|
參考資料 1.Malcolmson, J.F., A study of Erwinia isolates obtained from soft rots and blackleg of potatoes. Transactions of the British Mycological Society, 1959. 42(2): p. 261-269. 2.Pérombelon, M.C.M., Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 2002. 51(1): p. 1-12. 3.LUND, B.M., Formation of Reducing Sugars from Sucrose by Erwinia Species. Microbiology, 1975. 88(2): p. 367-371. 4.Jones, D.R. and W.J. Dowson, On the bacteria responsible for soft rot in stored potatoes, and the reaction of the tuber to invasion by bacterium carotovorum (jones) lehmann & neumann. Annals of Applied Biology, 1950. 37(4): p. 563-569. 5.Chatterjee, A.K. and M.P. Starr, Donor Strains of the Soft-Rot Bacterium Erwinia chrysanthemi and Conjugational Transfer of the Pectolytic Capacity. Journal of Bacteriology, 1977. 132(3): p. 862-869. 6.Chatterjee, A.K., et al., Synthesis and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiella species. Canadian Journal of Microbiology, 1979. 25(1): p. 94-102. 7.黃㯖昌. 臺灣作物細菌性病害防治要領. 行政院農業委員會臺東區農業改良場. 8.Itoh, Y., K. Izaki, and H. Takahashi, Purification and characterization of a bacteriocin from erwinia carotovora.The Journal of General and Applied Microbiology, 1978. 24(1): p. 27-39. 9.Gratia, A., Sur un remarquable exemple d'antagonisme entre deux souches de coilbacille. CR Seances Soc. Biol. Fil., 1925. 93: p. 1040-1041. 10.Gratia, A. and P. Fredericq, *Diversite des souches antibiotiques de b-coli et etendue variable de leur champ daction. Comptes rendus des seances de la societe de biologie et de ses filiales, 1946. 140(11): p. 1032-1033. 11.Lewus, C.B., A. Kaiser, and T.J. Montville, Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Applied and Environmental Microbiology, 1991. 57(6): p. 1683-1688. 12.Jabeen, N., et al., Isolation, identification and bacteriocin production by indigenous diseased plant and soil associated bacteria. Pakistan J. Biol. Sci, 2004. 7: p. 1893-1897. 13.Strauch, E., et al., Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Applied and Environmental Microbiology, 2001. 67(12): p. 5634-5642. 14.S?rensen, K.I., et al., A food-grade cloning system for industrial strains of Lactococcus lactis. Applied and Environmental Microbiology, 2000. 66(4): p. 1253-1258. 15.Diez-Gonzalez, F., Applications of bacteriocins in livestock. Current issues in intestinal microbiology, 2007. 8(1): p. 15. 16.Chen, H. and D. Hoover, Bacteriocins and their food applications. Comprehensive reviews in food science and food safety, 2003. 2(3): p. 82-100. 17.Reeves, P., The bacteriocins. Bacteriological reviews, 1965. 29(1): p. 24. 18.Gobbetti, M., et al., Purification and characterization of a proteinaceous compound from Pseudomonas fluorescens ATCC 948 with inhibitory activity against some Gram-positive and Gram-negative bacteria of dairy interest. Le Lait, 1997. 77(2): p. 267-278. 19.Griffiths, G., et al., Vibriobactin, a siderophore from Vibrio cholerae. Journal of Biological Chemistry, 1984. 259(1): p. 383-385. 20.Oudega, B., J. Van der Molen, and F. De Graaf, In vitro binding of cloacin DF13 to its purified outer membrane receptor protein and effect of peptidoglycan on bacteriocin-receptor interaction. Journal of Bacteriology, 1979. 140(3): p. 964-970. 21.Konisky, J., Colicins and other bacteriocins with established modes of action. Annual Reviews in Microbiology, 1982. 36(1): p. 125-144. 22.Tagg, J.R., A.S. Dajani, and L.W. Wannamaker, Bacteriocins of gram-positive bacteria. Bacteriological reviews, 1976. 40(3): p. 722. 23.Dale, C., et al., The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proceedings of the National Academy of Sciences, 2001. 98(4): p. 1883-1888. 24.Bradley, D.E., Ultrastructure of bacteriophage and bacteriocins. Bacteriological reviews, 1967. 31(4): p. 230. 25.Nguyen, A.H., et al., A simple purification method and morphology and component analyses for carotovoricin Er, a phage-tail-like bacteriocin from the plant pathogen Erwinia carotovora Er. Bioscience, biotechnology, and biochemistry, 1999. 63(8): p. 1360-1369. 26.Chuang, D.-y., Y.-c. Chien, and H.-P. Wu, Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. Journal of Bacteriology, 2007. 189(2): p. 620-626. 27.Dean, M., Y. Hamon, and G. Chimini, The human ATP-binding cassette (ABC) transporter superfamily. Journal of lipid research, 2001. 42(7): p. 1007-1017. 28.Sandkvist, M., Type II secretion and pathogenesis. Infection and immunity, 2001. 69(6): p. 3523-3535. 29.Voulhoux, R., et al., Involvement of the twin‐arginine translocation system in protein secretion via the type II pathway. The EMBO journal, 2001. 20(23): p. 6735-6741. 30.Sandkvist, M., Biology of type II secretion. Molecular microbiology, 2001. 40(2): p. 271-283. 31.Christie, P.J. and J.P. Vogel, Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends in microbiology, 2000. 8(8): p. 354-360. 32.Henderson, I.R., et al., Type V protein secretion pathway: the autotransporter story. Microbiology and molecular biology reviews, 2004. 68(4): p. 692-744. 33.Cianfanelli, F.R., L. Monlezun, and S.J. Coulthurst, Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends in microbiology, 2016. 24(1): p. 51-62. 34.Coulthurst, S.J., The Type VI secretion system–a widespread and versatile cell targeting system. Research in Microbiology, 2013. 164(6): p. 640-654. 35.Salmond, G.P. and P.J. Reeves, Membrance traffic wardens and protein secretion in Gram-negative bacteria. Trends in biochemical sciences, 1993. 18(1): p. 7-12. 36.Galán, J.E. and A. Collmer, Type III secretion machines: bacterial devices for protein delivery into host cells. Science, 1999. 284(5418): p. 1322-1328. 37.Desvaux, M., et al., Type III secretion: what's in a name? Trends in microbiology, 2006. 14(4): p. 157-160. 38.Tampakaki, A., et al., Conserved features of type III secretion. Cellular microbiology, 2004. 6(9): p. 805-816. 39.Cornelis, G.R., The type III secretion injectisome. Nature Reviews Microbiology, 2006. 4(11): p. 811-825. 40.Erhardt, M., K. Namba, and K.T. Hughes, Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harbor perspectives in biology, 2010. 2(11): p. a000299. 41.Macnab, R.M., How bacteria assemble flagella. Annual Reviews in Microbiology, 2003. 57(1): p. 77-100. 42.Minamino, T. and R.M. Macnab, Components of the Salmonella flagellar export apparatus and classification of export substrates. Journal of Bacteriology, 1999. 181(5): p. 1388-1394. 43.Minamino, T., K. Imada, and K. Namba, Mechanisms of type III protein export for bacterial flagellar assembly. Molecular BioSystems, 2008. 4(11): p. 1105-1115. 44.Manson, M.D., et al., A protonmotive force drives bacterial flagella. Proceedings of the National Academy of Sciences, 1977. 74(7): p. 3060-3064. 45.Matsuura, S., J.-i. Shioi, and Y. Imae, Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS letters, 1977. 82(2): p. 187-190. 46.Andreeva, A., et al., SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Research, 2014. 42(D1): p. D310-D314. 47.Overington, J.P., B. Al-Lazikani, and A.L. Hopkins, How many drug targets are there? Nat Rev Drug Discov, 2006. 5(12): p. 993-996. 48.Almén, M.S., et al., Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC biology, 2009. 7(1): p. 50. 49.Lin, Y., et al., The substitution of Arg149 with Cys fixes the melibiose transporter in an inward-open conformation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013. 1828(8): p. 1690-1699. 50.Liszewski, K., Dissecting the structure of membrane proteins. 2015. 51.Johnson, J.E. and R.B. Cornell, Amphitropic proteins: regulation by reversible membrane interactions. Molecular membrane biology, 1999. 16(3): p. 217-235. 52.Alenghat, F.J. and D.E. Golan, Membrane protein dynamics and functional implications in mammalian cells. Current topics in membranes, 2013. 72: p. 89. 53.Ghosh, M., et al., Properties of the Group IV phospholipase A2 family. Progress in Lipid Research, 2006. 45(6): p. 487-510. 54.Chan, Y.-c., H.-P. Wu, and D.-y. Chuang, Extracellular secretion of Carocin S1 in Pectobacterium carotovorum subsp. carotovorum occurs via the type III secretion system integral to the bacterial flagellum. BMC microbiology, 2009. 9(1): p. 181. 55.陳坤弘, Pectobacterium carotovorum subsp. carotovorum胞外分泌系統的結構蛋白與調控因子之關係探討. 2016. 56.Chiu, J., et al., Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Research, 2004. 32(21): p. e174-e174. 57.McMurry, J.L., et al., Analysis of the Cytoplasmic Domains of Salmonella FlhA and Interactions with Components of the Flagellar Export Machinery. Journal of Bacteriology, 2004. 186(22): p. 7586-7592. 58.Minamino, T., T. Iino, and K. Kutuskake, Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. Journal of Bacteriology, 1994. 176(24): p. 7630-7637. 59.詹永傑, Erwinia carotovora subsp. carotovora低分子量細菌素分泌蛋白基因的選殖與分析.國立中興大學化學所, 2005. 60.Kaur, S. and S. Kaur, Bacteriocins as Potential Anticancer Agents. Frontiers in Pharmacology, 2015. 6: p. 272.
|