conjugate heat transfer analysis of copper staves and sensor bars in a blast furnace for various refractory lining thickness”, International Commuications in Heat and Mass Transfer, 39, pp. 58-65, 2012.
[37]T. R. Mohanty, S. K. Sahoo , M. K. Moharana, “Computational Modeling of Blast Furnace Stave Cooler Based on Steady State Transfer Analysis”, International Conference on Computational Heat and Mass Transfer, pp.940-946, 2015.
[38]L. Wu, X. Xu, W. Zhou, Y. Su,X. Li, “Heat transfer analysis of blast furnace stave”, International Journal of Heat and Mass Transfer, 51, pp.2824-2833, 2008.
[39]D. Lelea, “The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink”, International Journal of Heat and Mass Transfer, 54, pp.3891-3899, 2011.
[40]M. Mital, “Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels”, Applied Thermal Engineering, 52, pp. 321-327, 2013.
[41]M. H. Al-Rashed, G. Dzido, M. Korpys, J. Smolka, Janusz Wojcik, “Investigation on the CPU nanofluid cooling”, Microelectronics Reliability, 63, pp.159-165, 2016.
[42]陳洧慶, “二氧化鈦奈米流體強制對流熱量傳遞之數值模擬研究”, 國立中興大學化學工程研究所, 碩士論文, 2015.[43]莊雅驛, “超音波輔助合成銀/二氧化鈦複合奈米流體與其特性研究”, 國立中興大學化學工程研究所, 碩士論文, 2014.[44]S. K. Sahoo, “Heat transfer analysis of blast furnace stave cooler”, Department of Mechanical Engineering National Institute of Technology Rourkela, 2014.
[45]ANSYS FLUENT 12.0, User’s Guide, 2010.
[46]A. Adil, S. Gupta, P. Ghosh, “Numerical prediction of heat Transfer characteristics of nanofluids in a minichannel flow”, Journal of Energy, pp.1-7, 2014.
[47]A. R. Sajadi, M. H. Kazemi, “Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube”, International Communications in Heat and Mass Transfer, 38, pp.1474-1478, 2011.
[48]R.W. Powell, C.Y. Ho, P.E. Liley, “Thermal Conductivity of Selected Materials”, National Bureau of Standard,1966.
[49]B. Pak, I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles”, Experimental Heat Transfer, 11, pp.151-170, 1998.
[50]H. Chen, Y. Ding, C. Tan, “Rheological behavior of nanofluid”, New Journal of Physics, 9, pp.367-390, 2007.
[51]K. Wongcharee, S. Eiamsa-ard, “Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis”, International Communications in Heat and Mass Transfer, 38, pp.742-748, 2011.