跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳思暐
研究生(外文):Szu-Wei Chen
論文名稱:醯胺萘醌在鈀金屬催化下和胺類進行碳-氫鍵活化反應產生吡咯及咪唑衍生物
論文名稱(外文):Palladium-Catalyzed C-H Functionalization of Amido-substitued 1,4-Napthoquinone in the Presence of Amines Toward the Formation of Pyrroles and Imidazoles
指導教授:洪豐裕
口試委員:黃瑞賢陳繼添
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:碳-氫活化鈀催化合環萘醌?咯醯胺
外文關鍵詞:C-H functionalizationPalladiumcyclizationNaphthoquinonePyrroleAmidePhosphine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用2-醯胺萘醌2a和三級胺做為起始物,和金屬鈀化合物在空氣下進行一鍋化反應,產生吲哚苯醌衍生物,產率都有80%左右,並且得到其中之一產物3c的晶體結構。推測反應是透過金屬鈀化合物先將三級胺活化,使三級胺上的取代基接上2-醯胺萘醌並在脫去氮後進行環化反應,產生吲哚苯醌。最後根據優選條件推出可行的反應機制。
接著也嘗試使用二級胺和一級胺做為反應物,在相同的條件下進行反應,發現當反應物是一級胺且胺的取代基立體障礙小的時候,產物為咪唑苯醌;立體障礙大時為胺基苯醌。而當反應物是二級胺時,主產物是吲哚苯醌並且產率和胺類取代基的立體障礙大小有關,立體障礙越小時,推測會有胺基化苯醌的副產物產生,因此目標產物的產率較低。
另外,也使用三級磷來做為反應物,在相同條件下進行反應,得到的產物則為一種有類似苯醌結構且含有碳-磷雙鍵的ylide(葉立德或鎓內鹽)。
1-H-Benz[f]indole-4,9-diones 3 were prepared in good yields by treating N-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)acetamide 2a with tertiary amines and using Pd(OAc)2 as the catalyst precursor in one-pot reactions and the structure of 3c was determined by single crystal X-ray diffraction methods.
As revealed from the structure of 3c, the transition metal complex Pd(OAc)2 indeed catalyzed amines and 2a, which led to the formation of pyrrole through cyclization processes by fusing to the former napthoquinone framework. A mechanism was proposed after screening some relevant reaction conditions.
Thereafter, similar reactions were carried out by employing primary and secondary amines as the amine sources. When primary amines are used as the reactants, the products will be either imidazolequinones or aminoquinones depending on the extent of the steric hindrance of amines. When secondary amines are used as the reactants, the products will be either indolequinone or aminoquinones again depending on the extent of the steric hindrance of amines.
In addition, similar reactions were carried out by replacing tertiary amines with tertiary phosphines which led to the formation of ylide-like derivatives instead.
目錄

摘要 i
Abstract ii
目錄 iii
Scheme 目錄 v
Figure 目錄 vii
Table 目錄 viii
第一章 序論 1
第一節 Indole-4,7-quinone簡介 2
第二節 C-H鍵活化反應(C-H functionalization reaction)簡介 6
第三節 Quinone上C-H鍵活化反應簡介 8
第四節 研究方向 12
第二章 實驗 15
第一節 儀器與設備 16
第二節 藥品 19
第三節 合成與鑑定 21


第三章 結果與討論 32
第一節 Amido-substituted napthoquinone與三級胺的反應 33
第二節 Amido-substituted napthoquinone與一級胺的反應 47
第三節 Amido-substituted napthoquinone與二級胺的反應 51
第四節 Amido-substituted napthoquinone與三級磷的反應 53
第四章 結論 56
第五章 參考文獻 57
第六章 附錄 64
第一節 光譜數據 65
第二節 晶體數據 93
1.Thosmson, R. H. Pharm. Weekbl. Sci., 1991, 13, 70-73.
2.Patai, S.; Rappaport, Z. The Chemistry of Quinonoid Compounds, Vol II, Wiley: New York, 1988.
3.Koyama, J. Recent Pat. Anti-Infect. Drug Discovery, 2006, 1, 113-125.
4.Brien, J. O’P. Chem. Biol. Interact., 1991, 80, 1-41.
5.Dowd, P.; Zheng, Z. B. Proc. Natl. Acad. Sci., 1995, 92, 8171-8175.
6.(a) Thomson, R. H. Naturally Occurring Quinones, 2nd ed.; Academic Press: London and New York, 1971. (b) Thomson, R. H. Naturally Occurring Quinones III: Recent Advances, 3rd ed.; Chapman and Hall: London and New York, 1987. (c) Sharma, P. S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Anal. Bioanal. Chem. 2012, 402, 3177-3204. (d) Furstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582-3603. (e) Ryu, C.-K.; Lee, J. Y.; Jeong, S. H.; Nho, J.-H. Bioorg. Med. Chem. Lett. 2009, 19, 146-148. (f) Ryu, C.-K.; Yoon, J. H.; Song, A. L.; Im, H. A.; Kim, J. Y.; Kim, A. Bioorg. Med. Chem. Lett. 2012, 22, 497-499. (g) Shchekotikhin, A. E.; Glazunova, V. A.; Dezhenkova, L. G.; Kaluzhny, D. N.; Luzikov, Y. N.; Buyanov, V. N.; Treshalina, H. M.; Lesnaya, N. A.; Romanenko, V. I.; Balzarini, J.; Agama, K.; Pommier, Y.; Shtil, A. A.; Preobrazhenskaya, M. N. Eur. J. Med. Chem. 2014, 86, 797-805. (h) NadjiBoukrouche, A. R.; On, S.; Khoumeri, O.; Terme, T.; Vanelle, P. Tetrahedron Lett. 2015, 56, 2272-2275. (i) Guo, S.; Chen, B.; Guo, X.; Zhang, G.; Yu, Y. Tetrahedron, 2015, 71, 9371-9375. (j) Gach, K.; Modranka, J.; Szymanski, J.; Pomorska, D.; Krajewska, U.; Mirowski, M.; Janecki, T.; Janecka, A. Eur. J. Med. Chem. 2016, 120, 51-63.
7.(a) Krapcho, A. P.; Waterhouse, D. J. Heterocycles, 1999, 51, 737-749. (b) Okunade, A. L.; Clark, A. M.; Hufford, C. D.; Oguntimein, B. O. Planta Med. 1999, 65, 447-448. (c) Nok, A. J. Cell Biochem. Funct. 2002, 20, 205-212.
8.(a) Arsenault, G. P. Tetrahedron Lett. 1965, 45, 4033-4037. (b) Steyn, P. S.; Wessels, P. L.; Marasas, W. O. F. Tetrahedron, 1979, 35, 1551-1555.
9.(a) Martin, T.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1, 1988, 235-240. (b) Matsuo, K.; Ishida, S. Chem. Expr. 1993, 8, 321-324. (c) Moody, C. J.; Swann, E. Tetrahedron Lett. 1993, 34, 1987-1988. (d) Matsuo, K.; Ishida, S. Chem. Pharm. Bull. 1994, 42, 1325-1327. (e) Hagiwara, H.; Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. Chem. Pharm. Bull. 1998, 46, 1948-1949. (f) Hagiwara, H.; Choshi, T.; Nobuhiro, J.; Fujimoto, H.; Hibino, S. Chem. Pharm. Bull. 2001, 49, 881-886. (g) Sofiyev, V.; Lumb, J.-P.; Volgraf, M.; Trauner, D. Chem.-Eur. J. 2012, 18, 4999- 5005.
10.(a)Lee, E.-J.; Lee, H.-J.; Park, H. J.; Min, H.-Y.; Suh, M.-E.; Chung, H.-J.; Lee, S. K. Bioorg. Med. Chem. Lett. 2004, 14, 5175-5178. (b) Park, H. J.; Lee, H.-J.; Min, H.-Y.; Chung, H.-J.; Suh, M. S.; Park-Choo, H.-Y.; Kim, C.; Kim, H. J.; Seo, E.-K.; Lee, S. K. Eur. J. Pharmacol. 2005, 527, 31-36.
11.(a) Martin, T.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1, 1988, 235-240. (b) Matsuo, K.; Ishida, S. Chem. Express, 1993, 8, 321-324. (c) Matsuo, K.; Ishida, S. Chem. Pharm. Bull. 1994, 42, 1325-1327. (d) Hagiwara, H.; Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. Chem. Pharm. Bull. 1998, 46, 1948-1949. (e) Hagiwara, H.; Choshi, T.; Nobuhiro, J.; Fujimoto, H.; Hibino, S. Chem. Pharm. Bull. 2001, 49, 881-886.
12.Moody, C. J.; Swann, E. Tetrahedron Lett. 1993, 34, 1987-1988.
13.Tatsuta, K.; Imamura, K.; Itoh, S.; Kasai, S. Tetrahedron Lett. 2004, 45, 2847-2850.
14.Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. J. Am. Chem. Soc. 1992, 114, 2175-2180.
15.Cotterill, A. S.; Moody, C. J.; Roffey, J. R. A. Tetrahedron, 1995, 51, 7223-7230.
16.(a) Naylor, M. A.; Jaffar, M.; Nolan, J.; Stephens, M. A.; Butler, S.; Patel, K. B.; Everett, S. A.; Adams, G. E.; Stratford, I. J. J. Med. Chem. 1997, 40, 2335-2346. (b) Naylor, M. A.; Swann, E.; Everett, S. A.; Jaffar, M.; Nolan, J.; Robertson, N.; Lockyer, S. D.; Patel, K. B.; Dennis, M. F.; Stratford, M. R. L.; Wardman, P.; Adams, G. E.; Moody, C. J.; Stratford, I. J. J. Med. Chem. 1998, 41, 2720-2731. (c) Jaffar, M.; Phillips, R. M.; Williams, K. J.; Mrema, I.; Cole, C.; Wind, N. S.; Ward, T. H.; Stratford, I. J.; Patterson, A. V. Biochem. Pharmacol. 2003, 66, 1199-1206.
17.(a) Cotterill, A. S.; Hartopp, P.; Jones, G. B.; Moody, C. J.; Norton, C. L.; O’Sullivan, N.; Swann, E. Tetrahedron, 1994, 50, 7657-7674. (b) Cotterill, A. S.; Moody, C. J.; Mortimer, R. J.; Norton, C. L.; O’Sullivan, N.; Stephens, M. A.; Stradiotto, N. R.; Swann, E.; Stratford, I. J. J. Med. Chem. 1994, 37, 3834-3843.
18.(a) Wang, C.; Sperry, J. Tetrahedron, 2013, 69, 4563-4577. (b) Khdour, O.; Ouyang, A.; Skibo, E. B. J. Org. Chem. 2006, 71, 5855-5863.
19.(a) Remers, W. A.; Weiss, M. J. J. Am. Chem. Soc. 1966, 88, 804-813. (b) Roth, R. H.; Remers, W. A.; Weiss, M. J. J. Org. Chem. 1966, 31, 1012-1015.
20.Kobayashi, K.; Takeuchi, H.; Seko, S.; Suginome, H. Helv. Chim. Acta. 1991, 74, 1091-1094.
21.Shvartsberg, M. S.; Kolodina, E. A.; Lebedeva, N. I.; Fedenok, L. G. Tetrahedron Lett. 2009, 50, 6769-6771.
22.(a) Knolker, H. J.; Frohner, W. J. Chem. Soc., Perkin Trans. 1, 1998, 173-176. (b) Knolker, H.-J.; Reddy, K. R.; Wagner, A. Tetrahedron Lett. 1998, 39, 8267-8270.
23.Francis A. Carey,« Organic Chemistry »,1992.
24.Catellani, M,: Frignani, F.; Rangoni, A., Angew. Chem. Int. Ed. 1997, 36, 119-122.
25.Wang, X. C.; Gong, W.; Fang, L. Z.; Zhu, R. Y.; Li, S.; Engle, K. M.; Yu. J. Q. Nature, 2015, 519, 334-338.
26.Decharin, N.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 5732-5735.
27.Debasish, B.; Sanghamitra, M.; Turrubiartes, L. C.; Banik, B. K. Ultrasonics Sonochemistry, 2012, 19, 969-973.
28.Mehta, G.; Padma, S. Tetrahedron, 1991, 47, 7807-7820.
29.Tseng, C. C.; Wu, Y. L.; Chuang, C. P. Tetrahedron, 2002, 58, 7625-7633.
30.Fujiwara, Y,; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Bel, M. D.; Baran, P. P. S. J. Am. Soc. 2011, 133, 3292-3295.
31.Walker, S. E.; Jordan-Hore, J. A.; Johnson, D. G.; Macgregor, S. A.; Lee, A. L. Angew. Chem. Int. Ed. 2014, 53, 13876-13879.
32.Cameron, D. W.; Scott, P. M.; Todd, L. J. Chem. Soc. 1964, 42-48.
33.Mori Quiroz, L. M.; Clift, M. D., Org. Lett., 2016, 18, 3446-3449.
34. Jiao, L; Bach, T. J. Am. Chem. Soc. 2011, 133, 12990-12993.
35.陳雅倩,碩士論文,中興大學化學研究所,民國104年
36.Luu, Q. H.; Guerra, J. D.; Castaneda, C. M.; Martinez, M. A.; Saunders, J.; Garcia, B. A.; Gonzales, B. V.; Aidunithula, A. R.; Mito, S. Tetrahedron Lett. 2016, 57, 2253-2256.
37.Kobayashi, K.; Shimizu, H.; Srtsaki, A.; Suginome, H. J. Org. Chem. 1991, 56, 3204-3205.
38.Kuo, S. C.; Ibuka, T.; Huang, L. J.; Lien, J. C.; Yean, S. R.; Huang, S. C.; Lednicer, D.; Morris Natschke, S.; Lee, K. H. J. Med. Chem. 1996, 39, 1447-1451.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鈀催化直接芳香化反應與交叉脫氫炔化反應合成多取代碲吩化合物
2. 鈀催化直接脫氫烯化反應與脫氫炔化反應:單取代與雙取代之對稱及非對稱硒吩化合物之合成
3. 在酸性條件下藉由鈀金屬催化具胺基取代之萘醌化合物進行碳氫鍵活化與增環反應
4. 含醯胺取代基之1,4-苯醌和三級胺在鈀金屬催化下進行碳-氫鍵官能基化反應形成萘醌及吲哚醌衍生物
5. 金金屬催化1,2-二烯-5-炔與苯並異噁唑經由 一、二號位遷移/環化合成多取代的吡咯
6. 以聯苯上醯胺基當成指向基配合鈀金屬化合物進行聯苯碳-氫鍵活化及後續磷酸化或胺化反應
7. 製備具有芳香環咪唑取代基之二級氧化膦基及其衍生鈀金屬錯合物並應用於Suzuki-Miyaura耦合反應
8. 鈀錯合物活化碳氫鍵的反應—由芳香族與炔化合物製備多取代萘
9. 應用親核試劑,親電子試劑與過渡金屬催化烯雙烯類及相關化合物之環化反應
10. 2-(6-取代-3(Z)-己烯-1,5-雙炔)苯甲酸甲酯之鈀金屬催化環化反應合成苯[c]香豆素
11. 已具立體障礙含鈷磷機配位基應用於鈀金屬催化之苯基胺鍵結研究
12. 含亞胺-比咯多螯合基配位化學之研究
13. 二價鎳與二價鉑的雙(2-二苯基膦苯)醯胺錯合物
14. 新型態含鈷有機金屬磷基之設計、合成與催化應用及密度泛函數理論計算於雙鈷媒介合成尿素衍生物之反應機構研究
15. 利用■催化氮–丙烯基溴化乙醯胺類的閉環合成γ–內醯胺類
 
無相關期刊