|
1.LUND, B.M., Formation of Reducing Sugars from Sucrose by Erwinia Species. Microbiology, 1975. 88(2): p. 367-371. 2.LUND, B.M. ., et al., The nature of reducing compounds formed from sucrose by Erwinia carotovora var. atroseptica. Journal of General Microbiology, 1973. 78(2): p. 331. 3.Pe''rombelon, M.C.M., Potato diseases caused by soft-rot erwinias: an overview of pathogenesis. The role of pectic enzymes in plant pathogenesis. Plant Pathol, 2002. 51. 4.Malcolmson, J.F., A study of Erwinia isolates obtained from soft rots and blackleg of potatoes. Transactions of the British Mycological Society, 1959. 42(2): p. 261-269. 5.Kloepper, J.W., et al., The association ofErwinia carotovora var.atroseptica andErwinia carotovora var.carotovora with insects in Colorado. American Potato Journal, 1979. 56(7): p. 351-361. 6.Preston, J., et al., Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16. Journal of bacteriology, 1992. 174(6): p. 2039-2042. 7.Hoondal, G., et al., Microbial alkaline pectinases and their industrial applications: a review. Applied microbiology and biotechnology, 2002. 59(4-5): p. 409-418. 8.Mukai, K ., et al., Kinetics and mechanism of heterogeneous hydrolysis of poly [(R)-3-hydroxybutyrate] film by PHA depolymerases. International journal of biological macromolecules, 1993. 15(6): p. 361-366. 9.Huang, J., et al.,, DNA sequence analysis of pglA and mechanism of export of its polygalacturonase product from Pseudomonas solanacearum. Journal of bacteriology, 1990. 172(7): p. 3879-3887. 10.Chatterjee, A.K., et al., Synthesis and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiella species. Canadian journal of microbiology, 1979. 25(1): p. 94-102. 11.Bergey, H., et al., Relationship of pectolytic clostridia and Erwinia carotovora strains to decay of potato tubers in storage. Plant Disease, 1982: p. 543. 12.Cotter, P.D., et al., Bacteriocins [mdash] a viable alternative to antibiotics? Nat Rev Micro, 2013. 11(2): p. 95-105. 13.Michel-Briand, Y. ., et al., The pyocins of Pseudomonas aeruginosa. Biochimie, 2002. 84(5-6): p. 499-510. 14.RodrÍGuez, E.V.A., et al., Control of Listeria monocytogenes by bacteriocins and monitoring of bacteriocin-producing lactic acid bacteria by colony hybridization in semi-hard raw milk cheese. Journal of Dairy Research, 2001. 68(1): p. 131-137. 15.Griffiths, G.L., et al., Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem, 1984. 259(1): p. 383-5. 16.S?rensen, K.I., et al., A Food-Grade Cloning System for Industrial Strains of Lactococcus lactis. Applied and Environmental Microbiology, 2000. 66(4): p. 1253-1258. 17.Bennik, M.H., et al., Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold differences in bacteriocin sensitivity. Appl Environ Microbiol, 1997. 63(9): p. 3628-36. 18.Itoh, T., et al., Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett Appl Microbiol, 1995. 21(3): p. 137-41. 19.Strauch, E., et al., Characterization of Enterocoliticin, a Phage Tail-Like Bacteriocin, and Its Effect on Pathogenic Yersinia enterocolitica Strains. Applied and Environmental Microbiology, 2001. 67(12): p. 5634-5642. 20.Bradley, D.E., Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev, 1967. 31. 21.Clark, S., et al., Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. Journal of virology, 1981. 39(3): p. 816-822. 22.Expert, D., et al., Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity. J Bacteriol, 1985. 163(1): p. 221-7. 23.Cambell, P.a.E., E, Bacteriocin production in Erwinia carotovora. Phytopathology. Phyotopathology, 1997: p. 69:526. 24.Tagg, J., et al., Assay system for bacteriocins. Applied microbiology, 1971. 21(5): p. 943. 25.Radman, M., SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci, 1975: p. 355-67. 26.Gillor, O., et al., The role of SOS boxes in enteric bacteriocin regulation. Microbiology (Reading, England), 2008. 154(Pt 6): p. 1783-1792. 27.Little, J., Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie, 1991. 73(4): p. 411-421. 28.Harmon, F.G., et al., Interaction of Escherichia coli RecA protein with LexA repressor. II. Inhibition of DNA strand exchange by the uncleavable LexA S119A repressor argues that recombination and SOS induction are competitive processes. J Biol Chem, 1996. 271(39): p. 23874-83. 29.Konisky, J., Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol, 1982. 36: p. 125-44. 30.Roberts, J.W ., et al., Two mutations that alter the regulatory activity of E. coli recA protein. Nature, 1981. 290(5805): p. 422-4. 31.Little, J.W., et al., Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci U S A, 1980. 77(6): p. 3225-9. 32.Kolb, A., et al., Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem, 1993. 62: p. 749-95. 33.Scott, S., et al., Transcriptional co-activation at the ansB promoters: involvement of the activating regions of CRP and FNR when bound in tandem. Mol Microbiol, 1995. 18(3): p. 521-31. 34.Zhang, X., et al., Catabolite gene activator protein mutations affecting activity of the araBAD promoter. J Bacteriol, 1998. 180(2): p. 195-200. 35.Brown, N.L., et al., The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 2003. 27(2): p. 145-163. 36.Kumar, M., et al., Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology, 2008. 154(Pt 10): p. 2942-55. 37.Stella, N.A., et al., Serratia marcescens Cyclic AMP Receptor Protein Controls Transcription of EepR, a Novel Regulator of Antimicrobial Secondary Metabolites. J Bacteriol, 2015. 197(15): p. 2468-78. 38.McKay, D.B., et al., Structure of catabolite gene activator protein at 2.9-A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP. J Biol Chem, 1982. 257(16): p. 9518-24. 39.Popovych, N., et al., Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A, 2009. 106(17): p. 6927-32. 40.Chen, Y., et al., Evidence for Cyclic Di-GMP-Mediated Signaling in Bacillus subtilis. Journal of Bacteriology, 2012. 194(18): p. 5080-5090. 41.Römling, U., et al., Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger. Microbiology and Molecular Biology Reviews, 2013. 77(1): p. 1-52. 42.Caly, D.L., et al., Targeting cyclic di-GMP signalling: a strategy to control biofilm formation? Curr Pharm Des, 2015. 21(1): p. 12-24. 43.Ross, P., et al., Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 1987. 325(6101): p. 279-281. 44.Barraud, N., et al., Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal. Journal of Bacteriology, 2009. 191(23): p. 7333-7342. 45.Krasteva, P.V., et al., Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP. Science, 2010. 327(5967): p. 866-868. 46.Jenal, U., et al., Mechanisms of Cyclic-di-GMP Signaling in Bacteria. Annual Review of Genetics, 2006. 40(1): p. 385-407. 47.Simm, R., et al., GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility. Molecular microbiology, 2004. 53(4): p. 1123-1134. 48.Chou, S.H., et al., Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms. J Bacteriol, 2016. 198(1): p. 32-46. 49.Fazli, M., et al., The CRP/FNR family protein Bcam1349 is ac‐di‐GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Molecular microbiology, 2011. 82(2): p. 327-341. 50.Takahara, Y., Development of the microbial pesticide for soft-rot disease. PSJ Biocont. Rept, 1994. 4: p. 1-7. 51.Parret, A.H., et al., Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trends in microbiology, 2002. 10(3): p. 107-112. 52.Chan, Y.-c., et al., Extracellular secretion of Carocin S1 in Pectobacterium carotovorum subsp. carotovorum occurs via the type III secretion system integral to the bacterial flagellum. BMC microbiology, 2009. 9(1): p. 181. 53.Roh, E., et al., Diverse antibacterial activity of Pectobacterium carotovorum subsp. carotovorum isolated in Korea. J. Microbiol. Biotechnol, 2009. 19(1): p. 42-50. 54.Chan, Y.-C., et al., Cloning, purification, and functional characterization of Carocin S2, a ribonuclease bacteriocin produced by Pectobacterium carotovorum. BMC Microbiology, 2011. 11(1): p. 99. 55.陳楷茵, Pectobacterium carotovorum subsp. carotovorum 低分子量細菌素 Carocin S3的基因選殖、純化及蛋白分析2010, 國立中興大學化學系. 56.徐志豪, Erwinia carotovora 低分子量細菌素Carocin S3基因選殖與表現2009, 國立中興大學化學系. 57.Chuang, D.-y., et al.,Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. Journal of bacteriology, 2007. 189(2): p. 620-626. 58.Morris, D.R., et al., Upstream open reading frames as regulators of mRNA translation. Molecular and cellular biology, 2000. 20(23): p. 8635-8642. 59.Duport, C., et al., Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. Journal of Biological Chemistry, 1995. 270(15): p. 8920-8927. 60.Roh, E., et al., Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Applied and environmental microbiology, 2010. 76(22): p. 7541-7549. 61.Chin, K.-H., et al., The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. Journal of molecular biology, 2010. 396(3): p. 646-662. 62.Park, T.-H., et al., Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. Journal of bacteriology, 2012. 194(22): p. 6345. 63.陳彥君, Pectobacterium carotovorum subsp. carotovorum低分子量細菌素基因受c-di-GMP與cyclic AMP Receptor Protein調控作用之探討2011, 國立中興大學化學系所. 64.Sambrook, J., et al., Molecular cloning: a laboratory manual1989, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 65.Blin, N., et al., A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic acids research, 1976. 3(9): p. 2303-2308. 66.Ho, S.N., et al., Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989. 77(1): p. 51-59. 67.Hanahan, D., Studies on transformation of Escherichia coli with plasmids. J Mol Biol, 1983. 166. 68.Simms, D., et al., TRIzol: A new reagent for optimal single-step isolation of RNA. Focus, 1993. 15(4): p. 532-535. 69.Boedtker, H., Conformation independent molecular weight determinations of RNA by gel electrophoresis. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 1971. 240(3): p. 448-453. 70.Metzger, M., et al., Site-directed and transposon-mediated mutagenesis with pfd-plasmids by electroporation of Erwinia amylovora and Escherichia coli cells. Nucleic acids research, 1992. 20(9): p. 2265-2270. 71.Fredericq, P., Colicins. Annu Rev Microbiol, 1957. 11: p. 7-22. 72.Sambrook, J., et al., SDS-polyacrylamide gel electrophoresis of proteins. CSH Protoc, 2006. 1: p. 4. 73.Mahmood, T., et al., Western blot: technique, theory, and trouble shooting. North American journal of medical sciences, 2012. 4(9): p. 429. 74.Aslanidis, C., et al., Ligation-independent cloning of PCR products (LIC-PCR). Nucleic acids research, 1990. 18(20): p. 6069-6074. 75.Chiu, J., et al., Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Research, 2004. 32(21): p. e174-e174. 76.Hanahan, D., Studies on transformation of Escherichia coli with plasmids. Journal of molecular biology, 1983. 166(4): p. 557-580. 77.Schägger, H., Tricine-sds-page. Nature protocols, 2006. 1(1): p. 16. 78.賴瑋婷, Pectobacterium carotovorum subsp. carotovorum 之 c-di-GMP 與 CRP 之協同作用對低分子量細菌素 carocin 基因之調控機制研究2013, 國立中興大學 化學系 79.林佳德, 低分子量細菌素Carocin S2抗生蛋白質CaroS2K抗生活性最小化區域分離與功能分析2012, 國立中興大學化學系所. 80.Tao, F., et al., The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. Journal of bacteriology, 2010. 192(4): p. 1020-1029. 81.Pommer, A.J., et al., Homing in on the role of transition metals in the HNH motif of colicin endonucleases. Journal of Biological Chemistry, 1999. 274(38): p. 27153-27160. 82.Pachuk, C.J., et al., Chain reaction cloning: a one-step method for directional ligation of multiple DNA fragments. Gene, 2000. 243(1): p. 19-25. 83.Tsuge, K., et al., One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic acids research, 2003. 31(21): p. e133-e133. 84.Olsen, R.L., et al., Alkaline phophatase from the hepatopancreas of shrimp (Pandalus borealis): a dimeric enzyme with catalytically active subunits. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991. 99(4): p. 755-761. 85.陳彥君, Pectobacterium carotovorum subsp. carotovorum低分子量細菌素基因受c-di-GMP與cyclic AMP Receptor Protein調控作用之探討. 2011, 國立中興大學化學系所. 86.Reusch, R., et al., Poly-beta-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. Journal of bacteriology, 1986. 168(2): p. 553-562. 87.Chang, A.C., et al., Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. Journal of bacteriology, 1978. 134(3): p. 1141-1156.
|